B
    vdJ?                 @   s   d Z ddlmZ ddlmZ ddlZddlmZ ddlmZ ddlm	Z	 ddl
Zdd	lmZmZ d
d Zdd ZeeedZdd Zdd Zdd Zdd Zdd ZdddZd ddZdd ZdS )!zX
Multi-class / multi-label utility function
==========================================

    )Sequence)chainN)issparse)
dok_matrix)
lil_matrix   )check_array_assert_all_finitec             C   s&   t | drtt| S t| S d S )N	__array__)hasattrnpuniqueasarrayset)y r   e/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sklearn/utils/multiclass.py_unique_multiclass   s    
r   c             C   s   t t| dddgdjd S )Ncsrcsccoo)accept_sparser   )r   Zaranger   shape)r   r   r   r   _unique_indicator   s    r   )binary
multiclasszmultilabel-indicatorc                 s   | st dtdd | D }|ddhkr0dh}t|dkrHt d| | }|dkrzttd	d | D dkrzt d
t|d  st dt|  tt fdd| D }ttdd |D dkrt dt	
t|S )aw  Extract an ordered array of unique labels.

    We don't allow:
        - mix of multilabel and multiclass (single label) targets
        - mix of label indicator matrix and anything else,
          because there are no explicit labels)
        - mix of label indicator matrices of different sizes
        - mix of string and integer labels

    At the moment, we also don't allow "multiclass-multioutput" input type.

    Parameters
    ----------
    *ys : array-likes

    Returns
    -------
    out : ndarray of shape (n_unique_labels,)
        An ordered array of unique labels.

    Examples
    --------
    >>> from sklearn.utils.multiclass import unique_labels
    >>> unique_labels([3, 5, 5, 5, 7, 7])
    array([3, 5, 7])
    >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
    array([1, 2, 3, 4])
    >>> unique_labels([1, 2, 10], [5, 11])
    array([ 1,  2,  5, 10, 11])
    zNo argument has been passed.c             s   s   | ]}t |V  qd S )N)type_of_target).0xr   r   r   	<genexpr>K   s    z unique_labels.<locals>.<genexpr>r   r   r   z'Mix type of y not allowed, got types %szmultilabel-indicatorc             s   s&   | ]}t |d ddgdjd V  qdS )r   r   r   )r   r   N)r   r   )r   r   r   r   r   r   Y   s    zCMulti-label binary indicator input with different numbers of labelsNzUnknown label type: %sc             3   s   | ]} |V  qd S )Nr   )r   r   )_unique_labelsr   r   r   g   s    c             s   s   | ]}t |tV  qd S )N)
isinstancestr)r   labelr   r   r   r   j   s    z,Mix of label input types (string and number))
ValueErrorr   lenpop_FN_UNIQUE_LABELSgetreprr   from_iterabler   arraysorted)ZysZys_typesZ
label_typeZ	ys_labelsr   )r    r   unique_labels(   s,    r-   c             C   s    | j jdkot| t| kS )Nf)dtypekindr   allastypeint)r   r   r   r   _is_integral_floatp   s    r4   c          	   C   s  t | dst| trjt H tdtj yt| } W n$ tjk
r^   tj	| t
d} Y nX W dQ R X t | dr| jdkr| jd dksdS t| rt| ttfr|  } t| jd	kpt| jjdko| jjd
kptt| jS t| }t|dk o| jjd
kpt|S dS )a~  Check if ``y`` is in a multilabel format.

    Parameters
    ----------
    y : ndarray of shape (n_samples,)
        Target values.

    Returns
    -------
    out : bool
        Return ``True``, if ``y`` is in a multilabel format, else ```False``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils.multiclass import is_multilabel
    >>> is_multilabel([0, 1, 0, 1])
    False
    >>> is_multilabel([[1], [0, 2], []])
    False
    >>> is_multilabel(np.array([[1, 0], [0, 0]]))
    True
    >>> is_multilabel(np.array([[1], [0], [0]]))
    False
    >>> is_multilabel(np.array([[1, 0, 0]]))
    True
    r
   error)r/   Nr      r   Fr   Zbiu   )r   r!   r   warningscatch_warningssimplefilterr   VisibleDeprecationWarningr   r+   objectndimr   r   r   r   Ztocsrr%   datar   sizer/   r0   r4   )r   labelsr   r   r   is_multilabelt   s&    
"
rA   c             C   s    t | }|dkrtd| dS )a*  Ensure that target y is of a non-regression type.

