#
#  This file is part of Healpy.
#
#  Healpy is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  Healpy is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with Healpy; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
#
#  For more information about Healpy, see http://code.google.com/p/healpy
#
"""
=====================================================
pixelfunc.py : Healpix pixelization related functions
=====================================================

This module provides functions related to Healpix pixelization scheme.

conversion from/to sky coordinates
----------------------------------

- :func:`pix2ang` converts pixel number to angular coordinates
- :func:`pix2vec` converts pixel number to unit 3-vector direction
- :func:`ang2pix` converts angular coordinates to pixel number
- :func:`vec2pix` converts 3-vector to pixel number
- :func:`vec2ang` converts 3-vector to angular coordinates
- :func:`ang2vec` converts angular coordinates to unit 3-vector
- :func:`pix2xyf` converts pixel number to coordinates within face
- :func:`xyf2pix` converts coordinates within face to pixel number
- :func:`get_interp_weights` returns the 4 nearest pixels for given
  angular coordinates and the relative weights for interpolation
- :func:`get_all_neighbours` return the 8 nearest pixels for given
  angular coordinates

conversion between NESTED and RING schemes
------------------------------------------

- :func:`nest2ring` converts NESTED scheme pixel numbers to RING
  scheme pixel number
- :func:`ring2nest` converts RING scheme pixel number to NESTED
  scheme pixel number
- :func:`reorder` reorders a healpix map pixels from one scheme to another

nside/npix/resolution
---------------------

- :func:`nside2npix` converts healpix nside parameter to number of pixel
- :func:`npix2nside` converts number of pixel to healpix nside parameter
- :func:`nside2order` converts nside to order
- :func:`order2nside` converts order to nside
- :func:`nside2resol` converts nside to mean angular resolution
- :func:`nside2pixarea` converts nside to pixel area
- :func:`isnsideok` checks the validity of nside
- :func:`isnpixok` checks the validity of npix
- :func:`get_map_size` gives the number of pixel of a map
- :func:`get_min_valid_nside` gives the minimum nside possible for a given
  number of pixel
- :func:`get_nside` returns the nside of a map
- :func:`maptype` checks the type of a map (one map or sequence of maps)
- :func:`ud_grade` upgrades or degrades the resolution (nside) of a map

Masking pixels
--------------

- :const:`UNSEEN` is a constant value interpreted as a masked pixel
- :func:`mask_bad` returns a map with ``True`` where map is :const:`UNSEEN`
- :func:`mask_good` returns a map with ``False`` where map is :const:`UNSEEN`
- :func:`ma` returns a masked array as map, with mask given by :func:`mask_bad`

Map data manipulation
---------------------

- :func:`fit_dipole` fits a monopole+dipole on the map
- :func:`fit_monopole` fits a monopole on the map
- :func:`remove_dipole` fits and removes a monopole+dipole from the map
- :func:`remove_monopole` fits and remove a monopole from the map
- :func:`get_interp_val` computes a bilinear interpolation of the map
  at given angular coordinates, using 4 nearest neighbours
"""

import numpy as np
from functools import wraps
import logging

log = logging.getLogger("healpy")

from astropy.utils.decorators import deprecated_renamed_argument

UNSEEN = None


try:
    from . import _healpy_pixel_lib as pixlib

    #: Special value used for masked pixels
    UNSEEN = pixlib.UNSEEN
except:
    log.warning("Warning: cannot import _healpy_pixel_lib module")

