B
    dd k                 @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZmZ ddlmZ dd	lmZmZmZmZmZmZmZ d
d Zdd Zd)ddZdd Zd*ddZd+ddZ dd Z!dd Z"dd Z#dd  Z$d!d" Z%d#d$ Z&d,d%d&Z'd'd( Z(dS )-a  
Algorithms for solving the Risch differential equation.

Given a differential field K of characteristic 0 that is a simple
monomial extension of a base field k and f, g in K, the Risch
Differential Equation problem is to decide if there exist y in K such
that Dy + f*y == g and to find one if there are some.  If t is a
monomial over k and the coefficients of f and g are in k(t), then y is
in k(t), and the outline of the algorithm here is given as:

1. Compute the normal part n of the denominator of y.  The problem is
then reduced to finding y' in k<t>, where y == y'/n.
2. Compute the special part s of the denominator of y.   The problem is
then reduced to finding y'' in k[t], where y == y''/(n*s)
3. Bound the degree of y''.
4. Reduce the equation Dy + f*y == g to a similar equation with f, g in
k[t].
5. Find the solutions in k[t] of bounded degree of the reduced equation.

See Chapter 6 of "Symbolic Integration I: Transcendental Functions" by
Manuel Bronstein.  See also the docstring of risch.py.
    )mul)reduce)oo)Dummy)PolygcdZZcancel)imre)sqrt)gcdex_diophantinefrac_in
derivationsplitfactorNonElementaryIntegralExceptionDecrementLevelrecognize_log_derivativec             C   s   | j r
tS |t||kr.| | d d S g }|}| |}d}x2|j rv|||f || }|d9 }| |}qFW d}td|}xDt|dkr| }	||	d  }
| |
}|j r||	d 7 }|
}qW |S )aY  
    Computes the order of a at p, with respect to t.

    Explanation
    ===========

    For a, p in k[t], the order of a at p is defined as nu_p(a) = max({n
    in Z+ such that p**n|a}), where a != 0.  If a == 0, nu_p(a) = +oo.

    To compute the order at a rational function, a/b, use the fact that
    nu_p(a/b) == nu_p(a) - nu_p(b).
    r         )	is_zeror   r   as_polyETremappendlenpop)aptZ
power_listp1rZtracks_powernproductfinalZproductf r%   `/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sympy/integrals/rde.pyorder_at)   s.    


r'   c             C   s   | j r
tS ||| | S )z
    Computes the order of a/d at oo (infinity), with respect to t.

    For f in k(t), the order or f at oo is defined as deg(d) - deg(a), where
    f == a/d.
    )r   r   degree)r   dr   r%   r%   r&   order_at_ooT   s    r*   Nc                sF  |p
t d}t| \}}t|| j}||}|t||t| j j j\}}	t| jt	    j
 j}
t|
|}
|
j|std j|ffS dd |
 D }tt fdd|D td j}t	| }| ||  }|| }|j|dd\}}|||ffS )a  
    Weak normalization.

    Explanation
    ===========

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    zr   c             S   s    g | ]}|t kr|d kr|qS )r   )r   ).0ir%   r%   r&   
<listcomp>   s    z#weak_normalizer.<locals>.<listcomp>c                s,   g | ]$}t t| jt   qS r%   )r   r   r   r   )r,   r"   )DEr   d1r%   r&   r.      s    T)include)r   r   r   diffr   quor   r   r   r   Z	resultantexprhasZ
real_rootsr   r   r	   )r   r)   r/   r+   dndsgZ
d_sqf_parta1br!   NqZdqZsnsdr%   )r/   r   r0   r&   weak_normalizer`   s(    
"

r>   c             C   s   t ||\}}t ||\}}||}	|||j|	|	|j}
||
 }||
 }||d rnt|| }|j|dd\}}||  |t|
| |  }|j|dd\}}|||f||f|
fS )a  
    Normal part of the denominator.

    Explanation
    ===========

    Given a derivation D on k[t] and f, g in k(t) with f weakly
    normalized with respect to t, either raise NonElementaryIntegralException,
    in which case the equation Dy + f*y == g has no solution in k(t), or the
    quadruplet (a, b, c, h) such that a, h in k[t], b, c in k<t>, and for any
    solution y in k(t) of Dy + f*y == g, q = y*h in k<t> satisfies
    a*Dq + b*q == c.

