# Copyright (C) 2012 Alex Nitz
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# self.option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# =============================================================================
#
# Preamble
#
# =============================================================================
#
"""This modules defines functions for clustering and thresholding timeseries to
produces event triggers
"""
from __future__ import absolute_import
import numpy, copy, os.path
import logging
import h5py
from six.moves import cPickle
from pycbc.types import Array
from pycbc.scheme import schemed
from pycbc.detector import Detector
from . import coinc, ranking
from .eventmgr_cython import findchirp_cluster_over_window_cython
[docs]@schemed("pycbc.events.threshold_")
def threshold(series, value):
"""Return list of values and indices values over threshold in series.
"""
err_msg = "This function is a stub that should be overridden using the "
err_msg += "scheme. You shouldn't be seeing this error!"
raise ValueError(err_msg)
[docs]@schemed("pycbc.events.threshold_")
def threshold_only(series, value):
"""Return list of values and indices whose values in series are
larger (in absolute value) than value
"""
err_msg = "This function is a stub that should be overridden using the "
err_msg += "scheme. You shouldn't be seeing this error!"
raise ValueError(err_msg)
# FIXME: This should be under schemed, but I don't understand that yet!
[docs]def threshold_real_numpy(series, value):
arr = series.data
locs = numpy.where(arr > value)[0]
vals = arr[locs]
return locs, vals
[docs]@schemed("pycbc.events.threshold_")
def threshold_and_cluster(series, threshold, window):
"""Return list of values and indices values over threshold in series.
"""
err_msg = "This function is a stub that should be overridden using the "
err_msg += "scheme. You shouldn't be seeing this error!"
raise ValueError(err_msg)
@schemed("pycbc.events.threshold_")
def _threshold_cluster_factory(series):
err_msg = "This class is a stub that should be overridden using the "
err_msg += "scheme. You shouldn't be seeing this error!"
raise ValueError(err_msg)
[docs]class ThresholdCluster(object):
"""Create a threshold and cluster engine
Parameters
-----------
series : complex64
Input pycbc.types.Array (or subclass); it will be searched for
points above threshold that are then clustered
"""
def __new__(cls, *args, **kwargs):
real_cls = _threshold_cluster_factory(*args, **kwargs)
return real_cls(*args, **kwargs) # pylint:disable=not-callable
# The class below should serve as the parent for all schemed classes.
# The intention is that this class serves simply as the location for
# all documentation of the class and its methods, though that is not
# yet implemented. Perhaps something along the lines of:
#
# http://stackoverflow.com/questions/2025562/inherit-docstrings-in-python-class-inheritance
#
# will work? Is there a better way?
class _BaseThresholdCluster(object):
def threshold_and_cluster(self, threshold, window):
"""
Threshold and cluster the memory specified at instantiation with the
threshold and window size specified at creation.
Parameters
-----------
threshold : float32
The minimum absolute value of the series given at object initialization
to return when thresholding and clustering.
window : uint32
The size (in number of samples) of the window over which to cluster
Returns:
--------
event_vals : complex64
Numpy array, complex values of the clustered events
event_locs : uint32
Numpy array, indices into series of location of events
"""
pass
[docs]def findchirp_cluster_over_window(times, values, window_length):
""" Reduce the events by clustering over a window using
the FindChirp clustering algorithm
Parameters
-----------
indices: Array
The list of indices of the SNR values
snr: Array
The list of SNR value
window_size: int
The size of the window in integer samples. Must be positive.
Returns
-------
indices: Array
The reduced list of indices of the SNR values
"""
assert window_length > 0, 'Clustering window length is not positive'
indices = numpy.zeros(len(times), dtype=numpy.int32)
tlen = len(times)
absvalues = numpy.array(abs(values), copy=False)
times = numpy.array(times, dtype=numpy.int32, copy=False)
k = findchirp_cluster_over_window_cython(times, absvalues, window_length,
indices, tlen)
return indices[0:k+1]
[docs]def cluster_reduce(idx, snr, window_size):
""" Reduce the events by clustering over a window
Parameters
-----------
indices: Array
The list of indices of the SNR values
snr: Array
The list of SNR value
window_size: int
The size of the window in integer samples.
