B
    ed+  ใ               @   sl   d Z ddlmZ ddlmZ efddZdd Zefd	d
Zdd Zdd Z	dd Z
efddZdd ZdS )zP Generic Rules for SymPy

This file assumes knowledge of Basic and little else.
้    )ฺsift้   )ฺnewc                s    fdd}|S )aร   Create a rule to remove identities.

    isid - fn :: x -> Bool  --- whether or not this element is an identity.

    Examples
    ========

    >>> from sympy.strategies import rm_id
    >>> from sympy import Basic, S
    >>> remove_zeros = rm_id(lambda x: x==0)
    >>> remove_zeros(Basic(S(1), S(0), S(2)))
    Basic(1, 2)
    >>> remove_zeros(Basic(S(0), S(0))) # If only identites then we keep one
    Basic(0)

    See Also:
        unpack
    c                sh   t t | j}t|dkr | S t|t|krR| jfdd t| j|D  S | j| jd S dS )z Remove identities r   c             S   s   g | ]\}}|s|qS ฉ r   )ฺ.0ฺargฺxr   r   ๚`/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sympy/strategies/rl.py๚
<listcomp>$   s    z/rm_id.<locals>.ident_remove.<locals>.<listcomp>N)ฺlistฺmapฺargsฺsumฺlenฺ	__class__ฺzip)ฺexprZids)ฺisidr   r   r	   ฺident_remove   s    zrm_id.<locals>.ident_remover   )r   r   r   r   )r   r   r	   ฺrm_id
   s    r   c                s    fdd}|S )a6   Create a rule to conglomerate identical args.

    Examples
    ========

    >>> from sympy.strategies import glom
    >>> from sympy import Add
    >>> from sympy.abc import x

    >>> key     = lambda x: x.as_coeff_Mul()[1]
    >>> count   = lambda x: x.as_coeff_Mul()[0]
    >>> combine = lambda cnt, arg: cnt * arg
    >>> rl = glom(key, count, combine)

    >>> rl(Add(x, -x, 3*x, 2, 3, evaluate=False))
    3*x + 5

    Wait, how are key, count and combine supposed to work?

    >>> key(2*x)
    x
    >>> count(2*x)
    2
    >>> combine(2, x)
    2*x
    c                sd   t | j}fdd| ก D } fdd| ก D }t|t| jkr\tt| f| S | S dS )z2 Conglomerate together identical args x + x -> 2x c                s    i | ]\}}t t ||qS r   )r   r   )r   ฺkr   )ฺcountr   r	   ๚
<dictcomp>H   s    z.glom.<locals>.conglomerate.<locals>.<dictcomp>c                s   g | ]\}} ||qS r   r   )r   ฺmatZcnt)ฺcombiner   r	   r
   I   s    z.glom.<locals>.conglomerate.<locals>.<listcomp>N)r   r   ฺitemsฺsetr   ฺtype)r   ฺgroupsฺcountsZnewargs)r   r   ฺkeyr   r	   ฺconglomerateE   s    zglom.<locals>.conglomerater   )r    r   r   r!   r   )r   r   r    r	   ฺglom*   s    
r"   c                s    fdd}|S )z๏ Create a rule to sort by a key function.

    Examples
    ========

    >>> from sympy.strategies import sort
    >>> from sympy import Basic, S
    >>> sort_rl = sort(str)
    >>> sort_rl(Basic(S(3), S(1), S(2)))
    Basic(1, 2, 3)
    c                s   | j ft| j d S )N)r    )r   ฺsortedr   )r   )r    r   r   r	   ฺsort_rl^   s    zsort.<locals>.sort_rlr   )r    r   r$   r   )r    r   r	   ฺsortQ   s    r%   c                s    fdd}|S )aW   Turns an A containing Bs into a B of As

    where A, B are container types

    >>> from sympy.strategies import distribute
    >>> from sympy import Add, Mul, symbols
    >>> x, y = symbols('x,y')
    >>> dist = distribute(Mul, Add)
    >>> expr = Mul(2, x+y, evaluate=False)
    >>> expr
    2*(x + y)
    >>> dist(expr)
    2*x + 2*y
    c                sp   xjt | jD ]\\}}t|r| jd | | j| | j|d d     } fdd|jD  S qW | S )Nr   c                s   g | ]} |f   qS r   r   )r   r   )ฺAฺfirstฺtailr   r	   r
   v   s    z5distribute.<locals>.distribute_rl.<locals>.<listcomp>)ฺ	enumerater   ฺ
isinstance)r   ฺir   ฺb)r&   ฺB)r'   r(   r	   ฺdistribute_rlr   s
    
. z!distribute.<locals>.distribute_rlr   )r&   r-   r.   r   )r&   r-   r	   ฺ
distributeb   s    r/   c                s    fdd}|S )z Replace expressions exactly c                s   |  krS | S d S )Nr   )r   )ฺar,   r   r	   ฺsubs_rl|   s    zsubs.<locals>.subs_rlr   )r0   r,   r1   r   )r0   r,   r	   ฺsubsz   s    r2   c             C   s    t | jdkr| jd S | S dS )z Rule to unpack singleton args

    >>> from sympy.strategies import unpack
    >>> from sympy import Basic, S
    >>> unpack(Basic(S(2)))
    2
    r   r   N)r   r   )r   r   r   r	   ฺunpack   s    
r3   c             C   sL   | j }g }x0| jD ]&}|j |kr.| |jก q| |ก qW || j f| S )z9 Flatten T(a, b, T(c, d), T2(e)) to T(a, b, c, d, T2(e)) )r   r   ฺextendฺappend)r   r   ฺclsr   r   r   r   r	   ฺflatten   s    
r7   c             C   s$   | j r
| S | jttt| j S dS )z็ Rebuild a SymPy tree.

    Explanation
    ===========

    This function recursively calls constructors in the expression tree.
    This forces canonicalization and removes ugliness introduced by the use of
    Basic.__new__
    N)Zis_Atomฺfuncr   r   ฺrebuildr   )r   r   r   r	   r9      s    
r9   N)ฺ__doc__Zsympy.utilities.iterablesr   ฺutilr   r   r"   r%   r/   r2   r3   r7   r9   r   r   r   r	   ฺ<module>   s    '