B
    ed7                 @   s   d Z ddlmZmZ ddlmZ ddlmZm	Z	 ddl
mZ dddd	d
dddddddddddddddddddddd d!d"Zd#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4d5d6gZG d7d8 d8eZd>d:d;Zd<d= Zd9S )?z
R code printer

The RCodePrinter converts single SymPy expressions into single R expressions,
using the functions defined in math.h where possible.



    )AnyDict)CodePrinter)
precedence
PRECEDENCE)Rangeabssincostanasinacosatanatan2explogerfsinhcoshtanhasinhacoshatanhfloorceilingsignmaxmin	factorialgammadigammatrigammabetasqrt)ZAbsr	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   ZMaxZMinr   r   r    r!   r"   r#   ifelserepeatwhilefunctionforinnextbreakTRUEFALSEZNULLInfNaNZNAZNA_integer_ZNA_real_ZNA_complex_ZNA_character_Zvolatilec            
       s  e Zd ZdZdZdZdddi dde dd	d
	ZddddZi Z	i fddZ
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd%d& Zd'd( Zd)d* Zd+d, Zd-d. Zd/d0 Zd1d2 Zd3d4 Zd5d6 Z fd7d8Zd9d: Zd;d< Z d=d> Z!d?d@ Z"  Z#S )ARCodePrinterz;A printer to convert SymPy expressions to strings of R codeZ_rcodeRNauto   TF_)	orderZ	full_prec	precisionuser_functionsZhumancontractdereferenceZerror_on_reservedZreserved_word_suffix&|!)andornotc             C   sN   t | | tt| _|di }| j| t|dg | _tt| _d S )Nr8   r:   )	r   __init__dictknown_functionsgetupdateset_dereferencereserved_words)selfsettingsZ	userfuncs rK   a/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sympy/printing/rcode.pyrA   e   s    
zRCodePrinter.__init__c             C   s   |d S )N   rK   )rI   prK   rK   rL   _rate_index_positionm   s    z!RCodePrinter._rate_index_positionc             C   s   d| S )Nz%s;rK   )rI   Z
codestringrK   rK   rL   _get_statementp   s    zRCodePrinter._get_statementc             C   s
   d |S )Nz// {})format)rI   textrK   rK   rL   _get_comments   s    zRCodePrinter._get_commentc             C   s   d ||S )Nz{} = {};)rQ   )rI   namevaluerK   rK   rL   _declare_number_constv   s    z"RCodePrinter._declare_number_constc             C   s
   |  |S )N)indent_code)rI   linesrK   rK   rL   _format_codey   s    zRCodePrinter._format_codec                s    |j \}  fddt|D S )Nc             3   s$   | ]}t  D ]}||fV  qqd S )N)range).0ij)colsrK   rL   	<genexpr>~   s    z8RCodePrinter._traverse_matrix_indices.<locals>.<genexpr>)shaperZ   )rI   matrowsrK   )r^   rL   _traverse_matrix_indices|   s    
z%RCodePrinter._traverse_matrix_indicesc          
   C   sb   g }g }d}xL|D ]D}| || |j| |jd | |jd d  | d qW ||fS )zPReturns a tuple (open_lines, close_lines) containing lists of codelines
        z#for (%(var)s in %(start)s:%(end)s){   )varstartend})append_printlabellowerupper)rI   indicesZ
open_linesZclose_linesZ	loopstartr\   rK   rK   rL   _get_loop_opening_ending   s    

z%RCodePrinter._get_loop_opening_endingc             C   sv   d| j kr| |S t|}|jdkr8d| |j| S |jdkrRd| |j S d| |j|| |j|f S d S )NPowz1.0/%sg      ?zsqrt(%s)z%s^%s)rC   Z_print_Functionr   r   parenthesizebaserj   )rI   exprZPRECrK   rK   rL   
_print_Pow   s    



zRCodePrinter._print_Powc             C   s"   t |jt |j }}d||f S )Nz	%d.0/%d.0)intrN   q)rI   rt   rN   rw   rK   rK   rL   _print_Rational   s    zRCodePrinter._print_Rationalc                s0    fdd|j D }d |jjd|f S )Nc                s   g | ]}  |qS rK   )rj   )r[   r\   )rI   rK   rL   
<listcomp>   s    z/RCodePrinter._print_Indexed.<locals>.<listcomp>z%s[%s]z, )rn   rj   rs   rk   join)rI   rt   ZindsrK   )rI   rL   _print_Indexed   s    zRCodePrinter._print_Indexedc             C   s   |  |jS )N)rj   rk   )rI   rt   rK   rK   rL   
_print_Idx   s    zRCodePrinter._print_Idxc             C   s   dS )Nzexp(1)rK   )rI   rt   rK   rK   rL   _print_Exp1   s    zRCodePrinter._print_Exp1c             C   s   dS )NpirK   )rI   rt   rK   rK   rL   	_print_Pi   s    zRCodePrinter._print_Pic             C   s   dS )Nr/   rK   )rI   rt   rK   rK   rL   _print_Infinity   s    zRCodePrinter._print_Infinityc             C   s   dS )Nz-InfrK   )rI   rt   rK   rK   rL   _print_NegativeInfinity   s    z$RCodePrinter._print_NegativeInfinityc             C   s   ddl m} ddlm} ddlm} |j}|j}t||rg }xD| 	|D ]6\}}	||||	f |||	f }
| 
|
}|| qJW d|S | jd r||s||r| ||S | 
|}| 
|}| d||f S d S )Nr   )
Assignment)MatrixSymbol)IndexedBase
r9   z%s = %s)Zsympy.codegen.astr   Z"sympy.matrices.expressions.matexprr   Zsympy.tensor.indexedr   lhsrhs
isinstancerc   rj   ri   rz   Z	_settingshasZ_doprint_loopsrP   )rI   rt   r   r   r   r   r   rX   r\   r]   tempZcode0lhs_coderhs_coderK   rK   rL   _print_Assignment   s$    