Returns
-------
indices: Array
The list of indices of the SNR values
snr: Array
The list of SNR values
"""
ind = findchirp_cluster_over_window(idx, snr, window_size)
return idx.take(ind), snr.take(ind)
[docs]class EventManager(object):
def __init__(self, opt, column, column_types, **kwds):
self.opt = opt
self.global_params = kwds
self.event_dtype = [('template_id', int)]
for col, coltype in zip(column, column_types):
self.event_dtype.append((col, coltype))
self.events = numpy.array([], dtype=self.event_dtype)
self.accumulate = [self.events]
self.template_params = []
self.template_index = -1
self.template_events = numpy.array([], dtype=self.event_dtype)
self.write_performance = False
[docs] def save_state(self, tnum_finished, filename):
"""Save the current state of the background buffers"""
from pycbc.io.hdf import dump_state
self.tnum_finished = tnum_finished
logging.info('Writing checkpoint file at template %s', tnum_finished)
fp = h5py.File(filename, 'w')
dump_state(self, fp, protocol=cPickle.HIGHEST_PROTOCOL)
fp.close()
[docs] @staticmethod
def restore_state(filename):
"""Restore state of the background buffers from a file"""
from pycbc.io.hdf import load_state
fp = h5py.File(filename, 'r')
try:
mgr = load_state(fp)
except Exception as e:
fp.close()
raise e
fp.close()
next_template = mgr.tnum_finished + 1
logging.info('Restoring with checkpoint at template %s', next_template)
return mgr.tnum_finished + 1, mgr
[docs] @classmethod
def from_multi_ifo_interface(cls, opt, ifo, column, column_types, **kwds):
"""
To use this for a single ifo from the multi ifo interface requires
some small fixing of the opt structure. This does that. As we edit the
opt structure the process_params table will not be correct.
"""
opt = copy.deepcopy(opt)
opt_dict = vars(opt)
for arg, value in opt_dict.items():
if isinstance(value, dict):
setattr(opt, arg, getattr(opt, arg)[ifo])
return cls(opt, column, column_types, **kwds)
[docs] def chisq_threshold(self, value, num_bins, delta=0):
remove = []
for i, event in enumerate(self.events):
xi = event['chisq'] / (event['chisq_dof'] +
delta * event['snr'].conj() * event['snr'])
if xi > value:
remove.append(i)
self.events = numpy.delete(self.events, remove)
[docs] def newsnr_threshold(self, threshold):
""" Remove events with newsnr smaller than given threshold
"""
if not self.opt.chisq_bins:
raise RuntimeError('Chi-square test must be enabled in order to '
'use newsnr threshold')
nsnrs = ranking.newsnr(abs(self.events['snr']),
self.events['chisq'] / self.events['chisq_dof'])
remove_idxs = numpy.where(nsnrs < threshold)[0]
self.events = numpy.delete(self.events, remove_idxs)
[docs] def keep_near_injection(self, window, injections):
from pycbc.events.veto import indices_within_times
if len(self.events) == 0:
return
inj_time = numpy.array(injections.end_times())
gpstime = self.events['time_index'].astype(numpy.float64)
gpstime = gpstime / self.opt.sample_rate + self.opt.gps_start_time
i = indices_within_times(gpstime, inj_time - window, inj_time + window)
self.events = self.events[i]
[docs] def keep_loudest_in_interval(self, window, num_keep, statname="newsnr",
log_chirp_width=None):
if len(self.events) == 0:
return
e_copy = self.events.copy()
# Here self.events['snr'] is the complex SNR
e_copy['snr'] = abs(e_copy['snr'])
# Messy step because pycbc inspiral's internal 'chisq_dof' is 2p-2
# but stat.py / ranking.py functions use 'chisq_dof' = p
e_copy['chisq_dof'] = e_copy['chisq_dof'] / 2 + 1
statv = ranking.get_sngls_ranking_from_trigs(e_copy, statname)
# Convert trigger time to integer bin number
# NB time_index and window are in units of samples
wtime = (e_copy['time_index'] / window).astype(numpy.int32)
bins = numpy.unique(wtime)
if log_chirp_width:
from pycbc.conversions import mchirp_from_mass1_mass2
m1 = numpy.array([p['tmplt'].mass1 for p in self.template_params])
m2 = numpy.array([p['tmplt'].mass2 for p in self.template_params])
mc = mchirp_from_mass1_mass2(m1, m2)[e_copy['template_id']]
# convert chirp mass to integer bin number
imc = (numpy.log(mc) / log_chirp_width).astype(numpy.int32)
cbins = numpy.unique(imc)
keep = []
for b in bins:
if log_chirp_width:
for b2 in cbins:
bloc = numpy.where((wtime == b) & (imc == b2))[0]
bloudest = statv[bloc].argsort()[-num_keep:]
keep.append(bloc[bloudest])
else:
bloc = numpy.where((wtime == b))[0]
bloudest = statv[bloc].argsort()[-num_keep:]
keep.append(bloc[bloudest])
keep = numpy.concatenate(keep)
self.events = self.events[keep]
[docs] def add_template_events(self, columns, vectors):
""" Add a vector indexed """
# initialize with zeros - since vectors can be None, look for the
# longest one that isn't
new_events = None
for v in vectors:
if v is not None:
new_events = numpy.zeros(len(v), dtype=self.event_dtype)
break
