pycbc package¶
Subpackages¶
- pycbc.catalog package
- pycbc.distributions package
- Submodules
- pycbc.distributions.angular module
- pycbc.distributions.arbitrary module
- pycbc.distributions.bounded module
- pycbc.distributions.constraints module
- pycbc.distributions.gaussian module
- pycbc.distributions.joint module
- pycbc.distributions.power_law module
- pycbc.distributions.qnm module
- pycbc.distributions.sky_location module
- pycbc.distributions.spins module
- pycbc.distributions.uniform module
- pycbc.distributions.uniform_log module
- Module contents
- pycbc.events package
- Submodules
- pycbc.events.coinc module
- pycbc.events.coinc_rate module
- pycbc.events.eventmgr module
- pycbc.events.eventmgr_cython module
- pycbc.events.ranking module
- pycbc.events.simd_threshold_cython module
- pycbc.events.single module
- pycbc.events.stat module
- pycbc.events.threshold_cpu module
- pycbc.events.trigger_fits module
- pycbc.events.triggers module
- pycbc.events.veto module
- Module contents
- pycbc.fft package
- Submodules
- pycbc.fft.backend_cpu module
- pycbc.fft.backend_mkl module
- pycbc.fft.backend_support module
- pycbc.fft.class_api module
- pycbc.fft.core module
- pycbc.fft.fft_callback module
- pycbc.fft.fftw module
- pycbc.fft.fftw_pruned module
- pycbc.fft.fftw_pruned_cython module
- pycbc.fft.func_api module
- pycbc.fft.mkl module
- pycbc.fft.npfft module
- pycbc.fft.parser_support module
- Module contents
- pycbc.filter package
- Submodules
- pycbc.filter.autocorrelation module
- pycbc.filter.matchedfilter module
- pycbc.filter.matchedfilter_cpu module
- pycbc.filter.matchedfilter_numpy module
- pycbc.filter.qtransform module
- pycbc.filter.resample module
- pycbc.filter.simd_correlate module
- pycbc.filter.simd_correlate_cython module
- pycbc.filter.zpk module
- Module contents
- pycbc.frame package
- pycbc.inference package
- Subpackages
- pycbc.inference.io package
- Submodules
- pycbc.inference.io.base_hdf module
- pycbc.inference.io.base_mcmc module
- pycbc.inference.io.base_multitemper module
- pycbc.inference.io.base_nested_sampler module
- pycbc.inference.io.base_sampler module
- pycbc.inference.io.dynesty module
- pycbc.inference.io.emcee module
- pycbc.inference.io.emcee_pt module
- pycbc.inference.io.epsie module
- pycbc.inference.io.multinest module
- pycbc.inference.io.posterior module
- pycbc.inference.io.txt module
- pycbc.inference.io.ultranest module
- Module contents
- pycbc.inference.jump package
- pycbc.inference.models package
- Submodules
- pycbc.inference.models.analytic module
- pycbc.inference.models.base module
- pycbc.inference.models.base_data module
- pycbc.inference.models.data_utils module
- pycbc.inference.models.gaussian_noise module
- pycbc.inference.models.marginalized_gaussian_noise module
- pycbc.inference.models.relbin module
- pycbc.inference.models.single_template module
- Module contents
- pycbc.inference.sampler package
- Submodules
- pycbc.inference.sampler.base module
- pycbc.inference.sampler.base_cube module
- pycbc.inference.sampler.base_mcmc module
- pycbc.inference.sampler.base_multitemper module
- pycbc.inference.sampler.dynesty module
- pycbc.inference.sampler.emcee module
- pycbc.inference.sampler.emcee_pt module
- pycbc.inference.sampler.epsie module
- pycbc.inference.sampler.multinest module
- pycbc.inference.sampler.ultranest module
- Module contents
- pycbc.inference.io package
- Submodules
- pycbc.inference.burn_in module
- pycbc.inference.entropy module
- pycbc.inference.evidence module
- pycbc.inference.gelman_rubin module
- pycbc.inference.geweke module
- pycbc.inference.option_utils module
- Module contents
- Subpackages
- pycbc.inject package
- pycbc.io package
- pycbc.noise package
- pycbc.population package
- pycbc.psd package
- pycbc.results package
- Submodules
- pycbc.results.color module
- pycbc.results.dq module
- pycbc.results.followup module
- pycbc.results.layout module
- pycbc.results.legacy_grb module
- pycbc.results.metadata module
- pycbc.results.mpld3_utils module
- pycbc.results.plot module
- pycbc.results.pygrb_plotting_utils module
- pycbc.results.render module
- pycbc.results.scatter_histograms module
- pycbc.results.str_utils module
- pycbc.results.table_utils module
- pycbc.results.versioning module
- Module contents
- pycbc.strain package
- pycbc.tmpltbank package
- Submodules
- pycbc.tmpltbank.bank_output_utils module
- pycbc.tmpltbank.brute_force_methods module
- pycbc.tmpltbank.calc_moments module
- pycbc.tmpltbank.coord_utils module
- pycbc.tmpltbank.em_progenitors module
- pycbc.tmpltbank.lambda_mapping module
- pycbc.tmpltbank.lattice_utils module
- pycbc.tmpltbank.option_utils module
- pycbc.tmpltbank.partitioned_bank module
- Module contents
- pycbc.types package
- pycbc.vetoes package
- pycbc.waveform package
- Submodules
- pycbc.waveform.bank module
- pycbc.waveform.compress module
- pycbc.waveform.decompress_cpu module
- pycbc.waveform.decompress_cpu_cython module
- pycbc.waveform.generator module
- pycbc.waveform.nltides module
- pycbc.waveform.parameters module
- pycbc.waveform.pycbc_phenomC_tmplt module
- pycbc.waveform.ringdown module
- pycbc.waveform.sinegauss module
- pycbc.waveform.spa_tmplt module
- pycbc.waveform.spa_tmplt_cpu module
- pycbc.waveform.utils module
- pycbc.waveform.utils_cpu module
- pycbc.waveform.waveform module
- Module contents
- pycbc.workflow package
- Submodules
- pycbc.workflow.coincidence module
- pycbc.workflow.configparser_test module
- pycbc.workflow.configuration module
- pycbc.workflow.core module
- pycbc.workflow.datafind module
- pycbc.workflow.grb_utils module
- pycbc.workflow.inference_followups module
- pycbc.workflow.injection module
- pycbc.workflow.jobsetup module
- pycbc.workflow.matched_filter module
- pycbc.workflow.minifollowups module
- pycbc.workflow.pegasus_workflow module
- pycbc.workflow.plotting module
- pycbc.workflow.psd module
- pycbc.workflow.psdfiles module
- pycbc.workflow.segment module
- pycbc.workflow.splittable module
- pycbc.workflow.tmpltbank module
- Module contents
Submodules¶
pycbc.bin_utils module¶
-
class
pycbc.bin_utils.
BinnedArray
(bins, array=None, dtype='double')[source]¶ Bases:
object
A convenience wrapper, using the NDBins class to provide access to the elements of an array object. Technical reasons preclude providing a subclass of the array object, so the array data is made available as the “array” attribute of this class.
Examples:
Note that even for 1 dimensional arrays the index must be a tuple.
>>> x = BinnedArray(NDBins((LinearBins(0, 10, 5),))) >>> x.array array([ 0., 0., 0., 0., 0.]) >>> x[0,] += 1 >>> x[0.5,] += 1 >>> x.array array([ 2., 0., 0., 0., 0.]) >>> x.argmax() (1.0,)
Note the relationship between the binning limits, the bin centres, and the co-ordinates of the BinnedArray
>>> x = BinnedArray(NDBins((LinearBins(-0.5, 1.5, 2), LinearBins(-0.5, 1.5, 2)))) >>> x.bins.centres() (array([ 0., 1.]), array([ 0., 1.])) >>> x[0, 0] = 0 >>> x[0, 1] = 1 >>> x[1, 0] = 2 >>> x[1, 1] = 4 >>> x.array array([[ 0., 1.], [ 2., 4.]]) >>> x[0, 0] 0.0 >>> x[0, 1] 1.0 >>> x[1, 0] 2.0 >>> x[1, 1] 4.0 >>> x.argmin() (0.0, 0.0) >>> x.argmax() (1.0, 1.0)
-
argmax
()[source]¶ Return the co-ordinates of the bin centre containing the maximum value. Same as numpy.argmax(), converting the indexes to bin co-ordinates.
-
-
class
pycbc.bin_utils.
BinnedRatios
(bins, dtype='double')[source]¶ Bases:
object
Like BinnedArray, but provides a numerator array and a denominator array. The incnumerator() method increments a bin in the numerator by the given weight, and the incdenominator() method increments a bin in the denominator by the given weight. There are no methods provided for setting or decrementing either, but the they are accessible as the numerator and denominator attributes, which are both BinnedArray objects.
-
class
pycbc.bin_utils.
Bins
(minv, maxv, n)[source]¶ Bases:
object
Parent class for 1-dimensional binnings.
Not intended to be used directly, but to be subclassed for use in real bins classes.
-
class
pycbc.bin_utils.
IrregularBins
(boundaries)[source]¶ Bases:
pycbc.bin_utils.Bins
Bins with arbitrary, irregular spacing. We only require strict monotonicity of the bin boundaries. N boundaries define N-1 bins.
Example:
>>> x = IrregularBins([0.0, 11.0, 15.0, numpy.inf]) >>> len(x) 3 >>> x[1] 0 >>> x[1.5] 0 >>> x[13] 1 >>> x[25] 2 >>> x[4:17] slice(0, 3, None) >>> IrregularBins([0.0, 15.0, 11.0]) Traceback (most recent call last): ... ValueError: non-monotonic boundaries provided >>> y = IrregularBins([0.0, 11.0, 15.0, numpy.inf]) >>> x == y True
-
class
pycbc.bin_utils.
LinearBins
(minv, maxv, n)[source]¶ Bases:
pycbc.bin_utils.Bins
Linearly-spaced bins. There are n bins of equal size, the first bin starts on the lower bound and the last bin ends on the upper bound inclusively.
Example:
>>> x = LinearBins(1.0, 25.0, 3) >>> x.lower() array([ 1., 9., 17.]) >>> x.upper() array([ 9., 17., 25.]) >>> x.centres() array([ 5., 13., 21.]) >>> x[1] 0 >>> x[1.5] 0 >>> x[10] 1 >>> x[25] 2 >>> x[0:27] Traceback (most recent call last): ... IndexError: 0 >>> x[1:25] slice(0, 3, None) >>> x[:25] slice(0, 3, None) >>> x[10:16.9] slice(1, 2, None) >>> x[10:17] slice(1, 3, None) >>> x[10:] slice(1, 3, None)
-
class
pycbc.bin_utils.
LinearPlusOverflowBins
(minv, maxv, n)[source]¶ Bases:
pycbc.bin_utils.Bins
Linearly-spaced bins with overflow at the edges.
There are n-2 bins of equal size. The bin 1 starts on the lower bound and bin n-2 ends on the upper bound. Bins 0 and n-1 are overflow going from -infinity to the lower bound and from the upper bound to +infinity respectively. Must have n >= 3.
Example:
>>> x = LinearPlusOverflowBins(1.0, 25.0, 5) >>> x.centres() array([-inf, 5., 13., 21., inf]) >>> x.lower() array([-inf, 1., 9., 17., 25.]) >>> x.upper() array([ 1., 9., 17., 25., inf]) >>> x[float("-inf")] 0 >>> x[0] 0 >>> x[1] 1 >>> x[10] 2 >>> x[24.99999999] 3 >>> x[25] 4 >>> x[100] 4 >>> x[float("+inf")] 4 >>> x[float("-inf"):9] slice(0, 3, None) >>> x[9:float("+inf")] slice(2, 5, None)
-
class
pycbc.bin_utils.
LogarithmicBins
(minv, maxv, n)[source]¶ Bases:
pycbc.bin_utils.Bins
Logarithmically-spaced bins.
There are n bins, each of whose upper and lower bounds differ by the same factor. The first bin starts on the lower bound, and the last bin ends on the upper bound inclusively.
Example:
>>> x = LogarithmicBins(1.0, 25.0, 3) >>> x[1] 0 >>> x[5] 1 >>> x[25] 2
-
class
pycbc.bin_utils.
LogarithmicPlusOverflowBins
(minv, maxv, n)[source]¶ Bases:
pycbc.bin_utils.Bins
Logarithmically-spaced bins plus one bin at each end that goes to zero and positive infinity respectively. There are n-2 bins each of whose upper and lower bounds differ by the same factor. Bin 1 starts on the lower bound, and bin n-2 ends on the upper bound inclusively. Bins 0 and n-1 are overflow bins extending from 0 to the lower bound and from the upper bound to +infinity respectively. Must have n >= 3.