    This constitutes step 1 in the outline given in the rde.py docstring.
    r   T)r1   )	r   r   r2   r   r3   divr   r	   r   )fafdgagdr/   r6   r7   enesr   hr   ccacdbabdr%   r%   r&   normal_denom   s    
&rL   autoc          	   C   sL  |dkr|j }|dkr&t|j|j}nd|dkrFt|jd d |j}nD|dkr~| |}| |}	| ||	td|jfS td| t|||jt|||j }
t|||jt|||j }td|td|
 }|
sdd	lm	} |dkr|j
t|j|j}t|z t|d |d | d |j\}}t||j\}}||||||}|d
k	r|\}}}|dkrt||}W d
Q R X n8|dkr|j
t|jd d |j}t|  tt|td |td | td |j\}}tt|td |td | td |j\}}t||j\}}ttd|j| ||r||ttd|j | ||  || |||}|d
k	r|\}}}|dkrt||}W d
Q R X td|
 || }|| }||  }| | }||| t||j|  t||| |  }|| | |}	|}|||	|fS )a  
    Special part of the denominator.

    Explanation
    ===========

    case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
    hypertangent, and primitive cases, respectively.  For the
    hyperexponential (resp. hypertangent) case, given a derivation D on
    k[t] and a in k[t], b, c, in k<t> with Dt/t in k (resp. Dt/(t**2 + 1) in
    k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
    gcd(a, t**2 + 1) == 1), return the quadruplet (A, B, C, 1/h) such that
    A, B, C, h in k[t] and for any solution q in k<t> of a*Dq + b*q == c,
    r = qh in k[t] satisfies A*Dr + B*r == C.

    For ``case == 'primitive'``, k<t> == k[t], so it returns (a, b, c, 1) in
    this case.

    This constitutes step 2 of the outline given in the rde.py docstring.
    rM   exptanr   r   )	primitivebasez@case must be one of {'exp', 'tan', 'primitive', 'base'}, not %s.r   )parametric_log_derivN)caser   r   to_fieldr3   
ValueErrorr'   minprderR   r)   r   r   evalr
   r   r   r   maxr   )r   rJ   rK   rH   rI   r/   rT   r   BCnbncr"   rR   ZdcoeffalphaaalphadetaaetadAQmr+   betaabetadr;   ZpNZpnrF   r%   r%   r&   special_denom   s^    

,



<<0



2rh   Fc          	      s  |dkr j }|  j}| j}|rBt fdd|D }n| j}t| j   |  j   }	|dkrtd|t||d  }
||d kr|	jrtd|	|| }
n*|dkr||krtd|| }
ntd|| d }
t	 j
 j jd  \}} j}t  t	|	 j\}}||d krddlm} y |||||fg \\}}}W n tk
r   Y n&X t|dkrtd	t|
|d }
n||krdd
lm} ||| }|dk	r|\}}|dkr| t| | |||    | |    }t	| j\}}ddlm} y |||||fg \\}}}W n tk
rt   Y n*X t|dkrtd	t|
|d  }
W dQ R X n@|dkrjddlm} td|t|| }
||krt	 j
t j j j jd  \}}t N t	|	 j\}}||||| }|dk	r^|\} }}| dkr^t|
|}
W dQ R X n|dkr j
 j} j
 }t|	| }	td|t|| d | }
||| d kr|	jrtd|	|| }
ntd| |
S )am  
    Bound on polynomial solutions.

    Explanation
    ===========

    Given a derivation D on k[t] and ``a``, ``b``, ``c`` in k[t] with ``a != 0``, return
    n in ZZ such that deg(q) <= n for any solution q in k[t] of
    a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution
    c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m))
    when parametric=True.

    For ``parametric=False``, ``cQ`` is ``c``, a ``Poly``; for ``parametric=True``, ``cQ`` is Q ==
    [q1, ..., qm], a list of Polys.

    This constitutes step 3 of the outline given in the rde.py docstring.
    rM   c                s   g | ]}|  jqS r%   )r(   r   )r,   r-   )r/   r%   r&   r.   (  s    z bound_degree.<locals>.<listcomp>rQ   r   r   rP   )limited_integratezLength of m should be 1)!is_log_deriv_k_t_radical_in_fieldNrN   )rR   )rO   Zother_nonlinearzScase must be one of {'exp', 'tan', 'primitive', 'other_nonlinear', 'base'}, not %s.)rT   r(   r   rZ   r	   r   LCas_expr
is_Integerr   r)   Tlevelr   rX   ri   r   r   rV   rj   r   rR   r3   r   )r   r:   cQr/   rT   
parametricdadbZdcalphar"   ra   rb   t1r_   r`   ri   Zzazdre   rj   rc   Zaar+   betarf   rg   rR   deltaZlamr%   )r/   r&   bound_degree  s    



& 

,





ry   c             C   s  t d|j}t d|j}t d|j}x|jr:||d||fS |dk dkrJt| |}||jsdt| |||||  } }}| |jdkr| | }| | }|||||fS t	|| |\}	}
|t
| |7 }|
t
|	| }|| |j8 }|||	 7 }|| 9 }q&W dS )a  
    Rothstein's Special Polynomial Differential Equation algorithm.