# We are using 64-bit integer types.
# nside > 2**29 requires extended integer types.
max_nside = 1 << 29

__all__ = [
    "pix2ang",
    "pix2vec",
    "ang2pix",
    "vec2pix",
    "ang2vec",
    "vec2ang",
    "get_interp_weights",
    "get_interp_val",
    "get_all_neighbours",
    "max_pixrad",
    "nest2ring",
    "ring2nest",
    "reorder",
    "ud_grade",
    "UNSEEN",
    "mask_good",
    "mask_bad",
    "ma",
    "fit_dipole",
    "remove_dipole",
    "fit_monopole",
    "remove_monopole",
    "nside2npix",
    "npix2nside",
    "nside2order",
    "order2nside",
    "order2npix",
    "npix2order",
    "nside2resol",
    "nside2pixarea",
    "isnsideok",
    "isnpixok",
    "get_map_size",
    "get_min_valid_nside",
    "get_nside",
    "maptype",
    "ma_to_array",
]


def check_theta_valid(theta):
    """Raises exception if theta is not within 0 and pi"""
    theta = np.asarray(theta)
    if not ((theta >= 0).all() and (theta <= np.pi + 1e-5).all()):
        raise ValueError("THETA is out of range [0,pi]")


def lonlat2thetaphi(lon, lat):
    """Transform longitude and latitude (deg) into co-latitude and longitude (rad)

    Parameters
    ----------
    lon : int or array-like
      Longitude in degrees
    lat : int or array-like
      Latitude in degrees

    Returns
    -------
    theta, phi : float, scalar or array-like
      The co-latitude and longitude in radians
    """
    return np.pi / 2.0 - np.radians(lat), np.radians(lon)


def thetaphi2lonlat(theta, phi):
    """Transform co-latitude and longitude (rad) into longitude and latitude (deg)

    Parameters
    ----------
    theta : int or array-like
      Co-latitude in radians
    phi : int or array-like
      Longitude in radians

    Returns
    -------
    lon, lat : float, scalar or array-like
      The longitude and latitude in degrees
    """
    return np.degrees(phi), 90.0 - np.degrees(theta)


def maptype(m):
    """Describe the type of the map (valid, single, sequence of maps).
    Checks : the number of maps, that all maps have same length and that this
    length is a valid map size (using :func:`isnpixok`).

    Parameters
    ----------
    m : sequence
      the map to get info from

    Returns
    -------
    info : int
      -1 if the given object is not a valid map, 0 if it is a single map,
      *info* > 0 if it is a sequence of maps (*info* is then the number of
      maps)

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pixelfunc.maptype(np.arange(12))
    0
    >>> hp.pixelfunc.maptype([np.arange(12), np.arange(12)])
    2
    """
    if not hasattr(m, "__len__"):
        raise TypeError("input map is a scalar")
    if len(m) == 0:
        raise TypeError("input map has length zero")

    try:
        npix = len(m[0])
    except TypeError:
        npix = None

    if npix is not None:
        for mm in m[1:]:
            if len(mm) != npix:
                raise TypeError("input maps have different npix")
        if isnpixok(len(m[0])):
            return len(m)
        else:
            raise TypeError("bad number of pixels")
    else:
        if isnpixok(len(m)):
            return 0
        else:
            raise TypeError("bad number of pixels")


def ma_to_array(m):
    """Converts a masked array or a list of masked arrays to filled numpy arrays

    Parameters
    ----------
    m : a map (may be a sequence of maps)

    Returns
    -------
    m : filled map or tuple of filled maps

    Examples
    --------
    >>> import healpy as hp
    >>> m = hp.ma(np.array([2., 2., 3, 4, 5, 0, 0, 0, 0, 0, 0, 0]))
    >>> m.mask = np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.bool_)
    >>> print(m.data[1]) # data is not affected by mask
    2.0
    >>> print(m[1]) # shows that the value is masked
    --
    >>> print(ma_to_array(m)[1]) # filled array, masked values replace by UNSEEN
    -1.6375e+30
    """

    try:
        return m.filled()
    except AttributeError:
        try:
            return np.array([mm.filled() for mm in m])
        except AttributeError:
            pass
    return m


def is_ma(m):
    """Converts a masked array or a list of masked arrays to filled numpy arrays

    Parameters
    ----------
    m : a map (may be a sequence of maps)

