B
    ed                 @   sV  d Z ddlmZmZmZ ddlmZmZmZ ddl	m
Z
 ddlmZmZmZmZ ddlmZmZmZmZ ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZm Z m!Z! ddl"m#Z# ddl$m%Z%m&Z& ddl'm(Z(m)Z) ddl*m+Z+ dd Z,dd Z-dd Z.d)ddZ/dd Z0dd Z1dej2dfddZ3d d! Z4d*d"d#Z5d$d% Z6g fd&d'Z7d(S )+z<Tools for solving inequalities and systems of inequalities.     )continuous_domainperiodicityfunction_range)SymbolDummysympify)factor_terms)
RelationalEqGeLt)Interval	FiniteSetUnionIntersection)S)
expand_mul)imAbs)And)PolyPolynomialErrorparallel_poly_from_expr)_nsort)solvifysolveset)siftiterable)
filldedentc          	   C   s@  t | tstd|  jr\t|  d|}|tjkr>tjgS |tj	krPtj
gS td| | jddg  }}|dkrx$|D ]\}}t||}|| q|W n|dkrtj}x8|tjdfg D ]$\}	}t||	d	d	}|| |	}qW nP|  dkr d}
nd
}
d\}}|dkrd}nD|dkr,d
}n4|dkr@d\}}n |dkrTd\}}ntd| tjd	 }	}xt|D ]\}}|d r|
|kr|dt||	| | |
 ||   }
}	}nT|
|kr|s|dt||	d	| |d	 }	}n"|
|krv|rv|dt|| qvW |
|kr<|dttj|	d	| |S )a  Solve a polynomial inequality with rational coefficients.

    Examples
    ========

    >>> from sympy import solve_poly_inequality, Poly
    >>> from sympy.abc import x

    >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
    [{0}]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
    [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
    [{-1}, {1}]

    See Also
    ========
    solve_poly_inequalities
    z8For efficiency reasons, `poly` should be a Poly instancer   z%could not determine truth value of %sF)Zmultiplez==z!=   T)NF><z>=)r   Tz<=)r    Tz'%s' is not a valid relation   )
isinstancer   
ValueErroras_expr	is_numberr	   r   trueRealsfalseEmptySetNotImplementedErrorZ
real_rootsr   appendNegativeInfinityInfinityZLCreversedinsert)Zpolyreltreals	intervalsroot_intervalleftrightsignZeq_signequalZ
right_openZmultiplicity r=   g/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sympy/solvers/inequalities.pysolve_poly_inequality   sh    















r?   c             C   s   t dd | D  S )a  Solve polynomial inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly
    >>> from sympy.solvers.inequalities import solve_poly_inequalities
    >>> from sympy.abc import x
    >>> solve_poly_inequalities(((
    ... Poly(x**2 - 3), ">"), (
    ... Poly(-x**2 + 1), ">")))
    Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
    c             S   s   g | ]}t | D ]}|qqS r=   )r?   ).0psr=   r=   r>   
<listcomp>}   s    z+solve_poly_inequalities.<locals>.<listcomp>)r   )Zpolysr=   r=   r>   solve_poly_inequalitieso   s    rD   c             C   s   t j}x| D ]}|sqtt jt jg}x|D ]\\}}}t|| |}t|d}g }	x8|D ]0}
x*|D ]"}|
|}|t jk	rd|	| qdW qZW |	}g }	x6|D ].}x|D ]}||8 }qW |t jk	r|	| qW |	}|s,P q,W x|D ]}||}qW qW |S )a3  Solve a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import solve_rational_inequalities, Poly

    >>> solve_rational_inequalities([[
    ... ((Poly(-x + 1), Poly(1, x)), '>='),
    ... ((Poly(-x + 1), Poly(1, x)), '<=')]])
    {1}

    >>> solve_rational_inequalities([[
    ... ((Poly(x), Poly(1, x)), '!='),
    ... ((Poly(-x + 1), Poly(1, x)), '>=')]])
    Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))

