Source code for pycbc.noise.reproduceable

# Copyright (C) 2017  Alex Nitz
#
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
# =============================================================================
#
#                                   Preamble
#
# =============================================================================
#
from six.moves import range
import numpy, pycbc.psd
from pycbc.types import TimeSeries, FrequencySeries, complex_same_precision_as
from numpy.random import RandomState

# These need to be constant to be able to recover identical results.
# The hope is that nobody needs a higher resolution
SAMPLE_RATE = 16384
BLOCK_SIZE = 100
FILTER_LENGTH = 128

[docs]def block(seed): """ Return block of normal random numbers Parameters ---------- seed : {None, int} The seed to generate the noise.sd Returns -------- noise : numpy.ndarray Array of random numbers """ num = SAMPLE_RATE * BLOCK_SIZE rng = RandomState(seed % 2**32) variance = SAMPLE_RATE / 2 return rng.normal(size=num, scale=variance**0.5)
[docs]def normal(start, end, seed=0): """ Generate data with a white Gaussian (normal) distribution Parameters ---------- start_time : int Start time in GPS seconds to generate noise end_time : int End time in GPS seconds to generate nosie seed : {None, int} The seed to generate the noise. Returns -------- noise : TimeSeries A TimeSeries containing gaussian noise """ # This is reproduceable because we used fixed seeds from known values s = int(start / BLOCK_SIZE) e = int(end / BLOCK_SIZE) # The data evenly divides so the last block would be superfluous if end % BLOCK_SIZE == 0: e -= 1 sv = RandomState(seed).randint(-2**50, 2**50) data = numpy.concatenate([block(i + sv) for i in numpy.arange(s, e + 1, 1)]) ts = TimeSeries(data, delta_t=1.0 / SAMPLE_RATE, epoch=start) return ts.time_slice(start, end)
[docs]def colored_noise(psd, start_time, end_time, seed=0, low_frequency_cutoff=1.0): """ Create noise from a PSD Return noise from the chosen PSD. Note that if unique noise is desired a unique seed should be provided. Parameters ---------- psd : pycbc.types.FrequencySeries PSD to color the noise start_time : int Start time in GPS seconds to generate noise end_time : int End time in GPS seconds to generate nosie seed : {None, int} The seed to generate the noise. low_frequency_cutof : {1.0, float} The low frequency cutoff to pass to the PSD generation. Returns -------- noise : TimeSeries A TimeSeries containing gaussian noise colored by the given psd. """ psd = psd.copy() flen = int(SAMPLE_RATE / psd.delta_f) / 2 + 1 oldlen = len(psd) psd.resize(flen) # Want to avoid zeroes in PSD. max_val = psd.max() for i in range(len(psd)): if i >= (oldlen-1): psd.data[i] = psd[oldlen - 2] if psd[i] == 0: psd.data[i] = max_val wn_dur = int(end_time - start_time) + 2*FILTER_LENGTH if psd.delta_f >= 1. / (2.*FILTER_LENGTH): # If the PSD is short enough, this method is less memory intensive than # resizing and then calling inverse_spectrum_truncation psd = pycbc.psd.interpolate(psd, 1.0 / (2.*FILTER_LENGTH)) # inverse_spectrum_truncation truncates the inverted PSD. To truncate # the non-inverted PSD we give it the inverted PSD to truncate and then # invert the output. psd = 1. / pycbc.psd.inverse_spectrum_truncation(1./psd, FILTER_LENGTH * SAMPLE_RATE, low_frequency_cutoff=low_frequency_cutoff, trunc_method='hann') psd = psd.astype(complex_same_precision_as(psd)) # Zero-pad the time-domain PSD to desired length. Zeroes must be added # in the middle, so some rolling between a resize is used. psd = psd.to_timeseries() psd.roll(SAMPLE_RATE * FILTER_LENGTH) psd.resize(wn_dur * SAMPLE_RATE) psd.roll(-SAMPLE_RATE * FILTER_LENGTH) # As time series is still mirrored the complex frequency components are # 0. But convert to real by using abs as in inverse_spectrum_truncate psd = psd.to_frequencyseries() else: psd = pycbc.psd.interpolate(psd, 1.0 / wn_dur) psd = 1. / pycbc.psd.inverse_spectrum_truncation(1./psd, FILTER_LENGTH * SAMPLE_RATE, low_frequency_cutoff=low_frequency_cutoff, trunc_method='hann') kmin = int(low_frequency_cutoff / psd.delta_f) psd[:kmin].clear() asd = (psd.real())**0.5 del psd white_noise = normal(start_time - FILTER_LENGTH, end_time + FILTER_LENGTH, seed=seed) white_noise = white_noise.to_frequencyseries() # Here we color. Do not want to duplicate memory here though so use '*=' white_noise *= asd del asd colored = white_noise.to_timeseries() del white_noise return colored.time_slice(start_time, end_time)
[docs]def noise_from_string(psd_name, start_time, end_time, seed=0, low_frequency_cutoff=1.0): """ Create noise from an analytic PSD Return noise from the chosen PSD. Note that if unique noise is desired a unique seed should be provided. Parameters ---------- psd_name : str Name of the analytic PSD to use. start_time : int Start time in GPS seconds to generate noise end_time : int End time in GPS seconds to generate nosie seed : {None, int} The seed to generate the noise. low_frequency_cutof : {10.0, float} The low frequency cutoff to pass to the PSD generation. Returns -------- noise : TimeSeries A TimeSeries containing gaussian noise colored by the given psd. """ delta_f = 1.0 / FILTER_LENGTH flen = int(SAMPLE_RATE / delta_f) / 2 + 1 psd = pycbc.psd.from_string(psd_name, flen, delta_f, low_frequency_cutoff) return colored_noise(psd, start_time, end_time, seed=seed, low_frequency_cutoff=low_frequency_cutoff)