Example:
>>> x = LogarithmicPlusOverflowBins(1.0, 25.0, 5) >>> x[0] 0 >>> x[1] 1 >>> x[5] 2 >>> x[24.999] 3 >>> x[25] 4 >>> x[100] 4 >>> x.lower() array([ 0. , 1. , 2.92401774, 8.54987973, 25. ]) >>> x.upper() array([ 1. , 2.92401774, 8.54987973, 25. , inf]) >>> x.centres() array([ 0. , 1.70997595, 5. , 14.62008869, inf])
-
class
pycbc.bin_utils.
NDBins
[source]¶ Bases:
tuple
Multi-dimensional co-ordinate binning. An instance of this object is used to convert a tuple of co-ordinates into a tuple of bin indices. This can be used to allow the contents of an array object to be accessed with real-valued coordinates.
NDBins is a subclass of the tuple builtin, and is initialized with an iterable of instances of subclasses of Bins. Each Bins subclass instance describes the binning to apply in the corresponding co-ordinate direction, and the number of them sets the dimensions of the binning.
Example:
>>> x = NDBins((LinearBins(1, 25, 3), LogarithmicBins(1, 25, 3))) >>> x[1, 1] (0, 0) >>> x[1.5, 1] (0, 0) >>> x[10, 1] (1, 0) >>> x[1, 5] (0, 1) >>> x[1, 1:5] (0, slice(0, 2, None)) >>> x.centres() (array([ 5., 13., 21.]), array([ 1.70997595, 5. , 14.62008869]))
Note that the co-ordinates to be converted must be a tuple, even if it is only a 1-dimensional co-ordinate.
-
centres
()[source]¶ Return a tuple of arrays, where each array contains the locations of the bin centres for the corresponding dimension.
-
pycbc.boundaries module¶
This modules provides utilities for manipulating parameter boundaries. Namely, classes are offered that will map values to a specified domain using either cyclic boundaries or reflected boundaries.
-
class
pycbc.boundaries.
Bounds
(min_bound=-inf, max_bound=inf, btype_min='closed', btype_max='open', cyclic=False)[source]¶ Bases:
object
Creates and stores bounds using the given values.
The type of boundaries used can be set using the btype_(min|max) parameters. These arguments set what kind of boundary is used at the minimum and maximum bounds. Specifically, if btype_min (btype_max) is set to:
- “open”: the minimum (maximum) boundary will be an instance of OpenBound. This means that a value must be > (<) the bound for it to be considered within the bounds.
- “closed”: the minimum (maximum) boundary will be an instance of ClosedBound. This means that a value must be >= (<=) the bound for it to be considered within the bounds.
- “reflected”: the minimum (maximum) boundary will be an isntance of ReflectedBound. This means that a value will be reflected to the right (left) if apply_conditions is used on the value. For more details see apply_conditions.
If the cyclic keyword is set to True, then apply_conditions will cause values to be wrapped around to the minimum (maximum) bound if the value is > (<=) the maximum (minimum) bound. For more details see apply_conditions.
Values can be checked whether or not they occur within the bounds using in; e.g., 6 in bounds. This is done without applying any boundary conditions. To apply conditions, then check whether the value is in bounds, use the contains_conditioned method.
The default is for the minimum bound to be “closed” and the maximum bound to be “open”, i.e., a right-open interval.
Parameters: - min_bound ({-numpy.inf, float}) – The value of the lower bound. Default is -inf.
- max_bound ({numpy.inf, float}) – The value of the upper bound. Default is inf.
- btype_min ({'open', string}) – The type of the lower bound; options are “closed”, “open”, or “reflected”. Default is “closed”.
- btype_min – The type of the lower bound; options are “closed”, “open”, or “reflected”. Default is “open”.
- cyclic ({False, bool}) – Whether or not to make the bounds cyclic; default is False. If True, both the minimum and maximum bounds must be finite.
-
min
¶ The minimum bound.
Type: _Bound instance
-
max
¶ The maximum bound.
Type: _Bound instance
Examples
Create a right-open interval between -1 and 1 and test whether various values are within them: >>> bounds = Bounds(-1., 1.) >>> -1 in bounds True >>> 0 in bounds True >>> 1 in bounds False
Create an open interval between -1 and 1 and test the same values: >>> bounds = Bounds(-1, 1, btype_min=”open”) >>> -1 in bounds False >>> 0 in bounds True >>> 1 in bounds False
Create cyclic bounds between -1 and 1 and plot the effect of conditioning on points between -10 and 10: >>> bounds = Bounds(-1, 1, cyclic=True) >>> x = numpy.linspace(-10, 10, num=1000) >>> conditioned_x = bounds.apply_conditions(x) >>> fig = pyplot.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, x, c=’b’, lw=2, label=’input’) >>> ax.plot(conditioned_x, x, c=’r’, lw=1) >>> ax.vlines([-1., 1.], x.min(), x.max(), color=’k’, linestyle=’–’) >>> ax.set_title(‘cyclic bounds between x=-1,1’) >>> fig.show()
Create a reflected bound at -1 and plot the effect of conditioning: >>> bounds = Bounds(-1, 1, btype_min=’reflected’) >>> x = numpy.linspace(-10, 10, num=1000) >>> conditioned_x = bounds.apply_conditions(x) >>> fig = pyplot.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, x, c=’b’, lw=2, label=’input’) >>> ax.plot(conditioned_x, x, c=’r’, lw=1) >>> ax.vlines([-1., 1.], x.min(), x.max(), color=’k’, linestyle=’–’) >>> ax.set_title(‘reflected right at x=-1’) >>> fig.show()
Create a reflected bound at 1 and plot the effect of conditioning: >>> bounds = Bounds(-1, 1, btype_max=’reflected’) >>> x = numpy.linspace(-10, 10, num=1000) >>> conditioned_x = bounds.apply_conditions(x) >>> fig = pyplot.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, x, c=’b’, lw=2, label=’input’) >>> ax.plot(conditioned_x, x, c=’r’, lw=1) >>> ax.vlines([-1., 1.], x.min(), x.max(), color=’k’, linestyle=’–’) >>> ax.set_title(‘reflected left at x=1’) >>> fig.show()
Create reflected bounds at -1 and 1 and plot the effect of conditioning: >>> bounds = Bounds(-1, 1, btype_min=’reflected’, btype_max=’reflected’) >>> x = numpy.linspace(-10, 10, num=1000) >>> conditioned_x = bounds.apply_conditions(x) >>> fig = pyplot.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, x, c=’b’, lw=2, label=’input’) >>> ax.plot(conditioned_x, x, c=’r’, lw=1) >>> ax.vlines([-1., 1.], x.min(), x.max(), color=’k’, linestyle=’–’) >>> ax.set_title(‘reflected betewen x=-1,1’) >>> fig.show()
-
apply_conditions
(value)[source]¶ Applies any boundary conditions to the given value.
The value is manipulated according based on the following conditions:
- If self.cyclic is True then value is wrapped around to the minimum (maximum) bound if value is >= self.max (< self.min) bound. For example, if the minimum and maximum bounds are 0, 2*pi and value = 5*pi, then the returned value will be pi.
- If self.min is a reflected boundary then value will be reflected to the right if it is < self.min. For example, if self.min = 10 and value = 3, then the returned value will be 17.
- If self.max is a reflected boundary then value will be reflected to the left if it is > self.max. For example, if self.max = 20 and value = 27, then the returned value will be 13.
- If self.min and self.max are both reflected boundaries, then value will be reflected between the two boundaries until it falls within the bounds. The first reflection occurs off of the maximum boundary. For example, if self.min = 10, self.max = 20, and value = 42, the returned value will be 18 ( the first reflection yields -2, the second 22, and the last 18).
- If neither bounds are reflected and cyclic is False, then the value is just returned as-is.
Parameters: value (float) – The value to apply the conditions to. Returns: The value after the conditions are applied; see above for details. Return type: float
-
contains_conditioned
(value)[source]¶ Runs apply_conditions on the given value before testing whether it is in bounds. Note that if cyclic is True, or both bounds are reflected, than this will always return True.
Parameters: value (float) – The value to test. Returns: Whether or not the value is within the bounds after the boundary conditions are applied. Return type: bool
-
cyclic
-
max
-
min
-
class
pycbc.boundaries.
ClosedBound
[source]¶ Bases:
pycbc.boundaries._Bound
Sets larger and smaller functions to be >= and <=, respectively.
-
larger
(other)[source]¶ A function to determine whether or not other is larger than the bound. This raises a NotImplementedError; classes that inherit from this must define it.
-
name
= 'closed'¶
-
-
class
pycbc.boundaries.
OpenBound
[source]¶ Bases:
pycbc.boundaries._Bound
Sets larger and smaller functions to be > and <, respectively.
-
name
= 'open'¶
-
-
class
pycbc.boundaries.
ReflectedBound
[source]¶ Bases:
pycbc.boundaries.ClosedBound
Inherits from ClosedBound, adding reflection functions.
-
name
= 'reflected'¶
-
-
pycbc.boundaries.
apply_cyclic
(value, bounds)[source]¶ Given a value, applies cyclic boundary conditions between the minimum and maximum bounds.
Parameters: - value (float) – The value to apply the cyclic conditions to.
- bounds (Bounds instance) – Boundaries to use for applying cyclic conditions.
Returns: The value after the cyclic bounds are applied.
Return type:
-
pycbc.boundaries.
reflect_well
(value, bounds)[source]¶ Given some boundaries, reflects the value until it falls within both boundaries. This is done iteratively, reflecting left off of the boundaries.max, then right off of the boundaries.min, etc.
Parameters: - value (float) – The value to apply the reflected boundaries to.
- bounds (Bounds instance) – Boundaries to reflect between. Both bounds.min and bounds.max must be instances of ReflectedBound, otherwise an AttributeError is raised.
Returns: The value after being reflected between the two bounds.
Return type:
pycbc.conversions module¶
This modules provides a library of functions that calculate waveform parameters from other parameters. All exposed functions in this module’s namespace return one parameter given a set of inputs.
-
pycbc.conversions.
dquadmon_from_lambda
(lambdav)[source]¶ Return the quadrupole moment of a neutron star given its lambda
We use the relations defined here. https://arxiv.org/pdf/1302.4499.pdf. Note that the convention we use is that:
\[\mathrm{dquadmon} = \bar{Q} - 1.\]Where \(\bar{Q}\) (dimensionless) is the reduced quadrupole moment.
-
pycbc.conversions.
lambda_tilde
(mass1, mass2, lambda1, lambda2)[source]¶ The effective lambda parameter
The mass-weighted dominant effective lambda parameter defined in https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.043002
-
pycbc.conversions.
lambda_from_mass_tov_file
(mass, tov_file, distance=0.0)[source]¶ Return the lambda parameter(s) corresponding to the input mass(es) interpolating from the mass-Lambda data for a particular EOS read in from an ASCII file.
-
pycbc.conversions.
primary_mass
(mass1, mass2)[source]¶ Returns the larger of mass1 and mass2 (p = primary).
-
pycbc.conversions.
secondary_mass
(mass1, mass2)[source]¶ Returns the smaller of mass1 and mass2 (s = secondary).
-
pycbc.conversions.
mtotal_from_mass1_mass2
(mass1, mass2)[source]¶ Returns the total mass from mass1 and mass2.
-
pycbc.conversions.
q_from_mass1_mass2
(mass1, mass2)[source]¶ Returns the mass ratio m1/m2, where m1 >= m2.
-
pycbc.conversions.
invq_from_mass1_mass2
(mass1, mass2)[source]¶ Returns the inverse mass ratio m2/m1, where m1 >= m2.
-
pycbc.conversions.
eta_from_mass1_mass2
(mass1, mass2)[source]¶ Returns the symmetric mass ratio from mass1 and mass2.
-
pycbc.conversions.
mchirp_from_mass1_mass2
(mass1, mass2)[source]¶ Returns the chirp mass from mass1 and mass2.
-
pycbc.conversions.
mass1_from_mtotal_q
(mtotal, q)[source]¶ Returns a component mass from the given total mass and mass ratio.
If the mass ratio q is >= 1, the returned mass will be the primary (heavier) mass. If q < 1, the returned mass will be the secondary (lighter) mass.
-
pycbc.conversions.
mass2_from_mtotal_q
(mtotal, q)[source]¶ Returns a component mass from the given total mass and mass ratio.
If the mass ratio q is >= 1, the returned mass will be the secondary (lighter) mass. If q < 1, the returned mass will be the primary (heavier) mass.
-
pycbc.conversions.
mass1_from_mtotal_eta
(mtotal, eta)[source]¶ Returns the primary mass from the total mass and symmetric mass ratio.
-
pycbc.conversions.
mass2_from_mtotal_eta
(mtotal, eta)[source]¶ Returns the secondary mass from the total mass and symmetric mass ratio.
-
pycbc.conversions.
mtotal_from_mchirp_eta
(mchirp, eta)[source]¶ Returns the total mass from the chirp mass and symmetric mass ratio.
-
pycbc.conversions.
mass1_from_mchirp_eta
(mchirp, eta)[source]¶ Returns the primary mass from the chirp mass and symmetric mass ratio.
-
pycbc.conversions.
mass2_from_mchirp_eta
(mchirp, eta)[source]¶ Returns the primary mass from the chirp mass and symmetric mass ratio.