    See Also
    ========
    solve_poly_inequality
    z==)	r   r+   r   r.   r/   r?   	intersectr-   union)eqsresult_eqsZglobal_intervalsnumerdenomr2   Znumer_intervalsZdenom_intervalsr5   Znumer_intervalZglobal_intervalr8   Zdenom_intervalr=   r=   r>   solve_rational_inequalities   s6    









rL   Tc          
      s  d}g }| rt jnt j}xp| D ]f}g }xL|D ]B}t|trL|\}}	n&|jrh|j|j |j }}	n
|d }}	|t j	krt j
t jd  }
}}	n0|t jkrt jt jd  }
}}	n|  \}
}yt|
|f \\}
}}W n" tk
 r   ttdY nX |jjs"|
 | d  }
}}|j }|jsd|jsd|
| }t|d|	}|t| ddM }q2||
|f|	f q2W |r || q W |r|t|M }t fdd|D g}||8 }|s|r| }|r| }|S )	a8  Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    -2 < x
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    -2 < x
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)

    This function find the non-infinite solution set so if the unknown symbol
    is declared as extended real rather than real then the result may include
    finiteness conditions:

    >>> y = Symbol('y', extended_real=True)
    >>> reduce_rational_inequalities([[y + 2 > 0]], y)
    (-2 < y) & (y < oo)
    Tz==z
                    only polynomials and rational functions are
                    supported in this context.
                    Fr   )
relationalc                s6   g | ].}|D ]$\\}}}|  r||jfd fqqS )z==)hasone)r@   indr7   )genr=   r>   rC     s   z0reduce_rational_inequalities.<locals>.<listcomp>)r   r)   r+   r$   tupleZis_Relationallhsrhsrel_opr(   ZeroOner*   Ztogetheras_numer_denomr   r   r   domainZis_ExactZto_exactZ	get_exactZis_ZZZis_QQr	   solve_univariate_inequalityr-   rL   Zevalfas_relational)exprsrS   rM   exactrG   Zsolution_exprsrI   exprr2   rJ   rK   optr[   excluder=   )rS   r>   reduce_rational_inequalities   sT    







rd   c                s   |j dkrttd fdd  | }ddd}g }xL|D ]D\} }|| kr`t| d|} nt|  d|| } || g|  q>W t||S )	a  Reduce an inequality with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequality, Abs, Symbol
    >>> x = Symbol('x', real=True)

    >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
    (2 < x) & (x < 8)

    >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
    (-19/3 < x) & (x < 7/3)

    See Also
    ========

    reduce_abs_inequalities
    Fzs
            Cannot solve inequalities with absolute values containing
            non-real variables.
            c       
         s:  g }| j s| jr~| j}xd| jD ]Z} |}|s4|}qg }x:|D ]2\} }x(|D ] \}}||| ||| f qLW q>W |}qW n| jr| j}	|	jstd | j	}x|D ]\} }|| |	 |f qW nnt
| tr, | jd }xR|D ]>\} }|| |t| dg f ||  |t| dg f qW n
| g fg}|S )Nz'Only Integer Powers are allowed on Abs.r   )Zis_AddZis_Mulfuncargsr-   is_Powexp
is_Integerr%   baser$   r   r   r   )
ra   r^   opargr`   rf   condsZ_exprZ_condsrQ   )_bottom_up_scanr=   r>   rn   6  s4     

"
z.reduce_abs_inequality.<locals>._bottom_up_scanr!   z>=)r"   z<=r   )is_extended_real	TypeErrorr   keysr	   r-   rd   )ra   r2   rS   r^   mappinginequalitiesrm   r=   )rn   r>   reduce_abs_inequality  s    
'
rt   c                s   t  fdd| D  S )a  Reduce a system of inequalities with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequalities, Abs, Symbol
    >>> x = Symbol('x', extended_real=True)

    >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
    ... (Abs(x + 25) - 13, '>')], x)
    (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))

    >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
    (1/2 < x) & (x < 4)