# they shouldn't all be None
assert new_events is not None
new_events['template_id'] = self.template_index
for c, v in zip(columns, vectors):
if v is not None:
if isinstance(v, Array):
new_events[c] = v.numpy()
else:
new_events[c] = v
self.template_events = numpy.append(self.template_events, new_events)
[docs] def cluster_template_events(self, tcolumn, column, window_size):
""" Cluster the internal events over the named column
"""
cvec = self.template_events[column]
tvec = self.template_events[tcolumn]
if window_size == 0:
indices = numpy.arange(len(tvec))
else:
indices = findchirp_cluster_over_window(tvec, cvec, window_size)
self.template_events = numpy.take(self.template_events, indices)
[docs] def new_template(self, **kwds):
self.template_params.append(kwds)
self.template_index += 1
[docs] def add_template_params(self, **kwds):
self.template_params[-1].update(kwds)
[docs] def finalize_template_events(self):
self.accumulate.append(self.template_events)
self.template_events = numpy.array([], dtype=self.event_dtype)
[docs] def consolidate_events(self, opt, gwstrain=None):
self.events = numpy.concatenate(self.accumulate)
logging.info("We currently have %d triggers", len(self.events))
if opt.chisq_threshold and opt.chisq_bins:
logging.info("Removing triggers with poor chisq")
self.chisq_threshold(opt.chisq_threshold, opt.chisq_bins,
opt.chisq_delta)
logging.info("%d remaining triggers", len(self.events))
if opt.newsnr_threshold and opt.chisq_bins:
logging.info("Removing triggers with NewSNR below threshold")
self.newsnr_threshold(opt.newsnr_threshold)
logging.info("%d remaining triggers", len(self.events))
if opt.keep_loudest_interval:
logging.info("Removing triggers not within the top %s "
"loudest of a %s second interval by %s",
opt.keep_loudest_num, opt.keep_loudest_interval,
opt.keep_loudest_stat)
self.keep_loudest_in_interval\
(opt.keep_loudest_interval * opt.sample_rate,
opt.keep_loudest_num, statname=opt.keep_loudest_stat,
log_chirp_width=opt.keep_loudest_log_chirp_window)
logging.info("%d remaining triggers", len(self.events))
if opt.injection_window and hasattr(gwstrain, 'injections'):
logging.info("Keeping triggers within %s seconds of injection",
opt.injection_window)
self.keep_near_injection(opt.injection_window,
gwstrain.injections)
logging.info("%d remaining triggers", len(self.events))
self.accumulate = [self.events]
[docs] def finalize_events(self):
self.events = numpy.concatenate(self.accumulate)
[docs] def make_output_dir(self, outname):
path = os.path.dirname(outname)
if path != '':
if not os.path.exists(path) and path is not None:
os.makedirs(path)
[docs] def write_events(self, outname):
""" Write the found events to a sngl inspiral table
"""
self.make_output_dir(outname)
if '.hdf' in outname:
self.write_to_hdf(outname)
else:
raise ValueError('Cannot write to this format')
[docs] def write_to_hdf(self, outname):
class fw(object):
def __init__(self, name, prefix):
self.f = h5py.File(name, 'w')
self.prefix = prefix
def __setitem__(self, name, data):
col = self.prefix + '/' + name
self.f.create_dataset(col, data=data,
compression='gzip',
compression_opts=9,
shuffle=True)
self.events.sort(order='template_id')
th = numpy.array([p['tmplt'].template_hash for p in
self.template_params])
tid = self.events['template_id']
f = fw(outname, self.opt.channel_name[0:2])
if len(self.events):
f['snr'] = abs(self.events['snr'])
try:
# Precessing
f['u_vals'] = self.events['u_vals']
f['coa_phase'] = self.events['coa_phase']
f['hplus_cross_corr'] = self.events['hplus_cross_corr']
except Exception:
# Not precessing
f['coa_phase'] = numpy.angle(self.events['snr'])
f['chisq'] = self.events['chisq']
f['bank_chisq'] = self.events['bank_chisq']
f['bank_chisq_dof'] = self.events['bank_chisq_dof']
f['cont_chisq'] = self.events['cont_chisq']
f['end_time'] = self.events['time_index'] / \
float(self.opt.sample_rate) \
+ self.opt.gps_start_time
try:
# Precessing
template_sigmasq_plus = numpy.array(
[t['sigmasq_plus'] for t in self.template_params],
dtype=numpy.float32)
f['sigmasq_plus'] = template_sigmasq_plus[tid]
template_sigmasq_cross = numpy.array(
[t['sigmasq_cross'] for t in self.template_params],
dtype=numpy.float32)
f['sigmasq_cross'] = template_sigmasq_cross[tid]
# FIXME: I want to put something here, but I haven't yet
# figured out what it should be. I think we would also
# need information from the plus and cross correlation
# (both real and imaginary(?)) to get this.
f['sigmasq'] = template_sigmasq_plus[tid]
except Exception:
# Not precessing
template_sigmasq = numpy.array(
[t['sigmasq'] for t in self.template_params],
dtype=numpy.float32)
f['sigmasq'] = template_sigmasq[tid]
template_durations = [p['tmplt'].template_duration for p in
self.template_params]
f['template_duration'] = numpy.array(template_durations,
dtype=numpy.float32)[tid]