-
pycbc.conversions.
mass2_from_mass1_eta
(mass1, eta, force_real=True)[source]¶ Returns the secondary mass from the primary mass and symmetric mass ratio.
-
pycbc.conversions.
mass1_from_mass2_eta
(mass2, eta, force_real=True)[source]¶ Returns the primary mass from the secondary mass and symmetric mass ratio.
-
pycbc.conversions.
eta_from_q
(q)[source]¶ Returns the symmetric mass ratio from the given mass ratio.
This is given by:
\[\eta = \frac{q}{(1+q)^2}.\]Note that the mass ratio may be either < 1 or > 1.
-
pycbc.conversions.
mass1_from_mchirp_q
(mchirp, q)[source]¶ Returns the primary mass from the given chirp mass and mass ratio.
-
pycbc.conversions.
mass2_from_mchirp_q
(mchirp, q)[source]¶ Returns the secondary mass from the given chirp mass and mass ratio.
-
pycbc.conversions.
tau0_from_mtotal_eta
(mtotal, eta, f_lower)[source]¶ Returns \(\tau_0\) from the total mass, symmetric mass ratio, and the given frequency.
-
pycbc.conversions.
tau3_from_mtotal_eta
(mtotal, eta, f_lower)[source]¶ Returns \(\tau_0\) from the total mass, symmetric mass ratio, and the given frequency.
-
pycbc.conversions.
tau0_from_mass1_mass2
(mass1, mass2, f_lower)[source]¶ Returns \(\tau_0\) from the component masses and given frequency.
-
pycbc.conversions.
tau3_from_mass1_mass2
(mass1, mass2, f_lower)[source]¶ Returns \(\tau_3\) from the component masses and given frequency.
-
pycbc.conversions.
mtotal_from_tau0_tau3
(tau0, tau3, f_lower, in_seconds=False)[source]¶ Returns total mass from \(\tau_0, \tau_3\).
-
pycbc.conversions.
eta_from_tau0_tau3
(tau0, tau3, f_lower)[source]¶ Returns symmetric mass ratio from \(\tau_0, \tau_3\).
-
pycbc.conversions.
mass1_from_tau0_tau3
(tau0, tau3, f_lower)[source]¶ Returns the primary mass from the given \(\tau_0, \tau_3\).
-
pycbc.conversions.
mass2_from_tau0_tau3
(tau0, tau3, f_lower)[source]¶ Returns the secondary mass from the given \(\tau_0, \tau_3\).
-
pycbc.conversions.
primary_spin
(mass1, mass2, spin1, spin2)[source]¶ Returns the dimensionless spin of the primary mass.
-
pycbc.conversions.
secondary_spin
(mass1, mass2, spin1, spin2)[source]¶ Returns the dimensionless spin of the secondary mass.
-
pycbc.conversions.
chi_eff
(mass1, mass2, spin1z, spin2z)[source]¶ Returns the effective spin from mass1, mass2, spin1z, and spin2z.
-
pycbc.conversions.
chi_a
(mass1, mass2, spin1z, spin2z)[source]¶ Returns the aligned mass-weighted spin difference from mass1, mass2, spin1z, and spin2z.
-
pycbc.conversions.
chi_p
(mass1, mass2, spin1x, spin1y, spin2x, spin2y)[source]¶ Returns the effective precession spin from mass1, mass2, spin1x, spin1y, spin2x, and spin2y.
-
pycbc.conversions.
phi_a
(mass1, mass2, spin1x, spin1y, spin2x, spin2y)[source]¶ Returns the angle between the in-plane perpendicular spins.
-
pycbc.conversions.
phi_s
(spin1x, spin1y, spin2x, spin2y)[source]¶ Returns the sum of the in-plane perpendicular spins.
-
pycbc.conversions.
primary_xi
(mass1, mass2, spin1x, spin1y, spin2x, spin2y)[source]¶ Returns the effective precession spin argument for the larger mass.
-
pycbc.conversions.
secondary_xi
(mass1, mass2, spin1x, spin1y, spin2x, spin2y)[source]¶ Returns the effective precession spin argument for the smaller mass.
-
pycbc.conversions.
xi1_from_spin1x_spin1y
(spin1x, spin1y)[source]¶ Returns the effective precession spin argument for the larger mass. This function assumes it’s given spins of the primary mass.
-
pycbc.conversions.
xi2_from_mass1_mass2_spin2x_spin2y
(mass1, mass2, spin2x, spin2y)[source]¶ Returns the effective precession spin argument for the smaller mass. This function assumes it’s given spins of the secondary mass.
-
pycbc.conversions.
chi_perp_from_spinx_spiny
(spinx, spiny)[source]¶ Returns the in-plane spin from the x/y components of the spin.
-
pycbc.conversions.
chi_perp_from_mass1_mass2_xi2
(mass1, mass2, xi2)[source]¶ Returns the in-plane spin from mass1, mass2, and xi2 for the secondary mass.
-
pycbc.conversions.
chi_p_from_xi1_xi2
(xi1, xi2)[source]¶ Returns effective precession spin from xi1 and xi2.
-
pycbc.conversions.
phi_from_spinx_spiny
(spinx, spiny)[source]¶ Returns the angle between the x-component axis and the in-plane spin.
-
pycbc.conversions.
phi1_from_phi_a_phi_s
(phi_a, phi_s)[source]¶ Returns the angle between the x-component axis and the in-plane spin for the primary mass from phi_s and phi_a.
-
pycbc.conversions.
phi2_from_phi_a_phi_s
(phi_a, phi_s)[source]¶ Returns the angle between the x-component axis and the in-plane spin for the secondary mass from phi_s and phi_a.
-
pycbc.conversions.
spin1z_from_mass1_mass2_chi_eff_chi_a
(mass1, mass2, chi_eff, chi_a)[source]¶ Returns spin1z.
-
pycbc.conversions.
spin2z_from_mass1_mass2_chi_eff_chi_a
(mass1, mass2, chi_eff, chi_a)[source]¶ Returns spin2z.
-
pycbc.conversions.
spin1x_from_xi1_phi_a_phi_s
(xi1, phi_a, phi_s)[source]¶ Returns x-component spin for primary mass.
-
pycbc.conversions.
spin1y_from_xi1_phi_a_phi_s
(xi1, phi_a, phi_s)[source]¶ Returns y-component spin for primary mass.
-
pycbc.conversions.
spin2x_from_mass1_mass2_xi2_phi_a_phi_s
(mass1, mass2, xi2, phi_a, phi_s)[source]¶ Returns x-component spin for secondary mass.
-
pycbc.conversions.
spin2y_from_mass1_mass2_xi2_phi_a_phi_s
(mass1, mass2, xi2, phi_a, phi_s)[source]¶ Returns y-component spin for secondary mass.
-
pycbc.conversions.
chirp_distance
(dist, mchirp, ref_mass=1.4)[source]¶ Returns the chirp distance given the luminosity distance and chirp mass.
-
pycbc.conversions.
snr_from_loglr
(loglr)[source]¶ Returns SNR computed from the given log likelihood ratio(s). This is defined as sqrt(2*loglr).If the log likelihood ratio is < 0, returns 0.
Parameters: loglr (array or float) – The log likelihood ratio(s) to evaluate. Returns: The SNRs computed from the log likelihood ratios. Return type: array or float
-
pycbc.conversions.
freq_from_final_mass_spin
(final_mass, final_spin, l=2, m=2, nmodes=1)[source]¶ Returns QNM frequency for the given mass and spin and mode.
Parameters: - final_mass (float or array) – Mass of the black hole (in solar masses).
- final_spin (float or array) – Dimensionless spin of the final black hole.
- l (int or array, optional) – l-index of the harmonic. Default is 2.
- m (int or array, optional) – m-index of the harmonic. Default is 2.
- nmodes (int, optional) – The number of overtones to generate. Default is 1.
Returns: The frequency of the QNM(s), in Hz. If only a single mode is requested (and mass, spin, l, and m are not arrays), this will be a float. If multiple modes requested, will be an array with shape
[input shape x] nmodes
, whereinput shape
is the broadcasted shape of the inputs.Return type: float or array
-
pycbc.conversions.
tau_from_final_mass_spin
(final_mass, final_spin, l=2, m=2, nmodes=1)[source]¶ Returns QNM damping time for the given mass and spin and mode.
Parameters: - final_mass (float or array) – Mass of the black hole (in solar masses).
- final_spin (float or array) – Dimensionless spin of the final black hole.
- l (int or array, optional) – l-index of the harmonic. Default is 2.
- m (int or array, optional) – m-index of the harmonic. Default is 2.
- nmodes (int, optional) – The number of overtones to generate. Default is 1.
Returns: The damping time of the QNM(s), in seconds. If only a single mode is requested (and mass, spin, l, and m are not arrays), this will be a float. If multiple modes requested, will be an array with shape
[input shape x] nmodes
, whereinput shape
is the broadcasted shape of the inputs.Return type: float or array
-
pycbc.conversions.
final_spin_from_f0_tau
(f0, tau, l=2, m=2)[source]¶ Returns the final spin based on the given frequency and damping time.
Note
Currently, only (l,m) = (2,2), (3,3), (4,4), (2,1) are supported. Any other indices will raise a
KeyError
.Parameters: Returns: The spin of the final black hole. If the combination of frequency and damping times give an unphysical result,
numpy.nan
will be returned.Return type: float or array
-
pycbc.conversions.
final_mass_from_f0_tau
(f0, tau, l=2, m=2)[source]¶ Returns the final mass (in solar masses) based on the given frequency and damping time.
Note
Currently, only (l,m) = (2,2), (3,3), (4,4), (2,1) are supported. Any other indices will raise a
KeyError
.Parameters: Returns: The mass of the final black hole. If the combination of frequency and damping times give an unphysical result,
numpy.nan
will be returned.Return type: float or array
-
pycbc.conversions.
final_mass_from_initial
(mass1, mass2, spin1x=0.0, spin1y=0.0, spin1z=0.0, spin2x=0.0, spin2y=0.0, spin2z=0.0, approximant='SEOBNRv4')[source]¶ Estimates the final mass from the given initial parameters.
This uses the fits used by the EOBNR models for converting from initial parameters to final. Which version used can be controlled by the
approximant
argument.Parameters: - mass1 (float) – The mass of one of the components, in solar masses.
- mass2 (float) – The mass of the other component, in solar masses.
- spin1x (float, optional) – The dimensionless x-component of the spin of mass1. Default is 0.
- spin1y (float, optional) – The dimensionless y-component of the spin of mass1. Default is 0.
- spin1z (float, optional) – The dimensionless z-component of the spin of mass1. Default is 0.
- spin2x (float, optional) – The dimensionless x-component of the spin of mass2. Default is 0.
- spin2y (float, optional) – The dimensionless y-component of the spin of mass2. Default is 0.
- spin2z (float, optional) – The dimensionless z-component of the spin of mass2. Default is 0.
- approximant (str, optional) – The waveform approximant to use for the fit function. Default is “SEOBNRv4”.
Returns: The final mass, in solar masses.
Return type:
-
pycbc.conversions.
final_spin_from_initial
(mass1, mass2, spin1x=0.0, spin1y=0.0, spin1z=0.0, spin2x=0.0, spin2y=0.0, spin2z=0.0, approximant='SEOBNRv4')[source]¶ Estimates the final spin from the given initial parameters.
This uses the fits used by the EOBNR models for converting from initial parameters to final. Which version used can be controlled by the
approximant
argument.Parameters: - mass1 (float) – The mass of one of the components, in solar masses.
- mass2 (float) – The mass of the other component, in solar masses.
- spin1x (float, optional) – The dimensionless x-component of the spin of mass1. Default is 0.
- spin1y (float, optional) – The dimensionless y-component of the spin of mass1. Default is 0.
- spin1z (float, optional) – The dimensionless z-component of the spin of mass1. Default is 0.
- spin2x (float, optional) – The dimensionless x-component of the spin of mass2. Default is 0.
- spin2y (float, optional) – The dimensionless y-component of the spin of mass2. Default is 0.
- spin2z (float, optional) – The dimensionless z-component of the spin of mass2. Default is 0.
- approximant (str, optional) – The waveform approximant to use for the fit function. Default is “SEOBNRv4”.
Returns: The dimensionless final spin.
Return type:
-
pycbc.conversions.
chi_eff_from_spherical
(mass1, mass2, spin1_a, spin1_polar, spin2_a, spin2_polar)[source]¶ Returns the effective spin using spins in spherical coordinates.
-
pycbc.conversions.
chi_p_from_spherical
(mass1, mass2, spin1_a, spin1_azimuthal, spin1_polar, spin2_a, spin2_azimuthal, spin2_polar)[source]¶ Returns the effective precession spin using spins in spherical coordinates.
-
pycbc.conversions.
nltides_gw_phase_diff_isco
(f_low, f0, amplitude, n, m1, m2)[source]¶ Calculate the gravitational-wave phase shift bwtween f_low and f_isco due to non-linear tides.