    See Also
    ========

    reduce_abs_inequality
    c                s   g | ]\}}t || qS r=   )rt   )r@   ra   r2   )rS   r=   r>   rC     s   z+reduce_abs_inequalities.<locals>.<listcomp>)r   )r^   rS   r=   )rS   r>   reduce_abs_inequalitiesm  s    ru   Fc       (         s  ddl m} |tjdkr*ttdn2|tjk	r\td|d|}|rX|	}|S }|}j
dkrtj}|s||S |	|S j
dkrtddd	y|iW n  tk
r   ttd
Y nX d}tjkr|}ntjkrtj}n
jj }	t|	}
|
tjkrVt|	}	|	d}|tjkrB|}n|tjkrtj}n|
dk	rt|	|}j}|dkr|jdr|}n|jdstj}n6|dkr|jdr|}n|jdstj}|j|j }}|| tjkrtd|
dd|}|}|dkr|	 \}}y>|jkrNt |	jdkrNt!t"|	|}|dkrht!W n6 t!tfk
r   ttd#t$d Y nX t|	  fdd}g }x&|D ]}|%t"|| qW |st& |}djkojdk}yt'|j(t)|j|j }t)|| t*|  t|j|j|j|k|j|k}t+dd |D rt,|ddd }n^t-|dd }|d rty&|d }t |dkrt*t.|}W n tk
r   tY nX W n tk
r    tdY nX tj}t/ tjkrd}t) }y@t0t/ |}t1|ts|x6|D ].}||krH||rH|j
rH|t)|7 }qHW n|j|j }} xt,|t)|  D ]}||}!|| kr<||}"t2||}#|#|kr<|#j
r<||#r<|!r|"r|t||7 }n@|!r|t3||7 }n(|"r,|t4||7 }n|t5||7 }|}qW x|D ]}$|t)|$8 }qLW W n  tk
r   tj}d}Y nX |tjkrt!td#||f ||}tjg}%|j}||kr||r|j6r|%7t)| x|D ]~}&|&} |t2|| r"|%7t|| dd |&|kr8|8|& n6|&|krV|8|& ||&}'n|}'|'rn|%7t)|& | }qW |j} | |kr|| r| j6r|%7t)|  |t2|| r|%7t5||  t/ tjkr|r||}nt9t:|% ||#|}|s|S |	|S )aS  Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in :func:`sympy.solvers.solveset.solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    r   )denomsFz|
        Inequalities in the complex domain are
        not supported. Try the real domain by
        setting domain=S.Reals)rM   
continuousNrS   T)extended_realz
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                )r"   z<=)r!   z>=r   z
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    xc                s     t| }y|d}W n tk
r:   tj}Y nX |tjtjfkrP|S |jdkr`tjS |d}|j	r||dS t
d| d S )Nr   Fr#   z!relationship did not evaluate: %s)subsr   re   rp   r   r*   r(   ro   rQ   Zis_comparabler,   )ry   vr)
expanded_era   rS   r=   r>   valid  s    


z*solve_univariate_inequality.<locals>.valid=z!=c             s   s   | ]}|j V  qd S )N)r'   )r@   r|   r=   r=   r>   	<genexpr>G  s    z.solve_univariate_inequality.<locals>.<genexpr>)	separatedc             S   s   | j S )N)ro   )ry   r=   r=   r>   <lambda>J      z-solve_univariate_inequality.<locals>.<lambda>z'sorting of these roots is not supportedz
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        );sympy.solvers.solversrv   Z	is_subsetr   r)   r,   r   r\   intersectionr]   ro   r+   r   xreplacerp   r(   r*   rU   rV   r   rX   r   re   r   rW   supinfr/   r   rE   rZ   free_symbolslenr%   r   rz   r   extendr   setboundaryr   listallr   r   sortedr   r   r$   _ptZRopenZLopenopen	is_finiter-   remover   r   )(ra   rS   rM   r[   rw   rv   rvZ_genZ_domaineZperiodconstZfranger2   r   r   rQ   rR   Zsolnsr~   ZsingularitiesZ	include_xZdiscontinuitiesZcritical_pointsr4   ZsiftedZ	make_realcheckZim_solazstartendZvalid_startZvalid_zptrB   Zsol_setsry   _validr=   )r}   ra   rS   r>   r\     s2   9






























r\   c             C   s   | j s|j s| | d }n| j r.|j r.tj}n| j r>| jdksN|j rV|jdkrVtd|j rb|jsn| j rx| jrx||  } }|j r| jr| d }q| jr| tj }q| d }n0| j r|jr|tj }n|jr|d }n|d }|S )z$Return a point between start and endr#   Nz,cannot proceed with unsigned infinite valuesr   )is_infiniter   rX   Zis_extended_positiver%   Zis_extended_negativeZHalf)r   r   r   r=   r=   r>   r     s.    