    Returns
    -------
    is_ma : bool
        whether the input map was a ma or not
    """
    return hasattr(m, "filled") or hasattr(m[0], "filled")


def accept_ma(f):
    """Wraps a function in order to convert the input map from
    a masked to a regular numpy array, and convert back the
    output from a regular array to a masked array"""

    @wraps(f)
    def wrapper(map_in, *args, **kwds):
        return_ma = is_ma(map_in)
        m = ma_to_array(map_in)
        out = f(m, *args, **kwds)
        return ma(out) if return_ma else out

    return wrapper


def mask_bad(m, badval=UNSEEN, rtol=1.0e-5, atol=1.0e-8):
    """Returns a bool array with ``True`` where m is close to badval.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance

    Returns
    -------
    mask
      a bool array with the same shape as the input map, ``True`` where input map is
      close to badval, and ``False`` elsewhere.

    See Also
    --------
    mask_good, ma

    Examples
    --------
    >>> import healpy as hp
    >>> import numpy as np
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.mask_bad(m)
    array([False, False, False,  True, False, False, False, False, False,
           False, False, False], dtype=bool)
    """
    m = np.asarray(m)
    atol = np.absolute(atol)
    rtol = np.absolute(rtol)
    return np.absolute(m - badval) <= atol + rtol * np.absolute(badval)


def mask_good(m, badval=UNSEEN, rtol=1.0e-5, atol=1.0e-8):
    """Returns a bool array with ``False`` where m is close to badval.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance

    Returns
    -------
    a bool array with the same shape as the input map, ``False`` where input map is
    close to badval, and ``True`` elsewhere.

    See Also
    --------
    mask_bad, ma

    Examples
    --------
    >>> import healpy as hp
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.mask_good(m)
    array([ True,  True,  True, False,  True,  True,  True,  True,  True,
            True,  True,  True], dtype=bool)
    """
    m = np.asarray(m)
    atol = np.absolute(atol)
    rtol = np.absolute(rtol)
    return np.absolute(m - badval) > atol + rtol * np.absolute(badval)


def ma(m, badval=UNSEEN, rtol=1e-5, atol=1e-8, copy=True):
    """Return map as a masked array, with ``badval`` pixels masked.

    Parameters
    ----------
    m : a map (may be a sequence of maps)
    badval : float, optional
        The value of the pixel considered as bad (:const:`UNSEEN` by default)
    rtol : float, optional
        The relative tolerance
    atol : float, optional
        The absolute tolerance
    copy : bool, optional
        If ``True``, a copy of the input map is made.

    Returns
    -------
    a masked array with the same shape as the input map,
    masked where input map is close to badval.

    See Also
    --------
    mask_good, mask_bad, numpy.ma.masked_values

    Examples
    --------
    >>> import healpy as hp
    >>> m = np.arange(12.)
    >>> m[3] = hp.UNSEEN
    >>> hp.ma(m)
    masked_array(data = [0.0 1.0 2.0 -- 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0],
                 mask = [False False False  True False False False False False False False False],
           fill_value = -1.6375e+30)
    <BLANKLINE>
    """
    return np.ma.masked_values(np.array(m), badval, rtol=rtol, atol=atol, copy=copy)


def ang2pix(nside, theta, phi, nest=False, lonlat=False):
    """ang2pix : nside,theta[rad],phi[rad],nest=False,lonlat=False -> ipix (default:RING)

    Parameters
    ----------
    nside : int, scalar or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    theta, phi : float, scalars or array-like
      Angular coordinates of a point on the sphere
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering
    lonlat : bool
      If True, input angles are assumed to be longitude and latitude in degree,
      otherwise, they are co-latitude and longitude in radians.

    Returns
    -------
    pix : int or array of int
      The healpix pixel numbers. Scalar if all input are scalar, array otherwise.
      Usual numpy broadcasting rules apply.

