pycbc.population package¶
Submodules¶
pycbc.population.rates_functions module¶
A set of helper functions for evaluating rates.
-
pycbc.population.rates_functions.
draw_flat_samples
(**kwargs)[source]¶ Draw samples for uniform in mass
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: - array – The first mass
- array – The second mass
-
pycbc.population.rates_functions.
draw_imf_samples
(**kwargs)[source]¶ Draw samples for power-law model
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: - array – The first mass
- array – The second mass
-
pycbc.population.rates_functions.
draw_lnm_samples
(**kwargs)[source]¶ Draw samples for uniform-in-log model
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: - array – The first mass
- array – The second mass
-
pycbc.population.rates_functions.
fgmc
(log_fg_ratios, mu_log_vt, sigma_log_vt, Rf, maxfg)[source]¶ Function to fit the likelihood Fixme
-
pycbc.population.rates_functions.
fit
(R)[source]¶ Fit skew - lognormal to the rate samples achived from a prior analysis :param R: Rate samples :type R: array
Returns: - ff[0] (float) – The skewness
- ff[1] (float) – The mean
- ff[2] (float) – The standard deviation
-
pycbc.population.rates_functions.
log_rho_bg
(trigs, bins, counts)[source]¶ Calculate the log of background fall-off
Parameters: - trigs (array) – SNR values of all the triggers
- bins (string) – bins for histogrammed triggers
- path (string) – counts for histogrammed triggers
Returns: Return type: array
-
pycbc.population.rates_functions.
mchirp_sampler_flat
(**kwargs)[source]¶ Draw chirp mass samples for flat in mass model
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: mchirp-astro – The chirp mass samples for the population Return type: array
-
pycbc.population.rates_functions.
mchirp_sampler_imf
(**kwargs)[source]¶ Draw chirp mass samples for power-law model
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: mchirp-astro – The chirp mass samples for the population Return type: array
-
pycbc.population.rates_functions.
mchirp_sampler_lnm
(**kwargs)[source]¶ Draw chirp mass samples for uniform-in-log model
Parameters: **kwargs (string) – Keyword arguments as model parameters and number of samples Returns: mchirp-astro – The chirp mass samples for the population Return type: array
-
pycbc.population.rates_functions.
prob_flat
(m1, m2, s1z, s2z, **kwargs)[source]¶ Return probability density for uniform in component mass :param m1: Component masses 1 :type m1: array :param m2: Component masses 2 :type m2: array :param s1z: Aligned spin 1 (not in use currently) :type s1z: array :param s2z: Aligned spin 2 (not in use currently) :param **kwargs: Keyword arguments as model parameters :type **kwargs: string
Returns: p_m1_m2 – the probability density for m1, m2 pair Return type: array
-
pycbc.population.rates_functions.
prob_imf
(m1, m2, s1z, s2z, **kwargs)[source]¶ Return probability density for power-law :param m1: Component masses 1 :type m1: array :param m2: Component masses 2 :type m2: array :param s1z: Aligned spin 1(Not in use currently) :type s1z: array :param s2z: Aligned spin 2(Not in use currently) :param **kwargs: Keyword arguments as model parameters :type **kwargs: string
Returns: p_m1_m2 – the probability density for m1, m2 pair Return type: array
-
pycbc.population.rates_functions.
prob_lnm
(m1, m2, s1z, s2z, **kwargs)[source]¶ Return probability density for uniform in log :param m1: Component masses 1 :type m1: array :param m2: Component masses 2 :type m2: array :param s1z: Aligned spin 1(Not in use currently) :type s1z: array :param s2z: Aligned spin 2(Not in use currently) :param **kwargs: Keyword arguments as model parameters :type **kwargs: string
Returns: p_m1_m2 – The probability density for m1, m2 pair Return type: array
-
pycbc.population.rates_functions.
process_full_data
(fname, rhomin, mass1, mass2, lo_mchirp, hi_mchirp)[source]¶ Read the zero-lag and time-lag triggers identified by templates in a specified range of chirp mass.