r   c             C   s  ddl m} || jkr| S | j|kr*| j} | j|krD|| jjkrD| S dd }d}tj}| j| j }yBt||}|	 dkr| 
| d}n|s|	 dkrtW n0 ttfk
r   |syt| gg|}W n tk
r   t| |}Y nX || ||}	|	tjkr.||||tjkr.|||k d}|| || }
|
tjkr|||| tjkr|| |k d}||| kd}|tjkr|	tjkr||kn||k }|
tjk	rt| |k |}nt|}Y nX g }|dkrv| }d}|j|dd\}}||8 }||8 }t|}|j|d	d\}}|jd	ksd|j|j  krTdkrnn n| jd
krn|}tj}|| }|jr| 
||}n| j
||}|| j|| jB }||}x`|| D ]T}tt|d||d}t|tr|j|kr||||jtjkr||  qW x\| |fD ]N}||||tjkr$|| ||tjk	r$|||krf||k n||k  q$W || t| S )a  Return the inequality with s isolated on the left, if possible.
    If the relationship is non-linear, a solution involving And or Or
    may be returned. False or True are returned if the relationship
    is never True or always True, respectively.

    If `linear` is True (default is False) an `s`-dependent expression
    will be isolated on the left, if possible
    but it will not be solved for `s` unless the expression is linear
    in `s`. Furthermore, only "safe" operations which do not change the
    sense of the relationship are applied: no division by an unsigned
    value is attempted unless the relationship involves Eq or Ne and
    no division by a value not known to be nonzero is ever attempted.

    Examples
    ========

    >>> from sympy import Eq, Symbol
    >>> from sympy.solvers.inequalities import _solve_inequality as f
    >>> from sympy.abc import x, y

    For linear expressions, the symbol can be isolated:

    >>> f(x - 2 < 0, x)
    x < 2
    >>> f(-x - 6 < x, x)
    x > -3

    Sometimes nonlinear relationships will be False

    >>> f(x**2 + 4 < 0, x)
    False

    Or they may involve more than one region of values:

    >>> f(x**2 - 4 < 0, x)
    (-2 < x) & (x < 2)

    To restrict the solution to a relational, set linear=True
    and only the x-dependent portion will be isolated on the left:

    >>> f(x**2 - 4 < 0, x, linear=True)
    x**2 < 4

    Division of only nonzero quantities is allowed, so x cannot
    be isolated by dividing by y:

    >>> y.is_nonzero is None  # it is unknown whether it is 0 or not
    True
    >>> f(x*y < 1, x)
    x*y < 1

    And while an equality (or inequality) still holds after dividing by a
    non-zero quantity

    >>> nz = Symbol('nz', nonzero=True)
    >>> f(Eq(x*nz, 1), x)
    Eq(x, 1/nz)

    the sign must be known for other inequalities involving > or <:

    >>> f(x*nz <= 1, x)
    nz*x <= 1
    >>> p = Symbol('p', positive=True)
    >>> f(x*p <= 1, x)
    x <= 1/p

    When there are denominators in the original expression that
    are removed by expansion, conditions for them will be returned
    as part of the result:

    >>> f(x < x*(2/x - 1), x)
    (x < 1) & Ne(x, 0)
    r   )rv   c             S   sF   y*|  ||}|tjkr|S |dkr(d S |S  tk
r@   tjS X d S )N)TF)rz   r   NaNrp   )ierB   rP   r{   r=   r=   r>   classify   s    
z#_solve_inequality.<locals>.classifyNr   T)Zas_AddF)z!=z==)linear)r   rv   r   rV   r0   rU   r   r/   r   Zdegreere   r&   r,   r   rd   r\   r(   r*   rz   r   Zas_independentr   is_zeroZis_negativeZis_positiverW   rY   _solve_inequalityr
   r$   r-   )r   rB   r   rv   r   r   Zoora   rA   ZokooZoknoorm   r   rV   bZaxZefr   Zbeginning_denomsZcurrent_denomsrR   crP   r=   r=   r>   r     s    J