    See Also
    --------
    pix2ang, pix2vec, vec2pix

    Examples
    --------
    Note that some of the test inputs below that are on pixel boundaries
    such as theta=pi/2, phi=pi/2, have a tiny value of 1e-15 added to them
    to make them reproducible on i386 machines using x87 floating point
    instruction set (see https://github.com/healpy/healpy/issues/528).

    >>> import healpy as hp
    >>> hp.ang2pix(16, np.pi/2, 0)
    1440

    >>> print(hp.ang2pix(16, [np.pi/2, np.pi/4, np.pi/2, 0, np.pi], [0., np.pi/4, np.pi/2 + 1e-15, 0, 0]))
    [1440  427 1520    0 3068]

    >>> print(hp.ang2pix(16, np.pi/2, [0, np.pi/2 + 1e-15]))
    [1440 1520]

    >>> print(hp.ang2pix([1, 2, 4, 8, 16], np.pi/2, 0))
    [   4   12   72  336 1440]

    >>> print(hp.ang2pix([1, 2, 4, 8, 16], 0, 0, lonlat=True))
    [   4   12   72  336 1440]
    """

    check_nside(nside, nest=nest)

    if lonlat:
        theta, phi = lonlat2thetaphi(theta, phi)
    check_theta_valid(theta)
    check_nside(nside, nest=nest)
    if nest:
        return pixlib._ang2pix_nest(nside, theta, phi)
    else:
        return pixlib._ang2pix_ring(nside, theta, phi)


def pix2ang(nside, ipix, nest=False, lonlat=False):
    """pix2ang : nside,ipix,nest=False,lonlat=False -> theta[rad],phi[rad] (default RING)

    Parameters
    ----------
    nside : int or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    ipix : int or array-like
      Pixel indices
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering
    lonlat : bool, optional
      If True, return angles will be longitude and latitude in degree,
      otherwise, angles will be co-latitude and longitude in radians (default)

    Returns
    -------
    theta, phi : float, scalar or array-like
      The angular coordinates corresponding to ipix. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, vec2pix, pix2vec

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pix2ang(16, 1440)
    (1.5291175943723188, 0.0)

    >>> hp.pix2ang(16, [1440,  427, 1520,    0, 3068])
    (array([ 1.52911759,  0.78550497,  1.57079633,  0.05103658,  3.09055608]), array([ 0.        ,  0.78539816,  1.61988371,  0.78539816,  0.78539816]))

    >>> hp.pix2ang([1, 2, 4, 8], 11)
    (array([ 2.30052398,  0.84106867,  0.41113786,  0.2044802 ]), array([ 5.49778714,  5.89048623,  5.89048623,  5.89048623]))

    >>> hp.pix2ang([1, 2, 4, 8], 11, lonlat=True)
    (array([ 315. ,  337.5,  337.5,  337.5]), array([-41.8103149 ,  41.8103149 ,  66.44353569,  78.28414761]))
    """
    check_nside(nside, nest=nest)
    if nest:
        theta, phi = pixlib._pix2ang_nest(nside, ipix)
    else:
        theta, phi = pixlib._pix2ang_ring(nside, ipix)

    if lonlat:
        return thetaphi2lonlat(theta, phi)
    else:
        return theta, phi


def xyf2pix(nside, x, y, face, nest=False):
    """xyf2pix : nside,x,y,face,nest=False -> ipix (default:RING)

    Parameters
    ----------
    nside : int, scalar or array-like
      The healpix nside parameter, must be a power of 2
    x, y : int, scalars or array-like
      Pixel indices within face
    face : int, scalars or array-like
      Face number
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    pix : int or array of int
      The healpix pixel numbers. Scalar if all input are scalar, array otherwise.
      Usual numpy broadcasting rules apply.