Parameters: - f_low (float) – Frequency from which to compute phase. If the other arguments are passed as numpy arrays then the value of f_low is duplicated for all elements in the array
- f0 (float or numpy.array) – Frequency that NL effects switch on
- amplitude (float or numpy.array) – Amplitude of effect
- n (float or numpy.array) – Growth dependence of effect
- m1 (float or numpy.array) – Mass of component 1
- m2 (float or numpy.array) – Mass of component 2
Returns: delta_phi – Phase in radians
Return type: float or numpy.array
pycbc.coordinates module¶
Coordinate transformations.
-
pycbc.coordinates.
cartesian_to_spherical_rho
(x, y, z)[source]¶ Calculates the magnitude in spherical coordinates from Cartesian coordinates.
Parameters: - x ({numpy.array, float}) – X-coordinate.
- y ({numpy.array, float}) – Y-coordinate.
- z ({numpy.array, float}) – Z-coordinate.
Returns: rho – The radial amplitude.
Return type: {numpy.array, float}
-
pycbc.coordinates.
cartesian_to_spherical_azimuthal
(x, y)[source]¶ Calculates the azimuthal angle in spherical coordinates from Cartesian coordinates. The azimuthal angle is in [0,2*pi].
Parameters: - x ({numpy.array, float}) – X-coordinate.
- y ({numpy.array, float}) – Y-coordinate.
Returns: phi – The azimuthal angle.
Return type: {numpy.array, float}
-
pycbc.coordinates.
cartesian_to_spherical_polar
(x, y, z)[source]¶ Calculates the polar angle in spherical coordinates from Cartesian coordinates. The polar angle is in [0,pi].
Parameters: - x ({numpy.array, float}) – X-coordinate.
- y ({numpy.array, float}) – Y-coordinate.
- z ({numpy.array, float}) – Z-coordinate.
Returns: theta – The polar angle.
Return type: {numpy.array, float}
-
pycbc.coordinates.
cartesian_to_spherical
(x, y, z)[source]¶ Maps cartesian coordinates (x,y,z) to spherical coordinates (rho,phi,theta) where phi is in [0,2*pi] and theta is in [0,pi].
Parameters: - x ({numpy.array, float}) – X-coordinate.
- y ({numpy.array, float}) – Y-coordinate.
- z ({numpy.array, float}) – Z-coordinate.
Returns: - rho ({numpy.array, float}) – The radial amplitude.
- phi ({numpy.array, float}) – The azimuthal angle.
- theta ({numpy.array, float}) – The polar angle.
-
pycbc.coordinates.
spherical_to_cartesian
(rho, phi, theta)[source]¶ Maps spherical coordinates (rho,phi,theta) to cartesian coordinates (x,y,z) where phi is in [0,2*pi] and theta is in [0,pi].
Parameters: - rho ({numpy.array, float}) – The radial amplitude.
- phi ({numpy.array, float}) – The azimuthal angle.
- theta ({numpy.array, float}) – The polar angle.
Returns: - x ({numpy.array, float}) – X-coordinate.
- y ({numpy.array, float}) – Y-coordinate.
- z ({numpy.array, float}) – Z-coordinate.
pycbc.cosmology module¶
This modules provides functions for computing cosmological quantities, such as
redshift. This is mostly a wrapper around astropy.cosmology
.
Note: in all functions, distance
is short hand for luminosity_distance
.
Any other distance measure is explicitly named; e.g., comoving_distance
.
-
pycbc.cosmology.
redshift
(distance, **kwargs)[source]¶ Returns the redshift associated with the given luminosity distance.
If the requested cosmology is one of the pre-defined ones in
astropy.cosmology.parameters.available
,DistToZ
is used to provide a fast interpolation. This takes a few seconds to setup on the first call.Parameters: - distance (float) – The luminosity distance, in Mpc.
- **kwargs – All other keyword args are passed to
get_cosmology()
to select a cosmology. If none provided, will useDEFAULT_COSMOLOGY
.
Returns: The redshift corresponding to the given distance.
Return type:
-
pycbc.cosmology.
redshift_from_comoving_volume
(vc, interp=True, **kwargs)[source]¶ Returns the redshift from the given comoving volume.
Parameters: - vc (float) – The comoving volume, in units of cubed Mpc.
- interp (bool, optional) – If true, this will setup an interpolator between redshift and comoving
volume the first time this function is called. This is useful when
making many successive calls to this function (and is necessary when
using this function in a transform when doing parameter estimation).
However, setting up the interpolator the first time takes O(10)s of
seconds. If you will only be making a single call to this function, or
will only run it on an array with < ~100000 elements, it is faster to
not use the interpolator (i.e., set
interp=False
). Default isTrue
. - **kwargs – All other keyword args are passed to
get_cosmology()
to select a cosmology. If none provided, will useDEFAULT_COSMOLOGY
.
Returns: The redshift at the given comoving volume.
Return type:
-
pycbc.cosmology.
distance_from_comoving_volume
(vc, interp=True, **kwargs)[source]¶ Returns the luminosity distance from the given comoving volume.
Parameters: - vc (float) – The comoving volume, in units of cubed Mpc.
- interp (bool, optional) – If true, this will setup an interpolator between distance and comoving
volume the first time this function is called. This is useful when
making many successive calls to this function (such as when using this
function in a transform for parameter estimation). However, setting up
the interpolator the first time takes O(10)s of seconds. If you will
only be making a single call to this function, or will only run it on
an array with < ~100000 elements, it is faster to not use the
interpolator (i.e., set
interp=False
). Default isTrue
. - **kwargs – All other keyword args are passed to
get_cosmology()
to select a cosmology. If none provided, will useDEFAULT_COSMOLOGY
.
Returns: The luminosity distance at the given comoving volume.
Return type:
-
pycbc.cosmology.
cosmological_quantity_from_redshift
(z, quantity, strip_unit=True, **kwargs)[source]¶ Returns the value of a cosmological quantity (e.g., age) at a redshift.
Parameters: - z (float) – The redshift.
- quantity (str) – The name of the quantity to get. The name may be any attribute of
astropy.cosmology.FlatLambdaCDM
. - strip_unit (bool, optional) – Just return the value of the quantity, sans units. Default is True.
- **kwargs – All other keyword args are passed to
get_cosmology()
to select a cosmology. If none provided, will useDEFAULT_COSMOLOGY
.
Returns: The value of the quantity at the requested value. If
strip_unit
isTrue
, will return the value. Otherwise, will return the value with units.Return type: float or astropy.units.quantity
pycbc.detector module¶
This module provides utilities for calculating detector responses and timing between observatories.
-
class
pycbc.detector.
Detector
(detector_name, reference_time=1126259462.0)[source]¶ Bases:
object
A gravitational wave detector
-
antenna_pattern
(right_ascension, declination, polarization, t_gps)[source]¶ Return the detector response.
Parameters: Returns: - fplus (float or numpy.ndarray) – The plus polarization factor for this sky location / orientation
- fcross (float or numpy.ndarray) – The cross polarization factor for this sky location / orientation
-
light_travel_time_to_detector
(det)[source]¶ Return the light travel time from this detector
Parameters: det (Detector) – The other detector to determine the light travel time to. Returns: time – The light travel time in seconds Return type: float
-
optimal_orientation
(t_gps)[source]¶ - Return the optimal orientation in right ascension and declination
- for a given GPS time.
Parameters: t_gps (float) – Time in gps seconds Returns: - ra (float) – Right ascension that is optimally oriented for the detector
- dec (float) – Declination that is optimally oriented for the detector
-
project_wave
(hp, hc, longitude, latitude, polarization)[source]¶ Return the strain of a waveform as measured by the detector.
Apply the time shift for the given detector relative to the assumed geocentric frame and apply the antenna patterns to the plus and cross polarizations.
-
time_delay_from_detector
(other_detector, right_ascension, declination, t_gps)[source]¶ Return the time delay from the given to detector for a signal with the given sky location; i.e. return t1 - t2 where t1 is the arrival time in this detector and t2 is the arrival time in the other detector. Note that this would return the same value as time_delay_from_earth_center if other_detector was geocentric.
Parameters: - other_detector (detector.Detector) – A detector instance.
- right_ascension (float) – The right ascension (in rad) of the signal.
- declination (float) – The declination (in rad) of the signal.
- t_gps (float) – The GPS time (in s) of the signal.
Returns: The arrival time difference between the detectors.
Return type:
-
time_delay_from_earth_center
(right_ascension, declination, t_gps)[source]¶ Return the time delay from the earth center
-
time_delay_from_location
(other_location, right_ascension, declination, t_gps)[source]¶ Return the time delay from the given location to detector for a signal with the given sky location
In other words return t1 - t2 where t1 is the arrival time in this detector and t2 is the arrival time in the other location.
Parameters: Returns: The arrival time difference between the detectors.
Return type:
-
-
pycbc.detector.
get_available_detectors
()[source]¶ Return list of detectors known in the currently sourced lalsuite.
This function will query lalsuite about which detectors are known to lalsuite. Detectors are identified by a two character string e.g. ‘K1’, but also by a longer, and clearer name, e.g. KAGRA. This function returns both. As LAL doesn’t really expose this functionality we have to make some assumptions about how this information is stored in LAL. Therefore while we hope this function will work correctly, it’s possible it will need updating in the future. Better if lal would expose this information properly.
-
pycbc.detector.
overhead_antenna_pattern
(right_ascension, declination, polarization)[source]¶ Return the antenna pattern factors F+ and Fx as a function of sky location and polarization angle for a hypothetical interferometer located at the north pole. Angles are in radians. Declinations of ±π/2 correspond to the normal to the detector plane (i.e. overhead and underneath) while the point with zero right ascension and declination is the direction of one of the interferometer arms.
Parameters: Returns: - f_plus (float)
- f_cros (float)
pycbc.dq module¶
Utilities to query archival instrument status information of gravitational-wave detectors from public sources and/or dqsegdb.
-
pycbc.dq.
parse_flag_str
(flag_str)[source]¶ Parse a dq flag query string
Parameters: flag_str (str) – String to be parsed Returns: - flags (list of strings) – List of reduced name strings which can be passed to lower level query commands
- signs (dict) – Dict of bools indicating if the flag should add positively to the segmentlist
- ifos (dict) – Ifo specified for the given flag
- bounds (dict) – The boundary of a given flag
- padding (dict) – Any padding that should be applied to the segments for a given flag
-
pycbc.dq.
parse_veto_definer
(veto_def_filename, ifos)[source]¶ Parse a veto definer file from the filename and return a dictionary indexed by ifo and veto definer category level.
Parameters: Returns: parsed_definition – Returns a dictionary first indexed by ifo, then category level, and finally a list of veto definitions.
Return type:
-
pycbc.dq.
query_cumulative_flags
(ifo, segment_names, start_time, end_time, source='any', server='segments.ligo.org', veto_definer=None, bounds=None, padding=None, override_ifos=None, cache=False)[source]¶ Return the times where any flag is active
Parameters: - ifo (string or dict) – The interferometer to query (H1, L1). If a dict, an element for each flag name must be provided.
- segment_name (list of strings) – The status flag to query from LOSC.
- start_time (int) – The starting gps time to begin querying from LOSC
- end_time (int) – The end gps time of the query
- source (str, Optional) – Choice between “GWOSC” or “dqsegdb”. If dqsegdb, the server option may also be given. The default is to try GWOSC first then try dqsegdb.
- server (str, Optional) – The server path. Only used with dqsegdb atm.
- veto_definer (str, Optional) – The path to a veto definer to define groups of flags which themselves define a set of segments.
- bounds (dict, Optional) – Dict containing start-end tuples keyed by the flag name which indicate places which should have a distinct time period to be active.
- padding (dict, Optional) – Dict keyed by the flag name. Each element is a tuple
- end_pad) which indicates how to change the segment boundaries. ((start_pad,) –
- override_ifos (dict, Optional) – A dict keyed by flag_name to override the ifo option on a per flag basis.
Returns: segments – List of segments
Return type: glue.segments.segmentlist
-
pycbc.dq.
query_flag
(ifo, segment_name, start_time, end_time, source='any', server='segments.ligo.org', veto_definer=None, cache=False)[source]¶ Return the times where the flag is active
Parameters: - ifo (string) – The interferometer to query (H1, L1).
- segment_name (string) – The status flag to query from LOSC.
- start_time (int) – The starting gps time to begin querying from LOSC
- end_time (int) – The end gps time of the query
- source (str, Optional) – Choice between “GWOSC” or “dqsegdb”. If dqsegdb, the server option may also be given. The default is to try GWOSC first then try dqsegdb.
- server (str, Optional) – The server path. Only used with dqsegdb atm.
- veto_definer (str, Optional) – The path to a veto definer to define groups of flags which themselves define a set of segments.