    Explanation
    ===========

    Given a derivation D on k[t], an integer n and ``a``,``b``,``c`` in k[t] with
    ``a != 0``, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most ``n`` in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    r   r   TN)r   r   r   r   r   r   r3   r(   rU   r   r   )r   r:   rG   r"   r/   zerort   rw   r8   r!   r+   r%   r%   r&   spde  s,    
"r{   c             C   s   t d|j}x|js||j| |j }d|  kr@|ksFn tt ||j | |j  |j|  |jdd}|| }|d }|t|| | |  }qW |S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) large enough.

    Explanation
    ===========

    Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
    in k[t] with ``b != 0`` and either D == d/dt or
    deg(b) > max(0, deg(D) - 1), either raise NonElementaryIntegralException, in
    which case the equation ``Dq + b*q == c`` has no solution of degree at
    most n in k[t], or a solution q in k[t] of this equation with
    ``deg(q) < n``.
    r   F)expandr   )r   r   r   r(   r   r   rk   r   )r:   rG   r"   r/   r<   re   r   r%   r%   r&   no_cancel_b_large  s    .r}   c             C   sX  t d|j}xD|jsR|dkr&d}n||j|j|j d }d|  krX|ks^n t|dkrt ||j ||j|j   |j|  |jdd}n| |j||jkrt| |jdkr|| |j|j	d  ||j|j	d  fS t ||j | |j  |jdd}|| }|d }|t
|| | |  }qW |S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) small enough.

    Explanation
    ===========

    Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c``
    in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or
    deg(D) >= 2, either raise NonElementaryIntegralException, in which case the
    equation Dq + b*q == c has no solution of degree at most n in k[t],
    or a solution q in k[t] of this equation with deg(q) <= n, or the
    tuple (h, b0, c0) such that h in k[t], b0, c0, in k, and for any
    solution q in k[t] of degree at most n of Dq + bq == c, y == q - h
    is a solution in k of Dy + b0*y == c0.
    r   r   F)r|   )r   r   r   r(   r)   r   r   rk   rn   ro   r   )r:   rG   r"   r/   r<   re   r   r%   r%   r&   no_cancel_b_small  s*    0$r~   c       
      C   sx  t d|j}t| |j  |j|j  }|jrF|jrF|}nd}x&|jsrt	||
|j|j
|j d }d|  kr|ksn tt||j|j  | |j  }|jr|||fS |dkrt ||j | |j|  |jdd}	nF|
|j|j
|jd kr*tn ||j | |j  }	||	 }|d }|t|	| | |	  }qNW |S )a  
    Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1

    Explanation
    ===========

    Given a derivation D on k[t] with deg(D) >= 2, n either an integer
    or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c has
    no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n, or the tuple (h, m, C) such that h
    in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
    degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
    of degree at most m of Dy + b*y == C.
    r   rS   r   F)r|   )r   r   r	   r   rk   r)   rm   Zis_positiver   rZ   r(   r   r   )
r:   rG   r"   r/   r<   lcMre   ur   r%   r%   r&   no_cancel_equal  s*    ($*

,  r   c          	   C   s8  ddl m} t|B t| |j\}}||||}|dk	rR|\}}|dkrRtdW dQ R X |jrf|S |||jk rztt	d|j}	x|js2||j}
||
k rtt|. t|
 |j\}}t|||||\}}W dQ R X t	| |  |j|
  |jdd}|	|7 }	|
d }|| | t|| 8 }qW |	S )a  
    Poly Risch Differential Equation - Cancellation: Primitive case.