    See Also
    --------
    pix2xyf

    Examples
    --------
    >>> import healpy as hp
    >>> hp.xyf2pix(16, 8, 8, 4)
    1440

    >>> print(hp.xyf2pix(16, [8, 8, 8, 15, 0], [8, 8, 7, 15, 0], [4, 0, 5, 0, 8]))
    [1440  427 1520    0 3068]
    """
    check_nside(nside, nest=nest)
    if nest:
        return pixlib._xyf2pix_nest(nside, x, y, face)
    else:
        return pixlib._xyf2pix_ring(nside, x, y, face)


def pix2xyf(nside, ipix, nest=False):
    """pix2xyf : nside,ipix,nest=False -> x,y,face (default RING)

    Parameters
    ----------
    nside : int or array-like
      The healpix nside parameter, must be a power of 2
    ipix : int or array-like
      Pixel indices
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    x, y : int, scalars or array-like
      Pixel indices within face
    face : int, scalars or array-like
      Face number

    See Also
    --------
    xyf2pix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pix2xyf(16, 1440)
    (8, 8, 4)

    >>> hp.pix2xyf(16, [1440,  427, 1520,    0, 3068])
    (array([ 8,  8,  8, 15,  0]), array([ 8,  8,  7, 15,  0]), array([4, 0, 5, 0, 8]))

    >>> hp.pix2xyf([1, 2, 4, 8], 11)
    (array([0, 1, 3, 7]), array([0, 0, 2, 6]), array([11,  3,  3,  3]))
    """
    check_nside(nside, nest=nest)
    if nest:
        return pixlib._pix2xyf_nest(nside, ipix)
    else:
        return pixlib._pix2xyf_ring(nside, ipix)


def vec2pix(nside, x, y, z, nest=False):
    """vec2pix : nside,x,y,z,nest=False -> ipix (default:RING)

    Parameters
    ----------
    nside : int or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    x,y,z : floats or array-like
      vector coordinates defining point on the sphere
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    ipix : int, scalar or array-like
      The healpix pixel number corresponding to input vector. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, pix2ang, pix2vec

    Examples
    --------
    >>> import healpy as hp
    >>> hp.vec2pix(16, 1, 0, 0)
    1504

    >>> print(hp.vec2pix(16, [1, 0], [0, 1], [0, 0]))
    [1504 1520]

    >>> print(hp.vec2pix([1, 2, 4, 8], 1, 0, 0))
    [  4  20  88 368]
    """
    if nest:
        return pixlib._vec2pix_nest(nside, x, y, z)
    else:
        return pixlib._vec2pix_ring(nside, x, y, z)


def pix2vec(nside, ipix, nest=False):
    """pix2vec : nside,ipix,nest=False -> x,y,z (default RING)

    Parameters
    ----------
    nside : int, scalar or array-like
      The healpix nside parameter, must be a power of 2, less than 2**30
    ipix : int, scalar or array-like
      Healpix pixel number
    nest : bool, optional
      if True, assume NESTED pixel ordering, otherwise, RING pixel ordering

    Returns
    -------
    x, y, z : floats, scalar or array-like
      The coordinates of vector corresponding to input pixels. Scalar if all input
      are scalar, array otherwise. Usual numpy broadcasting rules apply.

    See Also
    --------
    ang2pix, pix2ang, vec2pix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pix2vec(16, 1504)
    (0.99879545620517241, 0.049067674327418015, 0.0)

    >>> hp.pix2vec(16, [1440,  427])
    (array([ 0.99913157,  0.5000534 ]), array([ 0.       ,  0.5000534]), array([ 0.04166667,  0.70703125]))

    >>> hp.pix2vec([1, 2], 11)
    (array([ 0.52704628,  0.68861915]), array([-0.52704628, -0.28523539]), array([-0.66666667,  0.66666667]))
    """
    check_nside(nside, nest=nest)
    if nest:
        return pixlib._pix2vec_nest(nside, ipix)
    else:
        return pixlib._pix2vec_ring(nside, ipix)


def ang2vec(theta, phi, lonlat=False):
    """ang2vec : convert angles to 3D position vector

    Parameters
    ----------
    theta : float, scalar or arry-like
      colatitude in radians measured southward from north pole (in [0,pi]).
    phi : float, scalar or array-like
      longitude in radians measured eastward (in [0, 2*pi]).
    lonlat : bool
      If True, input angles are assumed to be longitude and latitude in degree,
      otherwise, they are co-latitude and longitude in radians.