- cache (bool) – If true cache the query. Default is not to cache
Returns: segments – List of segments
Return type: glue.segments.segmentlist
-
pycbc.dq.
query_str
(ifo, flag_str, start_time, end_time, source='any', server='segments.ligo.org', veto_definer=None)[source]¶ Query for flags based on a special str syntax
Parameters: - ifo (str) – The ifo to query for (may be overridden in syntax)
- flag_str (str) – Specification of how to do the query. Ex. +H1:DATA:1<-8,8>[0,100000000] would return H1 time for the DATA available flag with version 1. It would then apply an 8 second padding and only return times within the chosen range 0,1000000000.
- start_time (int) – The start gps time. May be overridden for individual flags with the flag str bounds syntax
- end_time (int) – The end gps time. May be overridden for individual flags with the flag str bounds syntax
- source (str, Optional) – Choice between “GWOSC” or “dqsegdb”. If dqsegdb, the server option may also be given. The default is to try GWOSC first then try dqsegdb.
- server (str, Optional) – The server path. Only used with dqsegdb atm.
- veto_definer (str, Optional) – The path to a veto definer to define groups of flags which themselves define a set of segments.
Returns: segs – A list of segments corresponding to the flag query string
Return type: segmentlist
pycbc.libutils module¶
This module provides a simple interface for loading a shared library via ctypes, allowing it to be specified in an OS-independent way and searched for preferentially according to the paths that pkg-config specifies.
-
pycbc.libutils.
get_ctypes_library
(libname, packages, mode=None)[source]¶ This function takes a library name, specified in architecture-independent fashion (i.e. omitting any prefix such as ‘lib’ or suffix such as ‘so’ or ‘dylib’ or version number) and a list of packages that may provide that library, and according first to LD_LIBRARY_PATH, then the results of pkg-config, and falling back to the system search path, will try to return a CDLL ctypes object. If ‘mode’ is given it will be used when loading the library.
-
pycbc.libutils.
get_libpath_from_dirlist
(libname, dirs)[source]¶ This function tries to find the architecture-independent library given by libname in the first available directory in the list dirs. ‘Architecture-independent’ means omitting any prefix such as ‘lib’ or suffix such as ‘so’ or ‘dylib’ or version number. Within the first directory in which a matching pattern can be found, the lexicographically first such file is returned, as a string giving the full path name. The only supported OSes at the moment are posix and mac, and this function does not attempt to determine which is being run. So if for some reason your directory has both ‘.so’ and ‘.dylib’ libraries, who knows what will happen. If the library cannot be found, None is returned.
-
pycbc.libutils.
pkg_config
(pkg_libraries)[source]¶ Use pkg-config to query for the location of libraries, library directories, and header directories
Parameters: pkg_libries (list) – A list of packages as strings Returns: libraries(list), library_dirs(list), include_dirs(list)
-
pycbc.libutils.
pkg_config_header_strings
(pkg_libraries)[source]¶ Returns a list of header strings that could be passed to a compiler
-
pycbc.libutils.
pkg_config_libdirs
(packages)[source]¶ Returns a list of all library paths that pkg-config says should be included when linking against the list of packages given as ‘packages’. An empty return list means that the package may be found in the standard system locations, irrespective of pkg-config.
pycbc.mchirp_area module¶
Functions to compute the area corresponding to different CBC on the m1 & m2 plane when given a central mchirp value and uncertainty. It also includes a function that calculates the source frame when given the detector frame mass and redshift.
-
pycbc.mchirp_area.
calc_areas
(trig_mc_det, mass_limits, mass_bdary, z, mass_gap)[source]¶ Computes the area inside the lines of the second component mass as a function of the first component mass for the two extreme values of mchirp: mchirp +/- mchirp_uncertainty, for each region of the source classifying diagram.
-
pycbc.mchirp_area.
calc_probabilities
(mchirp, snr, eff_distance, src_args)[source]¶ Computes the different probabilities that a candidate event belongs to each CBC source category taking as arguments the chirp mass, the coincident SNR and the effective distance, and estimating the chirp mass uncertainty, the luminosity distance (and its uncertainty) and the redshift (and its uncertainty). Probability estimation is done assuming it is directly proportional to the area laying in the correspondent CBC region.
pycbc.opt module¶
This module defines optimization flags and determines hardware features that some other modules and packages may use in addition to some optimized utilities.
-
class
pycbc.opt.
LimitedSizeDict
(*args, **kwds)[source]¶ Bases:
collections.OrderedDict
Fixed sized dict for FIFO caching
-
pycbc.opt.
insert_optimization_option_group
(parser)[source]¶ Adds the options used to specify optimization-specific options.
Parameters: parser (object) – OptionParser instance
pycbc.pnutils module¶
This module contains convenience pN functions. This includes calculating conversions between quantities.
-
pycbc.pnutils.
A0
(f_lower)[source]¶ used in calculating chirp times: see Cokelaer, arxiv.org:0706.4437 appendix 1, also lalinspiral/python/sbank/tau0tau3.py
-
pycbc.pnutils.
energy_coefficients
(m1, m2, s1z=0, s2z=0, phase_order=-1, spin_order=-1)[source]¶ Return the energy coefficients. This assumes that the system has aligned spins only.
-
pycbc.pnutils.
eta_mass1_to_mass2
(eta, mass1, return_mass_heavier=False, force_real=True)[source]¶ This function takes values for eta and one component mass and returns the second component mass. Similar to mchirp_mass1_to_mass2 this requires finding the roots of a quadratic equation. Basically:
eta m2^2 + (2 eta - 1)m1 m2 + eta m1^2 = 0
This has two solutions which correspond to mass1 being the heavier mass or it being the lighter mass. By default the value corresponding to mass1 > mass2 is returned. Use the return_mass_heavier kwarg to invert this behaviour.
-
pycbc.pnutils.
f_BKLISCO
(m1, m2)[source]¶ Mass ratio dependent ISCO derived from estimates of the final spin of a merged black hole in a paper by Buonanno, Kidder, Lehner (arXiv:0709.3839). See also arxiv:0801.4297v2 eq.(5)
Parameters: Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
f_ERD
(M)[source]¶ Effective RingDown frequency studied in Pan et al. (arXiv:0704.1964) found to give good fit between stationary-phase templates and numerical relativity waveforms [NB equal-mass & nonspinning!] Equal to 1.07*omega_220/2*pi
Parameters: M (float or numpy.array) – Total mass in solar mass units Returns: f – Frequency in Hz Return type: float or numpy.array
-
pycbc.pnutils.
f_FRD
(m1, m2)[source]¶ Fundamental RingDown frequency calculated from the Berti, Cardoso and Will (gr-qc/0512160) value for the omega_220 QNM frequency using mass-ratio dependent fits to the final BH mass and spin from Buonanno et al. (arXiv:0706.3732) : see also InspiralBankGeneration.c
Parameters: Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
f_LRD
(m1, m2)[source]¶ Lorentzian RingDown frequency = 1.2*FRD which captures part of the Lorentzian tail from the decay of the QNMs
Parameters: Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
f_LightRing
(M)[source]¶ Gravitational wave frequency corresponding to the light-ring orbit, equal to 1/(3**(3/2) pi M) : see InspiralBankGeneration.c
Parameters: M (float or numpy.array) – Total mass in solar mass units Returns: f – Frequency in Hz Return type: float or numpy.array
-
pycbc.pnutils.
f_SchwarzISCO
(M)[source]¶ Innermost stable circular orbit (ISCO) for a test particle orbiting a Schwarzschild black hole
Parameters: M (float or numpy.array) – Total mass in solar mass units Returns: f – Frequency in Hz Return type: float or numpy.array
-
pycbc.pnutils.
frequency_cutoff_from_name
(name, m1, m2, s1z, s2z)[source]¶ Returns the result of evaluating the frequency cutoff function specified by ‘name’ on a template with given parameters.
Parameters: - name (string) – Name of the cutoff function
- m1 (float or numpy.array) – First component mass in solar masses
- m2 (float or numpy.array) – Second component mass in solar masses
- s1z (float or numpy.array) – First component dimensionless spin S_1/m_1^2 projected onto L
- s2z (float or numpy.array) – Second component dimensionless spin S_2/m_2^2 projected onto L
Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
get_beta_sigma_from_aligned_spins
(eta, spin1z, spin2z)[source]¶ Calculate the various PN spin combinations from the masses and spins. See <http://arxiv.org/pdf/0810.5336v3.pdf>.
Parameters: Returns: - beta (float or numpy.array) – The 1.5PN spin combination
- sigma (float or numpy.array) – The 2PN spin combination
- gamma (float or numpy.array) – The 2.5PN spin combination
- chis (float or numpy.array) – (spin1z + spin2z) / 2.
-
pycbc.pnutils.
get_final_freq
(approx, m1, m2, s1z, s2z)[source]¶ Returns the LALSimulation function which evaluates the final (highest) frequency for a given approximant using given template parameters. NOTE: TaylorTx and TaylorFx are currently all given an ISCO cutoff !!
Parameters: - approx (string) – Name of the approximant e.g. ‘EOBNRv2’
- m1 (float or numpy.array) – First component mass in solar masses
- m2 (float or numpy.array) – Second component mass in solar masses
- s1z (float or numpy.array) – First component dimensionless spin S_1/m_1^2 projected onto L
- s2z (float or numpy.array) – Second component dimensionless spin S_2/m_2^2 projected onto L
Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
get_freq
(freqfunc, m1, m2, s1z, s2z)[source]¶ Returns the LALSimulation function which evaluates the frequency for the given frequency function and template parameters.
Parameters: - freqfunc (string) – Name of the frequency function to use, e.g., ‘fEOBNRv2RD’
- m1 (float or numpy.array) – First component mass in solar masses
- m2 (float or numpy.array) – Second component mass in solar masses
- s1z (float or numpy.array) – First component dimensionless spin S_1/m_1^2 projected onto L
- s2z (float or numpy.array) – Second component dimensionless spin S_2/m_2^2 projected onto L
Returns: f – Frequency in Hz
Return type: float or numpy.array
-
pycbc.pnutils.
get_inspiral_tf
(tc, mass1, mass2, spin1, spin2, f_low, n_points=100, pn_2order=7, approximant='TaylorF2')[source]¶ Compute the time-frequency evolution of an inspiral signal.
Return a tuple of time and frequency vectors tracking the evolution of an inspiral signal in the time-frequency plane.
-
pycbc.pnutils.
hybridEnergy
(v, m1, m2, chi1, chi2, qm1, qm2)[source]¶ Return hybrid MECO energy.
Return the hybrid energy [eq. (6)] whose minimum defines the hybrid MECO up to 3.5PN (including the 3PN spin-spin)
Parameters: - m1 (float) – Mass of the primary object in solar masses.
- m2 (float) – Mass of the secondary object in solar masses.
- chi1 (float) – Dimensionless spin of the primary object.
- chi2 (float) – Dimensionless spin of the secondary object.
- qm1 (float) – Quadrupole-monopole term of the primary object (1 for black holes).
- qm2 (float) – Quadrupole-monopole term of the secondary object (1 for black holes).
Returns: h_E – The hybrid energy as a function of v
Return type:
-
pycbc.pnutils.
hybrid_meco_frequency
(m1, m2, chi1, chi2, qm1=None, qm2=None)[source]¶ Return the frequency of the hybrid MECO
Parameters: - m1 (float) – Mass of the primary object in solar masses.
- m2 (float) – Mass of the secondary object in solar masses.
- chi1 (float) – Dimensionless spin of the primary object.
- chi2 (float) – Dimensionless spin of the secondary object.
- qm1 ({None, float}, optional) – Quadrupole-monopole term of the primary object (1 for black holes). If None, will be set to qm1 = 1.
- qm2 ({None, float}, optional) – Quadrupole-monopole term of the secondary object (1 for black holes). If None, will be set to qm2 = 1.
Returns: f – The frequency (in Hz) of the hybrid MECO
Return type:
-
pycbc.pnutils.
hybrid_meco_velocity
(m1, m2, chi1, chi2, qm1=None, qm2=None)[source]¶ Return the velocity of the hybrid MECO
Parameters: - m1 (float) – Mass of the primary object in solar masses.
- m2 (float) – Mass of the secondary object in solar masses.
- chi1 (float) – Dimensionless spin of the primary object.
- chi2 (float) – Dimensionless spin of the secondary object.
- qm1 ({None, float}, optional) – Quadrupole-monopole term of the primary object (1 for black holes). If None, will be set to qm1 = 1.
- qm2 ({None, float}, optional) – Quadrupole-monopole term of the secondary object (1 for black holes). If None, will be set to qm2 = 1.
Returns: v – The velocity (dimensionless) of the hybrid MECO
Return type:
-
pycbc.pnutils.
kerr_lightring
(v, chi)[source]¶ Return the function whose first root defines the Kerr light ring
-
pycbc.pnutils.
mchirp_mass1_to_mass2
(mchirp, mass1)[source]¶ This function takes a value of mchirp and one component mass and returns the second component mass. As this is a cubic equation this requires finding the roots and returning the one that is real. Basically it can be shown that:
m2^3 - a(m2 + m1) = 0
where
a = Mc^5 / m1^3
this has 3 solutions but only one will be real.