    Only the following target types (as defined in type_of_target) are allowed:
        'binary', 'multiclass', 'multiclass-multioutput',
        'multilabel-indicator', 'multilabel-sequences'

    Parameters
    ----------
    y : array-like
    )r   r   zmulticlass-multioutputzmultilabel-indicatorzmultilabel-sequenceszUnknown label type: %rN)r   r$   )r   Zy_typer   r   r   check_classification_targets   s    rB   c          	   C   s  t | tst| st| do&t | t }|s8td|  | jjdk}|rPtdt| r\dS t	
 H t	dtj yt| } W n$ tjk
r   tj| td} Y nX W dQ R X y6t| d	 dst | d	 trt | d	 tstd
W n tk
r   Y nX | jdks2| jtkr6t| r6t | jd	 ts6dS | jdkrV| jd d	krVdS | jdkrx| jd dkrxd}nd}| jjdkrt| | tkrt|  d| S tt| dks| jdkrt| d	 dkrd| S dS dS )a#	  Determine the type of data indicated by the target.

    Note that this type is the most specific type that can be inferred.
    For example:

        * ``binary`` is more specific but compatible with ``multiclass``.
        * ``multiclass`` of integers is more specific but compatible with
          ``continuous``.
        * ``multilabel-indicator`` is more specific but compatible with
          ``multiclass-multioutput``.

    Parameters
    ----------
    y : array-like

    Returns
    -------
    target_type : str
        One of:

        * 'continuous': `y` is an array-like of floats that are not all
          integers, and is 1d or a column vector.
        * 'continuous-multioutput': `y` is a 2d array of floats that are
          not all integers, and both dimensions are of size > 1.
        * 'binary': `y` contains <= 2 discrete values and is 1d or a column
          vector.
        * 'multiclass': `y` contains more than two discrete values, is not a
          sequence of sequences, and is 1d or a column vector.
        * 'multiclass-multioutput': `y` is a 2d array that contains more
          than two discrete values, is not a sequence of sequences, and both
          dimensions are of size > 1.
        * 'multilabel-indicator': `y` is a label indicator matrix, an array
          of two dimensions with at least two columns, and at most 2 unique
          values.
        * 'unknown': `y` is array-like but none of the above, such as a 3d
          array, sequence of sequences, or an array of non-sequence objects.

    Examples
    --------
    >>> from sklearn.utils.multiclass import type_of_target
    >>> import numpy as np
    >>> type_of_target([0.1, 0.6])
    'continuous'
    >>> type_of_target([1, -1, -1, 1])
    'binary'
    >>> type_of_target(['a', 'b', 'a'])
    'binary'
    >>> type_of_target([1.0, 2.0])
    'binary'
    >>> type_of_target([1, 0, 2])
    'multiclass'
    >>> type_of_target([1.0, 0.0, 3.0])
    'multiclass'
    >>> type_of_target(['a', 'b', 'c'])
    'multiclass'
    >>> type_of_target(np.array([[1, 2], [3, 1]]))
    'multiclass-multioutput'
    >>> type_of_target([[1, 2]])
    'multilabel-indicator'
    >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
    'continuous-multioutput'
    >>> type_of_target(np.array([[0, 1], [1, 1]]))
    'multilabel-indicator'
    r
   z:Expected array-like (array or non-string sequence), got %r)ZSparseSeriesZSparseArrayz1y cannot be class 'SparseSeries' or 'SparseArray'zmultilabel-indicatorr5   )r/   Nr   zYou appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead - the MultiLabelBinarizer transformer can convert to this format.r6   unknownr   z-multioutput r.   Z
continuousr   r   )r!   r   r   r   r"   r$   	__class____name__rA   r8   r9   r:   r   r;   r   r<   
IndexErrorr=   r/   r%   Zflatr   r0   anyr2   r3   r	   r   )r   ZvalidZsparse_pandassuffixr   r   r   r      sJ    B


4$2r   c             C   sr   t | dddkr"|dkr"tdnL|dk	rnt | dddk	r`t| jt|sntd|| jf nt|| _dS dS )a"  Private helper function for factorizing common classes param logic.