zRCodePrinter._print_Assignmentc             C   s   |j d jdkr(d| |j d j }n(d| |j d j| |j d jf }|}x>t|j d d D ](\}}d| || |f | d }qhW |S )Nrq   Tz%szifelse(%s,%s,NA)zifelse(%s,%s,))argsZcondrj   rt   reversed)rI   rt   	last_linecodeecrK   rK   rL   _print_Piecewise   s    ($zRCodePrinter._print_Piecewisec             C   s   ddl m} | ||S )Nr   )	Piecewise)Zsympy.functionsr   rj   Zrewrite)rI   rt   r   rK   rK   rL   
_print_ITE   s    zRCodePrinter._print_ITEc             C   s2   d | j|jtd dd|j|j|jjd   S )Nz{}[{}]ZAtomT)strictrd   )rQ   rr   parentr   r]   r\   r`   )rI   rt   rK   rK   rL   _print_MatrixElement   s    z!RCodePrinter._print_MatrixElementc                s(   t  |}|| jkr d|S |S d S )Nz(*{}))super_print_SymbolrG   rQ   )rI   rt   rT   )	__class__rK   rL   r      s    

zRCodePrinter._print_Symbolc             C   s,   |  |j}|  |j}|j}d|||S )Nz{} {} {})rj   r   r   Zrel_oprQ   )rI   rt   r   r   oprK   rK   rL   _print_Relational   s    zRCodePrinter._print_Relationalc             C   s,   |  |j}|j}|  |j}d|||S )Nz	{} {} {};)rj   r   r   r   rQ   )rI   rt   r   r   r   rK   rK   rL   _print_AugmentedAssignment   s    z'RCodePrinter._print_AugmentedAssignmentc             C   sP   |  |j}t|jtr(|jj\}}}ntd|  |j}dj|||||dS )Nz*Only iterable currently supported is RangezLfor ({target} = {start}; {target} < {stop}; {target} += {step}) {{
{body}
}})targetrf   stopstepbody)	rj   r   r   iterabler   r   NotImplementedErrorr   rQ   )rI   rt   r   rf   r   r   r   rK   rK   rL   
_print_For  s    zRCodePrinter._print_Forc       
         s   t |tr$| |d}d|S d}dd dd |D }fdd|D } fd	d|D }g }d
}xVt|D ]J\}}	|	dkr||	 qt||| 8 }|d|| |	f  ||| 7 }qtW |S )z0Accepts a string of code or a list of code linesT z   ){(z{
z(
)rh   r   c             S   s   g | ]}| d qS )z 	)lstrip)r[   linerK   rK   rL   ry     s    z,RCodePrinter.indent_code.<locals>.<listcomp>c                s    g | ]}t tt|j qS rK   )rv   anymapendswith)r[   r   )	inc_tokenrK   rL   ry     s    c                s    g | ]}t tt|j qS rK   )rv   r   r   
startswith)r[   r   )	dec_tokenrK   rL   ry     s   r   )r   r   z%s%s)r   strrW   
splitlinesrz   	enumerateri   )
rI   r   Z
code_linestabZincreaseZdecreaseprettylevelnr   rK   )r   r   rL   rW     s(    



zRCodePrinter.indent_code)$__name__
__module____qualname____doc__ZprintmethodlanguagerF   Z_default_settings
_operatorsZ_relationalsrA   rO   rP   rS   rV   rY   rc   ro   ru   rx   r{   r|   r}   r   r   r   r   r   r   r   r   r   r   r   rW   __classcell__rK   rK   )r   rL   r1   L   sR   'r1   Nc             K   s   t || |S )a  Converts an expr to a string of r code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where the keys are string representations of either
        ``FunctionClass`` or ``UndefinedFunction`` instances and the values
        are their desired R string representations. Alternatively, the
        dictionary value can be a list of tuples i.e. [(argument_test,
        rfunction_string)] or [(argument_test, rfunction_formater)]. See below
        for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function
    >>> x, tau = symbols("x, tau")
    >>> rcode((2*tau)**Rational(7, 2))
    '8*sqrt(2)*tau^(7.0/2.0)'
    >>> rcode(sin(x), assign_to="s")
    's = sin(x);'

    Simple custom printing can be defined for certain types by passing a
    dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
    Alternatively, the dictionary value can be a list of tuples i.e.
    [(argument_test, cfunction_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")],
    ...   "func": "f"
    ... }
    >>> func = Function('func')
    >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
    'f(fabs(x) + CEIL(x))'

    or if the R-function takes a subset of the original arguments:

    >>> rcode(2**x + 3**x, user_functions={'Pow': [
    ...   (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
    ...   (lambda b, e: b != 2, 'pow')]})
    'exp2(x) + pow(3, x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(rcode(expr, assign_to=tau))
    tau = ifelse(x > 0,x + 1,x);

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> rcode(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(rcode(mat, A))
    A[0] = x^2;
    A[1] = ifelse(x > 0,x + 1,x);
    A[2] = sin(x);

    )r1   Zdoprint)rt   Z	assign_torJ   rK   rK   rL   rcode*  s    kr   c             K   s   t t| f| dS )z0Prints R representation of the given expression.N)printr   )rt   rJ   rK   rK   rL   print_rcode  s    r   )N)r   typingr   r   ZtDictZsympy.printing.codeprinterr   Zsympy.printing.precedencer   r   Zsympy.sets.fancysetsr   rC   rH   r1   r   r   rK   rK   rK   rL   <module>	   sp    _
n