 
&
r   c                st  i i  }}g }x| D ]}|j |j }}|t}t|dkrF|  nF|j|@ }	t|	dkr|	  |tt	|d|  qnt
td| r| g ||f q| fdd}
|
rtdd |
D r| g ||f q|tt	|d|  qW g }g }x(| D ]\ }|t|g  qW x&| D ]\ }|t|  qFW t|| |  S )Nr   r   zZ
                    inequality has more than one symbol of interest.
                    c                s    |   o| jp| jo| jj S )N)rN   Zis_Functionrg   rh   ri   )u)rS   r=   r>   r     s    
z&_reduce_inequalities.<locals>.<lambda>c             s   s   | ]}t |tV  qd S )N)r$   r   )r@   rP   r=   r=   r>   r     s    z'_reduce_inequalities.<locals>.<genexpr>)rU   rW   Zatomsr   r   popr   r-   r   r	   r,   r   Zis_polynomial
setdefaultfindr   itemsrd   ru   r   )rs   symbolsZ	poly_partZabs_partotherZ
inequalityra   r2   genscommon
componentsZpoly_reducedZabs_reducedr^   r=   )rS   r>   _reduce_inequalities{  s6    





r   c                sP  t | s| g} dd | D } t jdd | D  }t |s@|g}t|pJ||@ }tdd |D rnttddd |D   fd	d| D }  fd
d|D }g }x| D ]z}t|tr||j	
 |j
  d}n|dkrt|d}|dkrqn|dkrtjS |j	jrtd| || qW |} ~t| |}|dd   D S )aE  Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    (-3 <= x) & (x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    (x < oo) & (x >= 1 - 2*y)
    c             S   s   g | ]}t |qS r=   )r   )r@   rP   r=   r=   r>   rC     s    z'reduce_inequalities.<locals>.<listcomp>c             S   s   g | ]
}|j qS r=   )r   )r@   rP   r=   r=   r>   rC     s    c             s   s   | ]}|j d kV  qdS )FN)ro   )r@   rP   r=   r=   r>   r     s    z&reduce_inequalities.<locals>.<genexpr>zP
            inequalities cannot contain symbols that are not real.
            c             S   s&   i | ]}|j d krt|jdd|qS )NT)rx   )ro   r   name)r@   rP   r=   r=   r>   
<dictcomp>  s   z'reduce_inequalities.<locals>.<dictcomp>c                s   g | ]}|  qS r=   )r   )r@   rP   )recastr=   r>   rC     s    c                s   h | ]}|  qS r=   )r   )r@   rP   )r   r=   r>   	<setcomp>  s    z&reduce_inequalities.<locals>.<setcomp>r   )TFTFz%could not determine truth value of %sc             S   s   i | ]\}}||qS r=   r=   )r@   kr{   r=   r=   r>   r     s    )r   r   rF   anyrp   r   r$   r	   re   rU   r&   rV   r
   r   r*   r'   r,   r-   r   r   r   )rs   r   r   ZkeeprP   r   r=   )r   r>   reduce_inequalities  s@    






r   N)T)F)8__doc__Zsympy.calculus.utilr   r   r   Z
sympy.corer   r   r   Zsympy.core.exprtoolsr   Zsympy.core.relationalr	   r
   r   r   Zsympy.sets.setsr   r   r   r   Zsympy.core.singletonr   Zsympy.core.functionr   Z$sympy.functions.elementary.complexesr   r   Zsympy.logicr   Zsympy.polysr   r   r   Zsympy.polys.polyutilsr   Zsympy.solvers.solvesetr   r   Zsympy.utilities.iterablesr   r   Zsympy.utilities.miscr   r?   rD   rL   rd   rt   ru   r)   r\   r   r   r   r   r=   r=   r=   r>   <module>   s8   [B
ZQ  )!
 .3