    Returns
    -------
    vec : float, array
      if theta and phi are vectors, the result is a 2D array with a vector per row
      otherwise, it is a 1D array of shape (3,)

    See Also
    --------
    vec2ang, rotator.dir2vec, rotator.vec2dir
    """
    if lonlat:
        theta, phi = lonlat2thetaphi(theta, phi)
    check_theta_valid(theta)
    sintheta = np.sin(theta)
    return np.array([sintheta * np.cos(phi), sintheta * np.sin(phi), np.cos(theta)]).T


def vec2ang(vectors, lonlat=False):
    """vec2ang: vectors [x, y, z] -> theta[rad], phi[rad]

    Parameters
    ----------
    vectors : float, array-like
      the vector(s) to convert, shape is (3,) or (N, 3)
    lonlat : bool, optional
      If True, return angles will be longitude and latitude in degree,
      otherwise, angles will be co-latitude and longitude in radians (default)

    Returns
    -------
    theta, phi : float, tuple of two arrays
      the colatitude and longitude in radians

    See Also
    --------
    ang2vec, rotator.vec2dir, rotator.dir2vec
    """
    vectors = vectors.reshape(-1, 3)
    dnorm = np.sqrt(np.sum(np.square(vectors), axis=1))
    theta = np.arccos(vectors[:, 2] / dnorm)
    phi = np.arctan2(vectors[:, 1], vectors[:, 0])
    phi[phi < 0] += 2 * np.pi
    if lonlat:
        return thetaphi2lonlat(theta, phi)
    else:
        return theta, phi


def ring2nest(nside, ipix):
    """Convert pixel number from RING ordering to NESTED ordering.

    Parameters
    ----------
    nside : int, scalar or array-like
      the healpix nside parameter
    ipix : int, scalar or array-like
      the pixel number in RING scheme

    Returns
    -------
    ipix : int, scalar or array-like
      the pixel number in NESTED scheme

    See Also
    --------
    nest2ring, reorder

    Examples
    --------
    >>> import healpy as hp
    >>> hp.ring2nest(16, 1504)
    1130

    >>> print(hp.ring2nest(2, np.arange(10)))
    [ 3  7 11 15  2  1  6  5 10  9]

    >>> print(hp.ring2nest([1, 2, 4, 8], 11))
    [ 11  13  61 253]
    """
    check_nside(nside, nest=True)
    return pixlib._ring2nest(nside, ipix)


def nest2ring(nside, ipix):
    """Convert pixel number from NESTED ordering to RING ordering.

    Parameters
    ----------
    nside : int, scalar or array-like
      the healpix nside parameter
    ipix : int, scalar or array-like
      the pixel number in NESTED scheme

    Returns
    -------
    ipix : int, scalar or array-like
      the pixel number in RING scheme

    See Also
    --------
    ring2nest, reorder

    Examples
    --------
    >>> import healpy as hp
    >>> hp.nest2ring(16, 1130)
    1504

    >>> print(hp.nest2ring(2, np.arange(10)))
    [13  5  4  0 15  7  6  1 17  9]

    >>> print(hp.nest2ring([1, 2, 4, 8], 11))
    [ 11   2  12 211]
    """
    check_nside(nside, nest=True)
    return pixlib._nest2ring(nside, ipix)


@accept_ma
def reorder(map_in, inp=None, out=None, r2n=None, n2r=None):
    """Reorder a healpix map from RING/NESTED ordering to NESTED/RING

    Parameters
    ----------
    map_in : array-like
      the input map to reorder, accepts masked arrays
    inp, out : ``'RING'`` or ``'NESTED'``
      define the input and output ordering
    r2n : bool
      if True, reorder from RING to NESTED
    n2r : bool
      if True, reorder from NESTED to RING

    Returns
    -------
    map_out : array-like
      the reordered map, as masked array if the input was a
      masked array

    Notes
    -----
    if ``r2n`` or ``n2r`` is defined, override ``inp`` and ``out``.