-
pycbc.pnutils.
mchirp_q_to_mass1_mass2
(mchirp, q)[source]¶ This function takes a value of mchirp and the mass ratio mass1/mass2 and returns the two component masses.
The map from q to eta is
eta = (mass1*mass2)/(mass1+mass2)**2 = (q)/(1+q)**2Then we can map from (mchirp,eta) to (mass1,mass2).
-
pycbc.pnutils.
meco_velocity
(m1, m2, chi1, chi2)[source]¶ Returns the velocity of the minimum energy cutoff for 3.5pN (2.5pN spin)
Parameters: Returns: v – Velocity (dimensionless)
Return type:
-
pycbc.pnutils.
nearest_larger_binary_number
(input_len)[source]¶ Return the nearest binary number larger than input_len.
-
pycbc.pnutils.
t4_cutoff_velocity
(m1, m2, chi1, chi2)¶ Returns the velocity of the minimum energy cutoff for 3.5pN (2.5pN spin)
Parameters: Returns: v – Velocity (dimensionless)
Return type:
pycbc.pool module¶
Tools for creating pools of worker processes
-
class
pycbc.pool.
BroadcastPool
(processes=None, initializer=None, initargs=(), **kwds)[source]¶ Bases:
multiprocessing.pool.Pool
Multiprocessing pool with a broadcast method
-
allmap
(fcn, args)[source]¶ Do a function call on every worker with different arguments
Parameters: - fcn (funtion) – Function to call.
- args (tuple) – The arguments for Pool.map
-
pycbc.rate module¶
-
pycbc.rate.
compute_efficiency
(f_dist, m_dist, dbins)[source]¶ Compute the efficiency as a function of distance for the given sets of found and missed injection distances. Note that injections that do not fit into any dbin get lost :(
-
pycbc.rate.
compute_lower_limit
(mu_in, post, alpha=0.9)[source]¶ Returns the lower limit mu_low of confidence level alpha for a posterior distribution post on the given parameter mu. The posterior need not be normalized.
-
pycbc.rate.
compute_upper_limit
(mu_in, post, alpha=0.9)[source]¶ Returns the upper limit mu_high of confidence level alpha for a posterior distribution post on the given parameter mu. The posterior need not be normalized.
-
pycbc.rate.
compute_volume_vs_mass
(found, missed, mass_bins, bin_type, dbins=None)[source]¶ Compute the average luminosity an experiment was sensitive to
Assumes that luminosity is uniformly distributed in space. Input is the sets of found and missed injections.
-
pycbc.rate.
confidence_interval_min_width
(mu, post, alpha=0.9)[source]¶ Returns the minimal-width confidence interval [mu_low, mu_high] of confidence level alpha for a posterior distribution post on the parameter mu.
-
pycbc.rate.
filter_injections_by_mass
(injs, mbins, bin_num, bin_type, bin_num2=None)[source]¶ For a given set of injections (sim_inspiral rows), return the subset of injections that fall within the given mass range.
-
pycbc.rate.
hpd_coverage
(mu, pdf, thresh)[source]¶ Integrates a pdf over mu taking only bins where the mean over the bin is above a given threshold This gives the coverage of the HPD interval for the given threshold.
-
pycbc.rate.
hpd_credible_interval
(mu_in, post, alpha=0.9, tolerance=0.001)[source]¶ Returns the minimum and maximum rate values of the HPD (Highest Posterior Density) credible interval for a posterior post defined at the sample values mu_in. Samples need not be uniformly spaced and posterior need not be normalized.
Will not return a correct credible interval if the posterior is multimodal and the correct interval is not contiguous; in this case will over-cover by including the whole range from minimum to maximum mu.
-
pycbc.rate.
hpd_threshold
(mu_in, post, alpha, tol)[source]¶ For a PDF post over samples mu_in, find a density threshold such that the region having higher density has coverage of at least alpha, and less than alpha plus a given tolerance.
pycbc.scheme module¶
This modules provides python contexts that set the default behavior for PyCBC objects.
-
class
pycbc.scheme.
CPUScheme
(num_threads=1)[source]¶ Bases:
pycbc.scheme.Scheme
-
class
pycbc.scheme.
CUDAScheme
(device_num=0)[source]¶ Bases:
pycbc.scheme.Scheme
Context that sets PyCBC objects to use a CUDA processing scheme.
-
class
pycbc.scheme.
ChooseBySchemeDict
[source]¶ Bases:
dict
This class represents a dictionary whose purpose is to chose objects based on their processing scheme. The keys are intended to be processing schemes.
-
class
pycbc.scheme.
DefaultScheme
(num_threads=1)[source]¶ Bases:
pycbc.scheme.CPUScheme
-
class
pycbc.scheme.
MKLScheme
(num_threads=1)[source]¶ Bases:
pycbc.scheme.CPUScheme
-
class
pycbc.scheme.
NumpyScheme
(num_threads=1)[source]¶ Bases:
pycbc.scheme.CPUScheme
-
class
pycbc.scheme.
Scheme
[source]¶ Bases:
object
Context that sets PyCBC objects to use CPU processing.
-
pycbc.scheme.
from_cli
(opt)[source]¶ Parses the command line options and returns a precessing scheme.
Parameters: opt (object) – Result of parsing the CLI with OptionParser, or any object with the required attributes. Returns: ctx – Returns the requested processing scheme. Return type: Scheme
pycbc.sensitivity module¶
This module contains utilities for calculating search sensitivity
-
pycbc.sensitivity.
chirp_volume_montecarlo
(found_d, missed_d, found_mchirp, missed_mchirp, distribution_param, distribution, limits_param, min_param, max_param)[source]¶
-
pycbc.sensitivity.
compute_search_efficiency_in_bins
(found, total, ndbins, sim_to_bins_function=<function <lambda>>)[source]¶ Calculate search efficiency in the given ndbins.
The first dimension of ndbins must be bins over injected distance. sim_to_bins_function must map an object to a tuple indexing the ndbins.
-
pycbc.sensitivity.
compute_search_volume_in_bins
(found, total, ndbins, sim_to_bins_function)[source]¶ Calculate search sensitive volume by integrating efficiency in distance bins
No cosmological corrections are applied: flat space is assumed. The first dimension of ndbins must be bins over injected distance. sim_to_bins_function must maps an object to a tuple indexing the ndbins.
-
pycbc.sensitivity.
volume_binned_pylal
(f_dist, m_dist, bins=15)[source]¶ Compute the sensitive volume using a distance binned efficiency estimate
Parameters: - f_dist (numpy.ndarray) – The distances of found injections
- m_dist (numpy.ndarray) – The distances of missed injections
Returns: - volume (float) – Volume estimate
- volume_error (float) – The standard error in the volume
-
pycbc.sensitivity.
volume_montecarlo
(found_d, missed_d, found_mchirp, missed_mchirp, distribution_param, distribution, limits_param, min_param=None, max_param=None)[source]¶ Compute sensitive volume and standard error via direct Monte Carlo integral
Injections should be made over a range of distances such that sensitive volume due to signals closer than D_min is negligible, and efficiency at distances above D_max is negligible TODO : Replace this function by Collin’s formula given in Usman et al. ? OR get that coded as a new function?
Parameters: - found_d (numpy.ndarray) – The distances of found injections
- missed_d (numpy.ndarray) – The distances of missed injections
- found_mchirp (numpy.ndarray) – Chirp mass of found injections
- missed_mchirp (numpy.ndarray) – Chirp mass of missed injections
- distribution_param (string) – Parameter D of the injections used to generate a distribution over distance, may be ‘distance’, ‘chirp_distance’.
- distribution (string) – form of the distribution over the parameter, may be ‘log’ (uniform in log D) ‘uniform’ (uniform in D) ‘distancesquared’ (uniform in D**2) ‘volume’ (uniform in D**3)
- limits_param (string) – Parameter Dlim specifying limits inside which injections were made may be ‘distance’, ‘chirp distance’
- min_param (float) – minimum value of Dlim at which injections were made; only used for log distribution, then if None the minimum actually injected value will be used
- max_param (float) – maximum value of Dlim out to which injections were made; if None the maximum actually injected value will be used
Returns: - volume (float) – Volume estimate
- volume_error (float) – The standard error in the volume
-
pycbc.sensitivity.
volume_shell
(f_dist, m_dist)[source]¶ Compute the sensitive volume using sum over spherical shells.
Parameters: - f_dist (numpy.ndarray) – The distances of found injections
- m_dist (numpy.ndarray) – The distances of missed injections
Returns: - volume (float) – Volume estimate
- volume_error (float) – The standard error in the volume
pycbc.transforms module¶
This modules provides classes and functions for transforming parameters.
-
class
pycbc.transforms.
AlignedMassSpinToCartesianSpin
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts mass-weighted spins to cartesian z-axis spins.
-
inverse
¶ alias of
CartesianSpinToAlignedMassSpin
-
inverse_transform
(maps)[source]¶ This function transforms from component masses and cartesian spins to mass-weighted spin parameters aligned with the angular momentum.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
name
= 'aligned_mass_spin_to_cartesian_spin'¶
-
-
class
pycbc.transforms.
BaseTransform
[source]¶ Bases:
object
A base class for transforming between two sets of parameters.
-
static
format_output
(old_maps, new_maps)[source]¶ This function takes the returned dict from transform and converts it to the same datatype as the input.
Parameters: - old_maps ({FieldArray, dict}) – The mapping object to add new maps to.
- new_maps (dict) – A dict with key as parameter name and value is numpy.array.
Returns: The old_maps object with new keys from new_maps.
Return type: {FieldArray, dict}
-
classmethod
from_config
(cp, section, outputs, skip_opts=None, additional_opts=None)[source]¶ Initializes a transform from the given section.
Parameters: - cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the transform options.
- section (str) – Name of the section in the configuration file.
- outputs (str) – The names of the parameters that are output by this transformation, separated by VARARGS_DELIM. These must appear in the “tag” part of the section header.
- skip_opts (list, optional) – Do not read options in the given list.
- additional_opts (dict, optional) – Any additional arguments to pass to the class. If an option is provided that also exists in the config file, the value provided will be used instead of being read from the file.
Returns: An instance of the class.
Return type: cls
-
inverse
= None¶
-
inverse_transform
(maps)[source]¶ The inverse conversions of transform. This function transforms from outputs to inputs.
-
name
= None¶
-
static
-
class
pycbc.transforms.
CartesianSpin1ToSphericalSpin1
[source]¶ Bases:
pycbc.transforms.SphericalSpin1ToCartesianSpin1
The inverse of SphericalSpin1ToCartesianSpin1.
-
inverse
¶ alias of
SphericalSpin1ToCartesianSpin1
-
inverse_jacobian
(maps)¶ The Jacobian for the inputs to outputs transformation.
-
inverse_transform
(maps)[source]¶ This function transforms from spherical to cartesian spins.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ The Jacobian for the outputs to inputs transformation.
-
name
= 'cartesian_spin_1_to_spherical_spin_1'¶
-
-
class
pycbc.transforms.
CartesianSpin2ToSphericalSpin2
[source]¶ Bases:
pycbc.transforms.CartesianSpin1ToSphericalSpin1
The inverse of SphericalSpin2ToCartesianSpin2.
-
inverse
¶ alias of
SphericalSpin2ToCartesianSpin2
-
name
= 'cartesian_spin_2_to_spherical_spin_2'¶
-
-
class
pycbc.transforms.
CartesianSpinToAlignedMassSpin
[source]¶ Bases:
pycbc.transforms.AlignedMassSpinToCartesianSpin
The inverse of AlignedMassSpinToCartesianSpin.
-
inverse
¶ alias of
AlignedMassSpinToCartesianSpin
-
inverse_jacobian
(maps)¶ The Jacobian for the inputs to outputs transformation.
-
inverse_transform
(maps)¶ This function transforms from aligned mass-weighted spins to cartesian spins aligned along the z-axis.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ The Jacobian for the outputs to inputs transformation.
-
name
= 'cartesian_spin_to_aligned_mass_spin'¶
-
transform
(maps)¶ This function transforms from component masses and cartesian spins to mass-weighted spin parameters aligned with the angular momentum.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
CartesianSpinToChiP
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts cartesian spins to chi_p.
-
name
= 'cartesian_spin_to_chi_p'¶
-
transform
(maps)[source]¶ This function transforms from component masses and caretsian spins to chi_p.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
CartesianSpinToPrecessionMassSpin
[source]¶ Bases:
pycbc.transforms.PrecessionMassSpinToCartesianSpin
The inverse of PrecessionMassSpinToCartesianSpin.
-
inverse
¶ alias of
PrecessionMassSpinToCartesianSpin
-
inverse_jacobian
(maps)¶ The Jacobian for the inputs to outputs transformation.
-
inverse_transform
(maps)¶ This function transforms from mass-weighted spins to caretsian spins in the x-y plane.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ The Jacobian for the outputs to inputs transformation.
-
name
= 'cartesian_spin_to_precession_mass_spin'¶
-
transform
(maps)¶ This function transforms from component masses and cartesian spins to mass-weighted spin parameters perpendicular with the angular momentum.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
ChiPToCartesianSpin
[source]¶ Bases:
pycbc.transforms.CartesianSpinToChiP
The inverse of CartesianSpinToChiP.