Parameters: - hdfile – File that stores all the triggers
- rhomin (float) – Minimum value of SNR threhold (will need including ifar)
- mass1 (array) – First mass of the waveform in the template bank
- mass2 (array) – Second mass of the waveform in the template bank
- lo_mchirp (float) – Minimum chirp mass for the template
- hi_mchirp (float) – Maximum chirp mass for the template
Returns: containing foreground triggers and background information
Return type: dictionary
-
pycbc.population.rates_functions.
save_bkg_falloff
(fname_statmap, fname_bank, path, rhomin, lo_mchirp, hi_mchirp)[source]¶ Read the STATMAP files to derive snr falloff for the background events. Save the output to a txt file Bank file is also provided to restrict triggers to BBH templates.
Parameters: - fname_statmap (string) – STATMAP file containing trigger information
- fname_bank (string) – File name of the template bank
- path (string) – Destination where txt file is saved
- rhomin (float) – Minimum value of SNR threhold (will need including ifar)
- lo_mchirp (float) – Minimum chirp mass for the template
- hi_mchirp (float) – Maximum chirp mass for template
-
pycbc.population.rates_functions.
skew_lognormal_samples
(alpha, mu, sigma, minrp, maxrp)[source]¶ Returns a large number of Skew lognormal samples :param alpha: Skewness of the distribution :type alpha: float :param mu: Mean of the distribution :type mu: float :param sigma: Scale of the distribution :type sigma: float :param minrp: Minimum value for the samples :type minrp: float :param maxrp: Maximum value for the samples :type maxrp: float
Returns: Rfs – Large number of samples (may need fixing) Return type: array
pycbc.population.scale_injections module¶
-
pycbc.population.scale_injections.
astro_redshifts
(min_z, max_z, nsamples)[source]¶ - Sample the redshifts for sources, with redshift
- independent rate, using standard cosmology
Parameters: Returns: z_astro – nsamples of redshift, between min_z, max_z, by standard cosmology
Return type: array
-
pycbc.population.scale_injections.
dlum_to_z
(dl)[source]¶ Get the redshift for a luminosity distance
Parameters: dl (array) – The array of luminosity distances Returns: The redshift values corresponding to the luminosity distances Return type: array
-
pycbc.population.scale_injections.
estimate_vt
(injections, mchirp_sampler, model_pdf, **kwargs)[source]¶ Based on injection strategy and the desired astro model estimate the injected volume. Scale injections and estimate sensitive volume.
Parameters: - injections (dictionary) – Dictionary obtained after reading injections from read_injections
- mchirp_sampler (function) – Sampler for producing chirp mass samples for the astro model.
- model_pdf (function) – The PDF for astro model in mass1-mass2-spin1z-spin2z space. This is easily extendible to include precession
- kwargs (key words) – Inputs for thresholds and astrophysical models
Returns: injection_chunks – The input dictionary with VT and VT error included with the injections
Return type: dictionary
-
pycbc.population.scale_injections.
inj_distance_pdf
(key, distance, low_dist, high_dist, mchirp=1)[source]¶ Estimate the probability density of the injections for the distance distribution.
Parameters:
-
pycbc.population.scale_injections.
inj_mass_pdf
(key, mass1, mass2, lomass, himass, lomass_2=0, himass_2=0)[source]¶ Estimate the probability density based on the injection strategy
Parameters: Returns: pdf – Probability density of the injections
Return type: array
-
pycbc.population.scale_injections.
inj_spin_pdf
(key, high_spin, spinz)[source]¶ - Estimate the probability density of the
- injections for the spin distribution.
Parameters: - key (string) – Injections strategy
- high_spin (float) – Maximum spin used in the strategy
- spinz (array) – Spin of the injections (for one component)
-
pycbc.population.scale_injections.
pdf_z_astro
(z, V_min, V_max)[source]¶ Get the probability density for the rate of events at a redshift assuming standard cosmology
-
pycbc.population.scale_injections.
process_injections
(hdffile)[source]¶ Function to read in the injection file and extract the found injections and all injections
Parameters: hdffile (hdf file) – File for which injections are to be processed Returns: data – Dictionary containing injection read from the input file Return type: dictionary
-
pycbc.population.scale_injections.
read_injections
(sim_files, m_dist, s_dist, d_dist)[source]¶ Read all the injections from the files in the provided folder. The files must belong to individual set i.e. no files that combine all the injections in a run. Identify injection strategies and finds parameter boundaries. Collect injection according to GPS.
Parameters: Returns: injections – Contains the organized information about the injections
Return type: dictionary