    Explanation
    ===========

    Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
    ``c`` in k[t] with Dt in k and ``b != 0``, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    r   )rj   Nz7is_deriv_in_field() is required to  solve this problem.r   F)r|   )rX   rj   r   r   r   NotImplementedErrorr   r(   r   r   rk   rischDErl   r   )r:   rG   r"   r/   rj   rJ   rK   rc   r+   r<   re   a2aa2dsar=   stmr%   r%   r&   cancel_primitive.  s2    


&r   c          	   C   s  ddl m} |jt|j|j }t|X t||j\}}t| |j\}}	|||	|||}
|
dk	r|
\}}}|dkrt	dW dQ R X |j
r|S |||jk rttd|j}x|j
s||j}||k rt|  }t|b t||j\}}|| || t||j  }|| }t| |j\}}t|||||\}}W dQ R X t| |  |j|  |jdd}||7 }|d }|| | t|| 8 }qW |S )a  
    Poly Risch Differential Equation - Cancellation: Hyperexponential case.

    Explanation
    ===========

    Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and
    ``c`` in k[t] with Dt/t in k and ``b != 0``, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    r   )rR   Nz6is_deriv_in_field() is required to solve this problem.r   F)r|   )rX   rR   r)   r3   r   r   rl   r   r   r   r   r(   r   rk   r   r   )r:   rG   r"   r/   rR   etara   rb   rJ   rK   rc   r   re   r+   r<   r9   Za1aZa1dr   r   r   r=   r   r%   r%   r&   
cancel_exp`  s>    



&r   c          	   C   s  | j s`|jdks4| |jtd|j|jd kr`|rRddlm} || |||S t| |||S | j s| |j|j|jd k r\|jdks|j|jdkr\|rddlm	} || |||S t
| |||}t|tr|S |\}}	}
t|Z |	|j|
|j }	}
|	dkrtd|
dkr0td	t|	|
|||j}W dQ R X || S nN|j|jdkr$| |j|j|jd kr$|| |j  |j|j  kr$| |j jstd
|rtdt| |||}t|tr|S |\}}}t| |||}|| S n| j r6tdn^|jdkr^|rPtdt| |||S |jdkr|rxtdt| |||S td|j |rtdtddS )a  
    Solve a Polynomial Risch Differential Equation with degree bound ``n``.

    This constitutes step 4 of the outline given in the rde.py docstring.

    For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
    [q1, ..., qm], a list of Polys.
    rQ   r   r   )prde_no_cancel_b_larger   )prde_no_cancel_b_smallNzb0 should be a non-Null valuezc0 should be a non-Null valuezResult should be a numberz0prde_no_cancel_b_equal() is not yet implemented.zWRemaining cases for Poly (P)RDE are not yet implemented (is_deriv_in_field() required).rN   zIParametric RDE cancellation hyperexponential case is not yet implemented.rP   zBParametric RDE cancellation primitive case is not yet implemented.zBOther Poly (P)RDE cancellation cases are not yet implemented (%s).z2Remaining cases for Poly PRDE not yet implemented.z1Remaining cases for Poly RDE not yet implemented.)r   rT   r(   r   rZ   r)   rX   r   r}   r   r~   
isinstancer   r   r   rV   solve_poly_rderk   Z	is_number	TypeErrorr   r   r   r   )r:   rp   r"   r/   rq   r   r   RrF   Zb0Zc0yre   r\   r%   r%   r&   r     sd    
$&




 4*



r   c             C   s   t | ||\}\} }t| ||||\}\}}\}	}
}t||||	|
|\}}}}yt||||}W n tk
rx   t}Y nX t|||||\}}}}}|jr|}nt||||}|| | || fS )a  
    Solve a Risch Differential Equation: Dy + f*y == g.

    Explanation
    ===========

    See the outline in the docstring of rde.py for more information
    about the procedure used.  Either raise NonElementaryIntegralException, in
    which case there is no solution y in the given differential field,
    or return y in k(t) satisfying Dy + f*y == g, or raise
    NotImplementedError, in which case, the algorithms necessary to
    solve the given Risch Differential Equation have not yet been
    implemented.
    )	r>   rL   rh   ry   r   r   r{   r   r   )r@   rA   rB   rC   r/   _r   rJ   rK   rH   rI   Zhnrc   r[   r\   hsr"   re   rt   rw   r   r%   r%   r&   r     s     
r   )N)rM   )rM   F)F))__doc__operatorr   	functoolsr   Z
sympy.corer   Zsympy.core.symbolr   Zsympy.polysr   r   r   r	   Z$sympy.functions.elementary.complexesr
   r   Z(sympy.functions.elementary.miscellaneousr   Zsympy.integrals.rischr   r   r   r   r   r   r   r'   r*   r>   rL   rh   ry   r{   r}   r~   r   r   r   r   r   r%   r%   r%   r&   <module>   s,   $+
3%
T
w///2<
]