-
inverse
¶ alias of
CartesianSpinToChiP
-
inverse_jacobian
(maps)¶ The Jacobian for the inputs to outputs transformation.
-
inverse_transform
(maps)¶ This function transforms from component masses and caretsian spins to chi_p.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ The Jacobian for the outputs to inputs transformation.
-
name
= 'cartesian_spin_to_chi_p'¶
-
transform
(maps)¶ The inverse conversions of transform. This function transforms from outputs to inputs.
-
-
class
pycbc.transforms.
ChirpDistanceToDistance
(ref_mass=1.4)[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts chirp distance to luminosity distance, given the chirp mass.
-
inverse
¶ alias of
DistanceToChirpDistance
-
inverse_jacobian
(maps)[source]¶ Returns the Jacobian for transforming luminosity distance to chirp distance, given the chirp mass.
-
inverse_transform
(maps)[source]¶ This function transforms from luminosity distance to chirp distance, given the chirp mass.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy as np >>> from pycbc import transforms >>> t = transforms.ChirpDistanceToDistance() >>> t.inverse_transform({'distance': np.array([40.]), 'mchirp': np.array([1.2])}) {'distance': array([ 40.]), 'chirp_distance': array([ 40.52073522]), 'mchirp': array([ 1.2])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)[source]¶ Returns the Jacobian for transforming chirp distance to luminosity distance, given the chirp mass.
-
name
= 'chirp_distance_to_distance'¶
-
transform
(maps)[source]¶ This function transforms from chirp distance to luminosity distance, given the chirp mass.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy as np >>> from pycbc import transforms >>> t = transforms.ChirpDistanceToDistance() >>> t.transform({'chirp_distance': np.array([40.]), 'mchirp': np.array([1.2])}) {'mchirp': array([ 1.2]), 'chirp_distance': array([ 40.]), 'distance': array([ 39.48595679])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
CustomTransform
(input_args, output_args, transform_functions, jacobian=None)[source]¶ Bases:
pycbc.transforms.BaseTransform
Allows for any transform to be defined.
Parameters: - input_args ((list of) str) – The names of the input parameters.
- output_args ((list of) str) – The names of the output parameters.
- transform_functions (dict) – Dictionary mapping input args to a string giving a function call;
e.g.,
{'q': 'q_from_mass1_mass2(mass1, mass2)'}
. - jacobian (str, optional) – String giving a jacobian function. The function must be in terms of the input arguments.
Examples
Create a custom transform that converts mass1, mass2 to mtotal, q:
>>> t = transforms.CustomTransform(['mass1', 'mass2'], ['mtotal', 'q'], {'mtotal': 'mass1+mass2', 'q': 'mass1/mass2'}, '(mass1 + mass2) / mass2**2')
Evaluate a pair of masses:
>>> t.transform({'mass1': 10., 'mass2': 5.}) {'mass1': 10.0, 'mass2': 5.0, 'mtotal': 15.0, 'q': 2.0}
The Jacobian for the same pair of masses:
>>> t.jacobian({'mass1': 10., 'mass2': 5.}) 0.59999999999999998
-
classmethod
from_config
(cp, section, outputs)[source]¶ Loads a CustomTransform from the given config file.
Example section:
[{section}-outvar1+outvar2] name = custom inputs = inputvar1, inputvar2 outvar1 = func1(inputs) outvar2 = func2(inputs) jacobian = func(inputs)
-
name
= 'custom'¶
-
transform
(maps)[source]¶ Applies the transform functions to the given maps object.
Parameters: maps (dict, or FieldArray) – Returns: A map object containing the transformed variables, along with the original variables. The type of the output will be the same as the input. Return type: dict or FieldArray
-
class
pycbc.transforms.
DistanceToChirpDistance
(ref_mass=1.4)[source]¶ Bases:
pycbc.transforms.ChirpDistanceToDistance
The inverse of ChirpDistanceToDistance.
-
inverse
¶ alias of
ChirpDistanceToDistance
-
inverse_jacobian
(maps)¶ Returns the Jacobian for transforming chirp distance to luminosity distance, given the chirp mass.
-
inverse_transform
(maps)¶ This function transforms from chirp distance to luminosity distance, given the chirp mass.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy as np >>> from pycbc import transforms >>> t = transforms.ChirpDistanceToDistance() >>> t.transform({'chirp_distance': np.array([40.]), 'mchirp': np.array([1.2])}) {'mchirp': array([ 1.2]), 'chirp_distance': array([ 40.]), 'distance': array([ 39.48595679])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ Returns the Jacobian for transforming luminosity distance to chirp distance, given the chirp mass.
-
name
= 'distance_to_chirp_distance'¶
-
transform
(maps)¶ This function transforms from luminosity distance to chirp distance, given the chirp mass.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy as np >>> from pycbc import transforms >>> t = transforms.ChirpDistanceToDistance() >>> t.inverse_transform({'distance': np.array([40.]), 'mchirp': np.array([1.2])}) {'distance': array([ 40.]), 'chirp_distance': array([ 40.52073522]), 'mchirp': array([ 1.2])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
DistanceToRedshift
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts distance to redshift.
-
inverse
= None¶
-
name
= 'distance_to_redshift'¶
-
transform
(maps)[source]¶ This function transforms from distance to redshift.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.DistanceToRedshift() >>> t.transform({'distance': numpy.array([1000])}) {'distance': array([1000]), 'redshift': 0.19650987609144363}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
Exponent
(inputvar, outputvar)[source]¶ Bases:
pycbc.transforms.Log
Applies an exponent transform to an inputvar parameter.
This is the inverse of the log transform.
Parameters: -
inverse_jacobian
(maps)¶ Computes the Jacobian of \(y = \log(x)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}.\]Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
inverse_transform
(maps)¶ Computes \(\log(x)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
jacobian
(maps)¶ Computes the Jacobian of \(y = e^{x}\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x}.\]Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
name
= 'exponent'¶
-
transform
(maps)¶ Computes \(y = e^{x}\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
-
class
pycbc.transforms.
LambdaFromMultipleTOVFiles
(mass_param, lambda_param, map_file, distance=None, file_columns=None)[source]¶ Bases:
pycbc.transforms.BaseTransform
Uses multiple equation of states.
Parameters: - mass_param (str) – The name of the mass parameter to transform.
- lambda_param (str) – The name of the tidal deformability parameter that mass_param is to be converted to interpolating from the data in the mass-Lambda file.
- mass_lambda_file (str) – Path of the mass-Lambda data file. The first column in the data file should contain mass values, and the second column Lambda values.
- distance (float, optional) – The distance (in Mpc) of the source. Used to redshift the mass. If None, then a distance must be provided to the transform.
- file_columns (list of str, optional) – The names and order of columns in the
mass_lambda_file
. Must contain at least ‘mass’ and ‘lambda’. If not provided, will assume the order is (‘radius’, ‘mass’, ‘lambda’).
-
distance
¶ Returns the fixed distance to transform mass samples from detector to source frame if one is specified.
-
get_eos
(eos_index)[source]¶ Gets the EOS for the given index.
If the index is not in range returns None.
-
lambda_param
¶ Returns the output lambda parameter.
-
map_file
¶ Returns the mass data read from the mass-Lambda data file for an EOS.
-
mass_param
¶ Returns the input mass parameter.
-
name
= 'lambda_from_multiple_tov_files'¶
-
class
pycbc.transforms.
LambdaFromTOVFile
(mass_param, lambda_param, mass_lambda_file, distance=None, file_columns=None)[source]¶ Bases:
pycbc.transforms.BaseTransform
Transforms mass values corresponding to Lambda values for a given EOS interpolating from the mass-Lambda data for that EOS read in from an external ASCII file. The interpolation of the mass-Lambda data is a one-dimensional piecewise linear interpolation. The mass values to be transformed are assumed to be detector frame masses, so a distance should be provided along with the mass for transformation to the source frame mass before the Lambda values are extracted from the interpolation. If the mass value inputted is in the source frame, then provide distance=0. If the transform is read in from a config file, an example code block would be:
[{section}-lambda1] name = lambda_from_tov_file mass_param = mass1 lambda_param = lambda1 distance = 40 mass_lambda_file = {filepath}
If this transform is used in a parameter estimation analysis where distance is a variable parameter, the distance to be used will vary with each draw. In that case, the example code block will be:
[{section}-lambda1] name = lambda_from_tov_file mass_param = mass1 lambda_param = lambda1 mass_lambda_file = filepath
Parameters: - mass_param (str) – The name of the mass parameter to transform.
- lambda_param (str) – The name of the tidal deformability parameter that mass_param is to be converted to interpolating from the data in the mass-Lambda file.
- mass_lambda_file (str) – Path of the mass-Lambda data file. The first column in the data file should contain mass values, and the second column Lambda values.
- distance (float, optional) – The distance (in Mpc) of the source. Used to redshift the mass. If None, then a distance must be provided to the transform.
- file_columns (list of str, optional) – The names and order of columns in the
mass_lambda_file
. Must contain at least ‘mass’ and ‘lambda’. If not provided, will assume the order is (‘mass’, ‘lambda’).
-
data
¶
-
distance
¶ Returns the fixed distance to transform mass samples from detector to source frame if one is specified.
-
lambda_data
¶ Returns the Lambda data read from the mass-Lambda data file for an EOS.
-
static
lambda_from_tov_data
(m, d, mass_data, lambda_data)[source]¶ Returns Lambda corresponding to a given mass interpolating from the TOV data.
Parameters: Returns: lambdav – The Lambda corresponding to the mass m for the EOS considered.
Return type:
-
lambda_param
¶ Returns the output lambda parameter.
-
mass_data
¶ Returns the mass data read from the mass-Lambda data file for an EOS.
-
mass_param
¶ Returns the input mass parameter.
-
name
= 'lambda_from_tov_file'¶
-
transform
(maps)[source]¶ Computes the transformation of mass to Lambda.
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
class
pycbc.transforms.
Log
(inputvar, outputvar)[source]¶ Bases:
pycbc.transforms.BaseTransform
Applies a log transform from an inputvar parameter to an outputvar parameter. This is the inverse of the exponent transform.
Parameters: -
inputvar
¶ Returns the input parameter.
-
inverse_jacobian
(maps)[source]¶ Computes the Jacobian of \(y = e^{x}\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x}.\]Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
inverse_transform
(maps)[source]¶ Computes \(y = e^{x}\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
jacobian
(maps)[source]¶ Computes the Jacobian of \(y = \log(x)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}.\]Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
name
= 'log'¶
-
outputvar
¶ Returns the output parameter.
-
transform
(maps)[source]¶ Computes \(\log(x)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
-
class
pycbc.transforms.
Logistic
(inputvar, outputvar, codomain=(0.0, 1.0))[source]¶ Bases:
pycbc.transforms.Logit
Applies a logistic transform from an input parameter to an output parameter. This is the inverse of the logit transform.
Typically, the output of the logistic function has range \(\in [0,1)\). However, the codomain argument can be used to expand this to any finite real interval.
Parameters: -
bounds
¶ Returns the range of the output parameter.
-
classmethod
from_config
(cp, section, outputs, skip_opts=None, additional_opts=None)[source]¶ Initializes a Logistic transform from the given section.
The section must specify an input and output variable name. The codomain of the output may be specified using min-{output}, max-{output}. Example:
[{section}-q] name = logistic inputvar = logitq outputvar = q min-q = 1 max-q = 8
Parameters: - cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the transform options.
- section (str) – Name of the section in the configuration file.
- outputs (str) – The names of the parameters that are output by this transformation, separated by VARARGS_DELIM. These must appear in the “tag” part of the section header.
- skip_opts (list, optional) – Do not read options in the given list.
- additional_opts (dict, optional) – Any additional arguments to pass to the class. If an option is provided that also exists in the config file, the value provided will be used instead of being read from the file.
Returns: An instance of the class.
Return type: cls
-
inverse_jacobian
(maps)¶ Computes the Jacobian of \(y = \mathrm{logit}(x; a,b)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b -a}{(x-a)(b-x)},\]where \(x \in (a, b)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
inverse_transform
(maps)¶ Computes \(\mathrm{logit}(x; a, b)\).
The domain \(a, b\) of \(x\) are given by the class’s bounds.
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
jacobian
(maps)¶ Computes the Jacobian of \(y = \mathrm{logistic}(x; a,b)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^x (b-a)}{(1+e^y)^2},\]where \(y \in (a, b)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
name
= 'logistic'¶
-
transform
(maps)¶ Computes \(y = \mathrm{logistic}(x; a,b)\).
The codomain \(a, b\) of \(y\) are given by the class’s bounds.
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
-
class
pycbc.transforms.
Logit
(inputvar, outputvar, domain=(0.0, 1.0))[source]¶ Bases:
pycbc.transforms.BaseTransform
Applies a logit transform from an inputvar parameter to an outputvar parameter. This is the inverse of the logistic transform.