# FIXME: Can we get this value from the autochisq instance?
cont_dof = self.opt.autochi_number_points
if self.opt.autochi_onesided is None:
cont_dof = cont_dof * 2
if self.opt.autochi_two_phase:
cont_dof = cont_dof * 2
if self.opt.autochi_max_valued_dof:
cont_dof = self.opt.autochi_max_valued_dof
f['cont_chisq_dof'] = numpy.repeat(cont_dof, len(self.events))
if 'chisq_dof' in self.events.dtype.names:
f['chisq_dof'] = self.events['chisq_dof'] / 2 + 1
else:
f['chisq_dof'] = numpy.zeros(len(self.events))
f['template_hash'] = th[tid]
if 'sg_chisq' in self.events.dtype.names:
f['sg_chisq'] = self.events['sg_chisq']
if self.opt.psdvar_segment is not None:
f['psd_var_val'] = self.events['psd_var_val']
if self.opt.trig_start_time:
f['search/start_time'] = numpy.array([self.opt.trig_start_time])
search_start_time = float(self.opt.trig_start_time)
else:
f['search/start_time'] = numpy.array([self.opt.gps_start_time +
self.opt.segment_start_pad])
search_start_time = float(self.opt.gps_start_time +
self.opt.segment_start_pad)
if self.opt.trig_end_time:
f['search/end_time'] = numpy.array([self.opt.trig_end_time])
search_end_time = float(self.opt.trig_end_time)
else:
f['search/end_time'] = numpy.array([self.opt.gps_end_time -
self.opt.segment_end_pad])
search_end_time = float(self.opt.gps_end_time -
self.opt.segment_end_pad)
if self.write_performance:
self.analysis_time = search_end_time - search_start_time
time_ratio = numpy.array(
[float(self.analysis_time) / float(self.run_time)])
temps_per_core = float(self.ntemplates) / float(self.ncores)
filters_per_core = float(self.nfilters) / float(self.ncores)
f['search/templates_per_core'] = \
numpy.array([float(temps_per_core) * float(time_ratio)])
f['search/filter_rate_per_core'] = \
numpy.array([filters_per_core / float(self.run_time)])
f['search/setup_time_fraction'] = \
numpy.array([float(self.setup_time) / float(self.run_time)])
f['search/run_time'] = numpy.array([float(self.run_time)])
if 'q_trans' in self.global_params:
qtrans = self.global_params['q_trans']
for key in qtrans:
if key == 'qtiles':
for seg in qtrans[key]:
for q in qtrans[key][seg]:
f['qtransform/%s/%s/%s' % (key, seg, q)] = \
qtrans[key][seg][q]
elif key == 'qplanes':
for seg in qtrans[key]:
f['qtransform/%s/%s' % (key, seg)] = qtrans[key][seg]
if 'gating_info' in self.global_params:
gating_info = self.global_params['gating_info']
for gate_type in ['file', 'auto']:
if gate_type in gating_info:
f['gating/' + gate_type + '/time'] = \
numpy.array([float(g[0]) for g in gating_info[gate_type]])
f['gating/' + gate_type + '/width'] = \
numpy.array([g[1] for g in gating_info[gate_type]])
f['gating/' + gate_type + '/pad'] = \
numpy.array([g[2] for g in gating_info[gate_type]])
class EventManagerMultiDetBase(EventManager):
def __init__(self, opt, ifos, column, column_types, psd=None, **kwargs):
self.opt = opt
self.ifos = ifos
self.global_params = kwargs
if psd is not None:
self.global_params['psd'] = psd[ifos[0]]
# The events array does not like holding the ifo as string,
# so create a mapping dict and hold as an int
self.ifo_dict = {}
self.ifo_reverse = {}
for i, ifo in enumerate(ifos):
self.ifo_dict[ifo] = i
self.ifo_reverse[i] = ifo
self.event_dtype = [('template_id', int), ('event_id', int)]
for col, coltype in zip(column, column_types):
self.event_dtype.append((col, coltype))
self.events = numpy.array([], dtype=self.event_dtype)
self.event_id_map = {}
self.template_params = []
self.template_index = -1
self.template_event_dict = {}
self.coinc_list = []
self.write_performance = False
for ifo in ifos:
self.template_event_dict[ifo] = \
numpy.array([], dtype=self.event_dtype)
def add_template_events_to_ifo(self, ifo, columns, vectors):
""" Add a vector indexed """
# Just call through to the standard function
self.template_events = self.template_event_dict[ifo]
self.add_template_events(columns, vectors)
self.template_event_dict[ifo] = self.template_events
self.template_events = None
[docs]class EventManagerCoherent(EventManagerMultiDetBase):
def __init__(self, opt, ifos, column, column_types, network_column,
network_column_types, psd=None, **kwargs):
super(EventManagerCoherent, self).__init__(
opt, ifos, column, column_types, psd=None, **kwargs)
self.network_event_dtype = \
[(ifo + '_event_id', int) for ifo in self.ifos]
self.network_event_dtype.append(('template_id', int))
self.network_event_dtype.append(('event_id', int))
for col, coltype in zip(network_column, network_column_types):
self.network_event_dtype.append((col, coltype))
self.network_events = numpy.array([], dtype=self.network_event_dtype)
self.event_index = {}
for ifo in self.ifos:
self.event_index[ifo] = 0