    Estimators that implement the ``partial_fit`` API need to be provided with
    the list of possible classes at the first call to partial_fit.

    Subsequent calls to partial_fit should check that ``classes`` is still
    consistent with a previous value of ``clf.classes_`` when provided.

    This function returns True if it detects that this was the first call to
    ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also
    set on ``clf``.

    classes_Nz8classes must be passed on the first call to partial_fit.zD`classes=%r` is not the same as on last call to partial_fit, was: %rTF)getattrr$   r   Zarray_equalrJ   r-   )Zclfclassesr   r   r   _check_partial_fit_first_callM  s    

rM   c             C   s  g }g }g }| j \}}|dk	r(t|}t| rv|  } t| j}xt|D ]}| j| j| | j|d   }	|dk	r||	 }
t	|t	|
 }nd}
| j d ||  }tj
| j| j| | j|d   dd\}}tj||
d}d|kr
||dk  |7  < d|krD|| | j d k rDt|dd}t|d|}|| ||j d  |||	   qRW nlxjt|D ]^}tj
| dd|f dd\}}|| ||j d  tj||d}|||	   qW |||fS )a{  Compute class priors from multioutput-multiclass target data.

    Parameters
    ----------
    y : {array-like, sparse matrix} of size (n_samples, n_outputs)
        The labels for each example.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    classes : list of size n_outputs of ndarray of size (n_classes,)
        List of classes for each column.

    n_classes : list of int of size n_outputs
        Number of classes in each column.

    class_prior : list of size n_outputs of ndarray of size (n_classes,)
        Class distribution of each column.

    Nr   r   T)Zreturn_inverse)weights)r   r   r   r   ZtocscdiffZindptrrangeindicessumr   r>   Zbincountinsertappend)r   Zsample_weightrL   	n_classesZclass_prior	n_samplesZ	n_outputsZy_nnzkZcol_nonzeroZnz_samp_weightZzeros_samp_weight_sumZ	classes_kZy_kZclass_prior_kr   r   r   class_distributionp  sD    


(


rX   c       
      C   s
  | j d }t||f}t||f}d}xt|D ]}xt|d |D ]}|dd|f  |dd|f 8  < |dd|f  |dd|f 7  < || dd|f dk|f  d7  < || dd|f dk|f  d7  < |d7 }qHW q4W |dt|d   }	||	 S )ay  Compute a continuous, tie-breaking OvR decision function from OvO.

    It is important to include a continuous value, not only votes,
    to make computing AUC or calibration meaningful.

    Parameters
    ----------
    predictions : array-like of shape (n_samples, n_classifiers)
        Predicted classes for each binary classifier.

    confidences : array-like of shape (n_samples, n_classifiers)
        Decision functions or predicted probabilities for positive class
        for each binary classifier.

    n_classes : int
        Number of classes. n_classifiers must be
        ``n_classes * (n_classes - 1 ) / 2``.
    r   r   Nr7   )r   r   ZzerosrP   abs)
ZpredictionsZconfidencesrU   rV   ZvotesZsum_of_confidencesrW   ijZtransformed_confidencesr   r   r   _ovr_decision_function  s    
$$$$	r\   )N)N)__doc__collections.abcr   	itertoolsr   r8   Zscipy.sparser   r   r   numpyr   Z
validationr   r	   r   r   r'   r-   r4   rA   rB   r   rM   rX   r\   r   r   r   r   <module>   s,   H> 
#
K