Typically, the input of the logit function is assumed to have domain \(\in (0, 1)\). However, the domain argument can be used to expand this to any finite real interval.
Parameters: -
bounds
¶ Returns the domain of the input parameter.
-
classmethod
from_config
(cp, section, outputs, skip_opts=None, additional_opts=None)[source]¶ Initializes a Logit transform from the given section.
The section must specify an input and output variable name. The domain of the input may be specified using min-{input}, max-{input}. Example:
[{section}-logitq] name = logit inputvar = q outputvar = logitq min-q = 1 max-q = 8
Parameters: - cp (pycbc.workflow.WorkflowConfigParser) – A parsed configuration file that contains the transform options.
- section (str) – Name of the section in the configuration file.
- outputs (str) – The names of the parameters that are output by this transformation, separated by VARARGS_DELIM. These must appear in the “tag” part of the section header.
- skip_opts (list, optional) – Do not read options in the given list.
- additional_opts (dict, optional) – Any additional arguments to pass to the class. If an option is provided that also exists in the config file, the value provided will be used instead of being read from the file.
Returns: An instance of the class.
Return type: cls
-
inputvar
¶ Returns the input parameter.
-
inverse_jacobian
(maps)[source]¶ Computes the Jacobian of \(y = \mathrm{logistic}(x; a,b)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{e^x (b-a)}{(1+e^y)^2},\]where \(y \in (a, b)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
inverse_transform
(maps)[source]¶ Computes \(y = \mathrm{logistic}(x; a,b)\).
The codomain \(a, b\) of \(y\) are given by the class’s bounds.
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
jacobian
(maps)[source]¶ Computes the Jacobian of \(y = \mathrm{logit}(x; a,b)\).
This is:
\[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b -a}{(x-a)(b-x)},\]where \(x \in (a, b)\).
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: The value of the jacobian at the given point(s). Return type: float
-
static
logistic
(x, a=0.0, b=1.0)[source]¶ Computes the logistic function with range \(\in (a, b)\).
This is given by:
\[\mathrm{logistic}(x; a, b) = \frac{a + b e^x}{1 + e^x}.\]Note that this is also the inverse of the logit function with domain \((a, b)\).
Parameters: Returns: The logistic of x.
Return type:
-
static
logit
(x, a=0.0, b=1.0)[source]¶ Computes the logit function with domain \(x \in (a, b)\).
This is given by:
\[\mathrm{logit}(x; a, b) = \log\left(\frac{x-a}{b-x}\right).\]Note that this is also the inverse of the logistic function with range \((a, b)\).
Parameters: Returns: The logit of x.
Return type:
-
name
= 'logit'¶
-
outputvar
¶ Returns the output parameter.
-
transform
(maps)[source]¶ Computes \(\mathrm{logit}(x; a, b)\).
The domain \(a, b\) of \(x\) are given by the class’s bounds.
Parameters: maps (dict or FieldArray) – A dictionary or FieldArray which provides a map between the parameter name of the variable to transform and its value(s). Returns: out – A map between the transformed variable name and value(s), along with the original variable name and value(s). Return type: dict or FieldArray
-
-
class
pycbc.transforms.
Mass1Mass2ToMchirpEta
[source]¶ Bases:
pycbc.transforms.MchirpEtaToMass1Mass2
The inverse of MchirpEtaToMass1Mass2.
-
inverse
¶ alias of
MchirpEtaToMass1Mass2
-
inverse_jacobian
(maps)¶ Returns the Jacobian for transforming mchirp and eta to mass1 and mass2.
-
inverse_transform
(maps)¶ This function transforms from chirp mass and symmetric mass ratio to component masses.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpEtaToMass1Mass2() >>> t.transform({'mchirp': numpy.array([10.]), 'eta': numpy.array([0.25])}) {'mass1': array([ 16.4375183]), 'mass2': array([ 8.21875915]), 'mchirp': array([ 10.]), 'eta': array([ 0.25])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ Returns the Jacobian for transforming mass1 and mass2 to mchirp and eta.
-
name
= 'mass1_mass2_to_mchirp_eta'¶
-
transform
(maps)¶ This function transforms from component masses to chirp mass and symmetric mass ratio.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.inverse_transform({'mass1': numpy.array([8.2]), 'mass2': numpy.array([8.2])}) {'mass1': array([ 8.2]), 'mass2': array([ 8.2]), 'mchirp': array([ 9.97717521]), 'eta': 0.25}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
Mass1Mass2ToMchirpQ
(mass1_param=None, mass2_param=None, mchirp_param=None, q_param=None)[source]¶ Bases:
pycbc.transforms.MchirpQToMass1Mass2
The inverse of MchirpQToMass1Mass2.
-
inverse
¶ alias of
MchirpQToMass1Mass2
-
inverse_jacobian
(maps)¶ Returns the Jacobian for transforming mchirp and q to mass1 and mass2.
-
inverse_transform
(maps)¶ This function transforms from chirp mass and mass ratio to component masses.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.transform({'mchirp': numpy.array([10.]), 'q': numpy.array([2.])}) {'mass1': array([ 16.4375183]), 'mass2': array([ 8.21875915]), 'mchirp': array([ 10.]), 'q': array([ 2.])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
jacobian
(maps)¶ Returns the Jacobian for transforming mass1 and mass2 to mchirp and q.
-
name
= 'mass1_mass2_to_mchirp_q'¶
-
transform
(maps)¶ This function transforms from component masses to chirp mass and mass ratio.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.inverse_transform({'mass1': numpy.array([16.4]), 'mass2': numpy.array([8.2])}) {'mass1': array([ 16.4]), 'mass2': array([ 8.2]), 'mchirp': array([ 9.97717521]), 'q': 2.0}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
MchirpEtaToMass1Mass2
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts chirp mass and symmetric mass ratio to component masses.
-
inverse_jacobian
(maps)[source]¶ Returns the Jacobian for transforming mass1 and mass2 to mchirp and eta.
-
inverse_transform
(maps)[source]¶ This function transforms from component masses to chirp mass and symmetric mass ratio.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.inverse_transform({'mass1': numpy.array([8.2]), 'mass2': numpy.array([8.2])}) {'mass1': array([ 8.2]), 'mass2': array([ 8.2]), 'mchirp': array([ 9.97717521]), 'eta': 0.25}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
name
= 'mchirp_eta_to_mass1_mass2'¶
-
transform
(maps)[source]¶ This function transforms from chirp mass and symmetric mass ratio to component masses.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpEtaToMass1Mass2() >>> t.transform({'mchirp': numpy.array([10.]), 'eta': numpy.array([0.25])}) {'mass1': array([ 16.4375183]), 'mass2': array([ 8.21875915]), 'mchirp': array([ 10.]), 'eta': array([ 0.25])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
MchirpQToMass1Mass2
(mass1_param=None, mass2_param=None, mchirp_param=None, q_param=None)[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts chirp mass and mass ratio to component masses.
-
inverse
¶ alias of
Mass1Mass2ToMchirpQ
-
inverse_jacobian
(maps)[source]¶ Returns the Jacobian for transforming mass1 and mass2 to mchirp and q.
-
inverse_transform
(maps)[source]¶ This function transforms from component masses to chirp mass and mass ratio.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.inverse_transform({'mass1': numpy.array([16.4]), 'mass2': numpy.array([8.2])}) {'mass1': array([ 16.4]), 'mass2': array([ 8.2]), 'mchirp': array([ 9.97717521]), 'q': 2.0}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
name
= 'mchirp_q_to_mass1_mass2'¶
-
transform
(maps)[source]¶ This function transforms from chirp mass and mass ratio to component masses.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.MchirpQToMass1Mass2() >>> t.transform({'mchirp': numpy.array([10.]), 'q': numpy.array([2.])}) {'mass1': array([ 16.4375183]), 'mass2': array([ 8.21875915]), 'mchirp': array([ 10.]), 'q': array([ 2.])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
PrecessionMassSpinToCartesianSpin
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts mass-weighted spins to cartesian x-y plane spins.
-
inverse
¶ alias of
CartesianSpinToPrecessionMassSpin
-
inverse_transform
(maps)[source]¶ This function transforms from component masses and cartesian spins to mass-weighted spin parameters perpendicular with the angular momentum.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
name
= 'precession_mass_spin_to_cartesian_spin'¶
-
-
class
pycbc.transforms.
SphericalSpin1ToCartesianSpin1
[source]¶ Bases:
pycbc.transforms.BaseTransform
Converts spherical spin parameters (magnitude and two angles) to catesian spin parameters. This class only transforms spsins for the first component mass.
-
inverse
¶ alias of
CartesianSpin1ToSphericalSpin1
-
inverse_transform
(maps)[source]¶ This function transforms from cartesian to spherical spins.
Parameters: maps (a mapping object) – Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
name
= 'spherical_spin_1_to_cartesian_spin_1'¶
-
transform
(maps)[source]¶ This function transforms from spherical to cartesian spins.
Parameters: maps (a mapping object) – Examples
Convert a dict of numpy.array:
>>> import numpy >>> from pycbc import transforms >>> t = transforms.SphericalSpin1ToCartesianSpin1() >>> t.transform({'spin1_a': numpy.array([0.1]), 'spin1_azimuthal': numpy.array([0.1]), 'spin1_polar': numpy.array([0.1])}) {'spin1_a': array([ 0.1]), 'spin1_azimuthal': array([ 0.1]), 'spin1_polar': array([ 0.1]), 'spin2x': array([ 0.00993347]), 'spin2y': array([ 0.00099667]), 'spin2z': array([ 0.09950042])}
Returns: out – A dict with key as parameter name and value as numpy.array or float of transformed values. Return type: dict
-
-
class
pycbc.transforms.
SphericalSpin2ToCartesianSpin2
[source]¶ Bases:
pycbc.transforms.SphericalSpin1ToCartesianSpin1
Converts spherical spin parameters (magnitude and two angles) to cartesian spin parameters. This class only transforms spins for the second component mass.
-
inverse
¶ alias of
CartesianSpin2ToSphericalSpin2
-
name
= 'spherical_spin_2_to_cartesian_spin_2'¶
-
-
pycbc.transforms.
apply_transforms
(samples, transforms, inverse=False)[source]¶ Applies a list of BaseTransform instances on a mapping object.
Parameters: - samples ({FieldArray, dict}) – Mapping object to apply transforms to.
- transforms (list) – List of BaseTransform instances to apply. Nested transforms are assumed to be in order for forward transforms.
- inverse (bool, optional) – Apply inverse transforms. In this case transforms will be applied in the opposite order. Default is False.
Returns: samples – Mapping object with transforms applied. Same type as input.
Return type: {FieldArray, dict}
-
pycbc.transforms.
compute_jacobian
(samples, transforms, inverse=False)[source]¶ Computes the jacobian of the list of transforms at the given sample points.
Parameters: Returns: The product of the jacobians of all fo the transforms.
Return type:
-
pycbc.transforms.
get_common_cbc_transforms
(requested_params, variable_args, valid_params=None)[source]¶ Determines if any additional parameters from the InferenceFile are needed to get derived parameters that user has asked for.
First it will try to add any base parameters that are required to calculate the derived parameters. Then it will add any sampling parameters that are required to calculate the base parameters needed.
Parameters: Returns: - requested_params (list) – Updated list of parameters that user wants.
- all_c (list) – List of BaseTransforms to apply.
-
pycbc.transforms.
order_transforms
(transforms)[source]¶ Orders transforms to ensure proper chaining.
For example, if transforms = [B, A, C], and A produces outputs needed by B, the transforms will be re-rorderd to [A, B, C].
Parameters: - transforms (list) – List of transform instances to order.
- Outputs –
- ------- –
- list – List of transformed ordered such that forward transforms can be carried out without error.
-
pycbc.transforms.
read_transforms_from_config
(cp, section='transforms')[source]¶ Returns a list of PyCBC transform instances for a section in the given configuration file.
If the transforms are nested (i.e., the output of one transform is the input of another), the returned list will be sorted by the order of the nests.
Parameters: - cp (WorflowConfigParser) – An open config file to read.
- section ({"transforms", string}) – Prefix on section names from which to retrieve the transforms.
Returns: A list of the parsed transforms.
Return type:
pycbc.version module¶
Module contents¶
PyCBC contains a toolkit for CBC gravitational wave analysis
-
pycbc.
init_logging
(verbose=False, format='%(asctime)s %(message)s')[source]¶ Common utility for setting up logging in PyCBC.
Installs a signal handler such that verbosity can be activated at run-time by sending a SIGUSR1 to the process.
Parameters: - verbose (bool or int, optional) – What level to set the verbosity level to. Accepts either a boolean
or an integer representing the level to set. If True/False will set to
logging.INFO
/logging.WARN
. For higher logging levels, pass an integer representing the level to set (see thelogging
module for details). Default isFalse
(logging.WARN
). - format (str, optional) – The format to use for logging messages.
- verbose (bool or int, optional) – What level to set the verbosity level to. Accepts either a boolean
or an integer representing the level to set. If True/False will set to