self.event_index['network'] = 0
self.template_event_dict['network'] = \
numpy.array([], dtype=self.network_event_dtype)
[docs] def cluster_template_network_events(self, tcolumn, column, window_size):
""" Cluster the internal events over the named column
"""
cvec = self.template_event_dict['network'][column]
tvec = self.template_event_dict['network'][tcolumn]
if window_size == 0:
indices = numpy.arange(len(tvec))
else:
indices = findchirp_cluster_over_window(tvec, cvec, window_size)
for key in self.template_event_dict:
self.template_event_dict[key] = numpy.take(
self.template_event_dict[key], indices)
[docs] def add_template_network_events(self, columns, vectors):
""" Add a vector indexed """
# initialize with zeros - since vectors can be None, look for the
# longest one that isn't
new_events = None
new_events = numpy.zeros(
max([len(v) for v in vectors if v is not None]),
dtype=self.network_event_dtype
)
# they shouldn't all be None
assert new_events is not None
new_events['template_id'] = self.template_index
for c, v in zip(columns, vectors):
if v is not None:
if isinstance(v, Array):
new_events[c] = v.numpy()
else:
new_events[c] = v
self.template_events = numpy.append(self.template_events, new_events)
[docs] def add_template_events_to_network(self, columns, vectors):
""" Add a vector indexed """
# Just call through to the standard function
self.template_events = self.template_event_dict['network']
self.add_template_network_events(columns, vectors)
self.template_event_dict['network'] = self.template_events
self.template_events = None
[docs] def write_to_hdf(self, outname):
class fw(object):
def __init__(self, name):
self.f = h5py.File(name, 'w')
def __setitem__(self, name, data):
col = self.prefix + '/' + name
self.f.create_dataset(col, data=data,
compression='gzip',
compression_opts=9,
shuffle=True)
self.events.sort(order='template_id')
th = numpy.array([p['tmplt'].template_hash for p in
self.template_params])
f = fw(outname)
# Output network stuff
f.prefix = 'network'
network_events = numpy.array([e for e in self.network_events],
dtype=self.network_event_dtype)
f['event_id'] = network_events['event_id']
f['coherent_snr'] = network_events['coherent_snr']
f['reweighted_snr'] = network_events['reweighted_snr']
f['null_snr'] = network_events['null_snr']
f['end_time_gc'] = network_events['time_index'] / \
float(self.opt.sample_rate[self.ifos[0].lower()]) + \
self.opt.gps_start_time[self.ifos[0].lower()]
f['nifo'] = network_events['nifo']
f['latitude'] = network_events['latitude']
f['longitude'] = network_events['longitude']
f['template_id'] = network_events['template_id']
for ifo in self.ifos:
# First add the ifo event ids to the network branch
f[ifo + '_event_id'] = network_events[ifo + '_event_id']
# Individual ifo stuff
for i, ifo in enumerate(self.ifos):
tid = self.events['template_id'][self.events['ifo'] == i]
f.prefix = ifo
ifo_events = numpy.array([e for e in self.events
if e['ifo'] == self.ifo_dict[ifo]], dtype=self.event_dtype)
if len(ifo_events):
ifo_str = ifo.lower()[0] if ifo != 'H1' else ifo.lower()
f['snr_%s' % ifo_str] = abs(ifo_events['snr'])
f['event_id'] = ifo_events['event_id']
try:
# Precessing
f['u_vals'] = ifo_events['u_vals']
f['coa_phase'] = ifo_events['coa_phase']
f['hplus_cross_corr'] = ifo_events['hplus_cross_corr']
except Exception:
f['coa_phase'] = numpy.angle(ifo_events['snr'])
f['chisq'] = ifo_events['chisq']
f['bank_chisq'] = ifo_events['bank_chisq']
f['bank_chisq_dof'] = ifo_events['bank_chisq_dof']
f['cont_chisq'] = ifo_events['cont_chisq']
f['end_time'] = ifo_events['time_index'] / \
float(self.opt.sample_rate[ifo_str]) + \
self.opt.gps_start_time[ifo_str]
f['time_index'] = ifo_events['time_index']
try:
# Precessing
template_sigmasq_plus = numpy.array(
[t['sigmasq_plus'] for t in self.template_params],
dtype=numpy.float32
)
f['sigmasq_plus'] = template_sigmasq_plus[tid]
template_sigmasq_cross = numpy.array(
[t['sigmasq_cross'] for t in self.template_params],
dtype=numpy.float32
)
f['sigmasq_cross'] = template_sigmasq_cross[tid]
# FIXME: I want to put something here, but I haven't yet
# figured out what it should be. I think we would also
# need information from the plus and cross correlation
# (both real and imaginary(?)) to get this.
f['sigmasq'] = template_sigmasq_plus[tid]
except Exception:
# Not precessing
template_sigmasq = numpy.array(
[t['sigmasq'][ifo] for t in self.template_params],
dtype=numpy.float32)
f['sigmasq'] = template_sigmasq[tid]
template_durations = [p['tmplt'].template_duration for p in
self.template_params]
f['template_duration'] = numpy.array(template_durations,
dtype=numpy.float32)[tid]
# FIXME: Can we get this value from the autochisq instance?
# cont_dof = self.opt.autochi_number_points
# if self.opt.autochi_onesided is None:
# cont_dof = cont_dof * 2
# if self.opt.autochi_two_phase:
# cont_dof = cont_dof * 2
# if self.opt.autochi_max_valued_dof:
# cont_dof = self.opt.autochi_max_valued_dof
# f['cont_chisq_dof'] = numpy.repeat(cont_dof, len(ifo_events))
if 'chisq_dof' in ifo_events.dtype.names:
f['chisq_dof'] = ifo_events['chisq_dof'] / 2 + 1
else:
f['chisq_dof'] = numpy.zeros(len(ifo_events))
f['template_hash'] = th[tid]
if self.opt.trig_start_time:
f['search/start_time'] = numpy.array([
self.opt.trig_start_time[ifo]], dtype=numpy.int32)
search_start_time = float(self.opt.trig_start_time[ifo])
else:
f['search/start_time'] = numpy.array([
self.opt.gps_start_time[ifo] +
self.opt.segment_start_pad[ifo]], dtype=numpy.int32)
search_start_time = float(self.opt.gps_start_time[ifo] +
self.opt.segment_start_pad[ifo])
if self.opt.trig_end_time:
f['search/end_time'] = numpy.array([
self.opt.trig_end_time[ifo]], dtype=numpy.int32)
search_end_time = float(self.opt.trig_end_time[ifo])
else:
f['search/end_time'] = numpy.array(
[self.opt.gps_end_time[ifo] -
self.opt.segment_end_pad[ifo]], dtype=numpy.int32)
search_end_time = float(self.opt.gps_end_time[ifo] -
self.opt.segment_end_pad[ifo])
if self.write_performance:
self.analysis_time = search_end_time - search_start_time
time_ratio = numpy.array([float(self.analysis_time) /
float(self.run_time)])
temps_per_core = float(self.ntemplates) / float(self.ncores)
filters_per_core = float(self.nfilters) / float(self.ncores)
f['search/templates_per_core'] = \
numpy.array([float(temps_per_core) * float(time_ratio)])
f['search/filter_rate_per_core'] = \
numpy.array([filters_per_core / float(self.run_time)])
f['search/setup_time_fraction'] = \
numpy.array([float(self.setup_time) / float(self.run_time)])
if 'gating_info' in self.global_params:
gating_info = self.global_params['gating_info']
for gate_type in ['file', 'auto']:
if gate_type in gating_info:
f['gating/' + gate_type + '/time'] = numpy.array(
[float(g[0]) for g in gating_info[gate_type]])
f['gating/' + gate_type + '/width'] = numpy.array(
[g[1] for g in gating_info[gate_type]])
f['gating/' + gate_type + '/pad'] = numpy.array(
[g[2] for g in gating_info[gate_type]])
[docs] def finalize_template_events(self):
# Check that none of the template events have the same time index as an
# existing event in events. I.e. don't list the same ifo event multiple
# times when looping over sky points and time slides.
existing_times = {}
new_times = {}
existing_template_id = {}
new_template_id = {}
existing_events_mask = {}
new_template_event_mask = {}
existing_template_event_mask = {}
for i, ifo in enumerate(self.ifos):
ifo_events = numpy.where(self.events['ifo'] == i)
existing_times[ifo] = self.events['time_index'][ifo_events]
new_times[ifo] = self.template_event_dict[ifo]['time_index']
existing_template_id[ifo] = self.events['template_id'][ifo_events]
new_template_id[ifo] = self.template_event_dict[ifo]['template_id']
# This is true for each existing event that has the same time index
# and template id as a template trigger.
existing_events_mask[ifo] = numpy.argwhere(
numpy.logical_and(
numpy.isin(existing_times[ifo], new_times[ifo]),
numpy.isin(existing_template_id[ifo], new_template_id[ifo])
)).reshape(-1,)
# This is true for each template event that has either a new
# trigger time or a new template id.
new_template_event_mask[ifo] = numpy.argwhere(
numpy.logical_or(
~numpy.isin(new_times[ifo], existing_times[ifo]),
~numpy.isin(new_template_id[ifo], existing_template_id[ifo])
)).reshape(-1,)
# This is true for each template event that has the same time index
# and template id as an exisitng event trigger.
existing_template_event_mask[ifo] = numpy.argwhere(
numpy.logical_and(
numpy.isin(new_times[ifo], existing_times[ifo]),
numpy.isin(new_template_id[ifo], existing_template_id[ifo])
)).reshape(-1,)
# Set ids (These show how each trigger in the single ifo trigger
# list correspond to the network triggers)
num_events = len(new_template_event_mask[ifo])
new_event_ids = numpy.arange(self.event_index[ifo],
self.event_index[ifo] + num_events)
# Every template event that corresponds to a new trigger gets a new
# id. Triggers that have been found before are not saved.
self.template_event_dict[ifo]['event_id'][
new_template_event_mask[ifo]] = new_event_ids
self.template_event_dict['network'][ifo + '_event_id'][
new_template_event_mask[ifo]] = new_event_ids
# Template events that have been found before get the event id of
# the first time they were found.
self.template_event_dict['network'][ifo + '_event_id'][
existing_template_event_mask[ifo]] = \
self.events[self.events['ifo'] == i][
existing_events_mask[ifo]]['event_id']
self.event_index[ifo] = self.event_index[ifo] + num_events
# Add the network event ids for the events with this template.
num_events = len(self.template_event_dict['network'])
new_event_ids = numpy.arange(self.event_index['network'],
self.event_index['network'] + num_events)
self.event_index['network'] = self.event_index['network'] + num_events
self.template_event_dict['network']['event_id'] = new_event_ids
# Move template events for each ifo to the events list
for ifo in self.ifos:
self.events = numpy.append(
self.events,
self.template_event_dict[ifo][new_template_event_mask[ifo]]
)
self.template_event_dict[ifo] = \
numpy.array([], dtype=self.event_dtype)
# Move the template events for the network to the network events list
self.network_events = numpy.append(self.network_events,
self.template_event_dict['network'])
self.template_event_dict['network'] = \
numpy.array([], dtype=self.network_event_dtype)
[docs]class EventManagerMultiDet(EventManagerMultiDetBase):
def __init__(self, opt, ifos, column, column_types, psd=None, **kwargs):
super(EventManagerMultiDet, self).__init__(
opt, ifos, column, column_types, psd=None, **kwargs)
self.event_index = 0
[docs] def cluster_template_events_single_ifo(
self, tcolumn, column, window_size, ifo):
""" Cluster the internal events over the named column
"""
# Just call through to the standard function
self.template_events = self.template_event_dict[ifo]
self.cluster_template_events(tcolumn, column, window_size)
self.template_event_dict[ifo] = self.template_events
self.template_events = None
[docs] def finalize_template_events(self, perform_coincidence=True,
coinc_window=0.0):
# Set ids
for ifo in self.ifos:
num_events = len(self.template_event_dict[ifo])
new_event_ids = numpy.arange(self.event_index,
self.event_index+num_events)
self.template_event_dict[ifo]['event_id'] = new_event_ids
self.event_index = self.event_index+num_events
if perform_coincidence:
if not len(self.ifos) == 2:
err_msg = "Coincidence currently only supported for 2 ifos."
raise ValueError(err_msg)
ifo1 = self.ifos[0]
ifo2 = self.ifos[1]
end_times1 = self.template_event_dict[ifo1]['time_index'] /\
float(self.opt.sample_rate[ifo1]) + self.opt.gps_start_time[ifo1]
end_times2 = self.template_event_dict[ifo2]['time_index'] /\
float(self.opt.sample_rate[ifo2]) + self.opt.gps_start_time[ifo2]
light_travel_time = Detector(ifo1).light_travel_time_to_detector(
Detector(ifo2))
coinc_window = coinc_window + light_travel_time
# FIXME: Remove!!!
coinc_window = 2.0
if len(end_times1) and len(end_times2):
idx_list1, idx_list2, _ = \
coinc.time_coincidence(end_times1, end_times2,
coinc_window)
if len(idx_list1):
for idx1, idx2 in zip(idx_list1, idx_list2):
event1 = self.template_event_dict[ifo1][idx1]
event2 = self.template_event_dict[ifo2][idx2]
self.coinc_list.append((event1, event2))
for ifo in self.ifos:
self.events = numpy.append(self.events,
self.template_event_dict[ifo])
self.template_event_dict[ifo] = numpy.array([],
dtype=self.event_dtype)
[docs] def write_events(self, outname):
""" Write the found events to a sngl inspiral table
"""
self.make_output_dir(outname)
if '.hdf' in outname:
self.write_to_hdf(outname)
else:
raise ValueError('Cannot write to this format')
[docs] def write_to_hdf(self, outname):
class fw(object):
def __init__(self, name):
self.f = h5py.File(name, 'w')
def __setitem__(self, name, data):
col = self.prefix + '/' + name
self.f.create_dataset(col, data=data,
compression='gzip',
compression_opts=9,
shuffle=True)
self.events.sort(order='template_id')
th = numpy.array([p['tmplt'].template_hash for p in
self.template_params])
tid = self.events['template_id']
f = fw(outname)
for ifo in self.ifos:
f.prefix = ifo
ifo_events = numpy.array([e for e in self.events if
e['ifo'] == self.ifo_dict[ifo]],
dtype=self.event_dtype)
if len(ifo_events):
ifo_str = ifo.lower()[0] if ifo != 'H1' else ifo.lower()
f['snr_%s' % ifo_str] = abs(ifo_events['snr'])
try:
# Precessing
f['u_vals'] = ifo_events['u_vals']
f['coa_phase'] = ifo_events['coa_phase']
f['hplus_cross_corr'] = ifo_events['hplus_cross_corr']
except Exception:
f['coa_phase'] = numpy.angle(ifo_events['snr'])
f['chisq'] = ifo_events['chisq']
f['bank_chisq'] = ifo_events['bank_chisq']
f['bank_chisq_dof'] = ifo_events['bank_chisq_dof']
f['cont_chisq'] = ifo_events['cont_chisq']
f['end_time'] = ifo_events['time_index'] / \
float(self.opt.sample_rate[ifo_str]) + \
self.opt.gps_start_time[ifo_str]
try:
# Precessing
template_sigmasq_plus = numpy.array([t['sigmasq_plus'] for
t in self.template_params], dtype=numpy.float32)
f['sigmasq_plus'] = template_sigmasq_plus[tid]
template_sigmasq_cross = numpy.array([t['sigmasq_cross']
for t in self.template_params], dtype=numpy.float32)
f['sigmasq_cross'] = template_sigmasq_cross[tid]
# FIXME: I want to put something here, but I haven't yet
# figured out what it should be. I think we would also
# need information from the plus and cross correlation
# (both real and imaginary(?)) to get this.
f['sigmasq'] = template_sigmasq_plus[tid]
except Exception:
# Not precessing
template_sigmasq = numpy.array([t['sigmasq'][ifo] for t in
self.template_params],
dtype=numpy.float32)
f['sigmasq'] = template_sigmasq[tid]
template_durations = [p['tmplt'].template_duration for p in
self.template_params]
f['template_duration'] = \
numpy.array(template_durations, dtype=numpy.float32)[tid]
# FIXME: Can we get this value from the autochisq instance?
cont_dof = self.opt.autochi_number_points
if self.opt.autochi_onesided is None:
cont_dof = cont_dof * 2
# if self.opt.autochi_two_phase:
# cont_dof = cont_dof * 2
# if self.opt.autochi_max_valued_dof:
# cont_dof = self.opt.autochi_max_valued_dof
f['cont_chisq_dof'] = numpy.repeat(cont_dof, len(ifo_events))
if 'chisq_dof' in ifo_events.dtype.names:
f['chisq_dof'] = ifo_events['chisq_dof'] / 2 + 1
else:
f['chisq_dof'] = numpy.zeros(len(ifo_events))
f['template_hash'] = th[tid]
if self.opt.psdvar_segment is not None:
f['psd_var_val'] = ifo_events['psd_var_val']
if self.opt.trig_start_time:
f['search/start_time'] = numpy.array(
[self.opt.trig_start_time[ifo]], dtype=numpy.int32)
search_start_time = float(self.opt.trig_start_time[ifo])
else:
f['search/start_time'] = numpy.array(
[self.opt.gps_start_time[ifo] +
self.opt.segment_start_pad[ifo]], dtype=numpy.int32)
search_start_time = float(self.opt.gps_start_time[ifo] +
self.opt.segment_start_pad[ifo])
if self.opt.trig_end_time:
f['search/end_time'] = numpy.array(
[self.opt.trig_end_time[ifo]], dtype=numpy.int32)
search_end_time = float(self.opt.trig_end_time[ifo])
else:
f['search/end_time'] = numpy.array(
[self.opt.gps_end_time[ifo] -
self.opt.segment_end_pad[ifo]], dtype=numpy.int32)
search_end_time = float(self.opt.gps_end_time[ifo] -
self.opt.segment_end_pad[ifo])
if self.write_performance:
self.analysis_time = search_end_time - search_start_time
time_ratio = numpy.array(
[float(self.analysis_time) / float(self.run_time)])
temps_per_core = float(self.ntemplates) / float(self.ncores)
filters_per_core = float(self.nfilters) / float(self.ncores)
f['search/templates_per_core'] = \
numpy.array([float(temps_per_core) * float(time_ratio)])
f['search/filter_rate_per_core'] = \
numpy.array([filters_per_core / float(self.run_time)])
f['search/setup_time_fraction'] = \
numpy.array([float(self.setup_time) / float(self.run_time)])
if 'gating_info' in self.global_params:
gating_info = self.global_params['gating_info']
for gate_type in ['file', 'auto']:
if gate_type in gating_info:
f['gating/' + gate_type + '/time'] = numpy.array(
[float(g[0]) for g in gating_info[gate_type]])
f['gating/' + gate_type + '/width'] = numpy.array(
[g[1] for g in gating_info[gate_type]])
f['gating/' + gate_type + '/pad'] = numpy.array(
[g[2] for g in gating_info[gate_type]])
__all__ = ['threshold_and_cluster', 'findchirp_cluster_over_window',
'threshold', 'cluster_reduce', 'ThresholdCluster',
'threshold_real_numpy', 'threshold_only',
'EventManager', 'EventManagerMultiDet', 'EventManagerCoherent']