    See Also
    --------
    nest2ring, ring2nest

    Examples
    --------
    >>> import healpy as hp
    >>> hp.reorder(np.arange(48), r2n = True)
    array([13,  5,  4,  0, 15,  7,  6,  1, 17,  9,  8,  2, 19, 11, 10,  3, 28,
           20, 27, 12, 30, 22, 21, 14, 32, 24, 23, 16, 34, 26, 25, 18, 44, 37,
           36, 29, 45, 39, 38, 31, 46, 41, 40, 33, 47, 43, 42, 35])
    >>> hp.reorder(np.arange(12), n2r = True)
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    >>> hp.reorder(hp.ma(np.arange(12.)), n2r = True)
    masked_array(data = [  0.   1.   2.   3.   4.   5.   6.   7.   8.   9.  10.  11.],
                 mask = False,
           fill_value = -1.6375e+30)
    <BLANKLINE>
    >>> m = [np.arange(12.), np.arange(12.), np.arange(12.)]
    >>> m[0][2] = hp.UNSEEN
    >>> m[1][2] = hp.UNSEEN
    >>> m[2][2] = hp.UNSEEN
    >>> m = hp.ma(m)
    >>> hp.reorder(m, n2r = True)
    masked_array(data =
     [[0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0]
     [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0]
     [0.0 1.0 -- 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0]],
                 mask =
     [[False False  True False False False False False False False False False]
     [False False  True False False False False False False False False False]
     [False False  True False False False False False False False False False]],
           fill_value = -1.6375e+30)
    <BLANKLINE>
    """
    typ = maptype(map_in)
    if typ == 0:
        npix = len(map_in)
    else:
        npix = len(map_in[0])
    nside = npix2nside(npix)
    if nside > 128:
        bunchsize = npix // 24
    else:
        bunchsize = npix
    if r2n:
        inp = "RING"
        out = "NEST"
    if n2r:
        inp = "NEST"
        out = "RING"
    inp = str(inp).upper()[0:4]
    out = str(out).upper()[0:4]
    if inp not in ["RING", "NEST"] or out not in ["RING", "NEST"]:
        raise ValueError("inp and out must be either RING or NEST")
    if typ == 0:
        mapin = [map_in]
    else:
        mapin = map_in
    mapout = []
    for m_in in mapin:
        if inp == out:
            mapout.append(m_in)
        elif inp == "RING":
            m_out = np.zeros(npix, dtype=type(m_in[0]))
            for ibunch in range(npix // bunchsize):
                ipix_n = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
                ipix_r = nest2ring(nside, ipix_n)
                m_out[ipix_n] = np.asarray(m_in)[ipix_r]
            mapout.append(m_out)
        elif inp == "NEST":
            m_out = np.zeros(npix, dtype=type(m_in[0]))
            for ibunch in range(npix // bunchsize):
                ipix_r = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
                ipix_n = ring2nest(nside, ipix_r)
                m_out[ipix_r] = np.asarray(m_in)[ipix_n]
            mapout.append(m_out)
    if typ == 0:
        return mapout[0]
    else:
        return np.array(mapout)


def nside2npix(nside):
    """Give the number of pixels for the given nside.

    Parameters
    ----------
    nside : int
      healpix nside parameter

    Returns
    -------
    npix : int
      corresponding number of pixels

    Examples
    --------
    >>> import healpy as hp
    >>> import numpy as np
    >>> hp.nside2npix(8)
    768

    >>> np.all([hp.nside2npix(nside) == 12 * nside**2 for nside in [2**n for n in range(12)]])
    True

    >>> hp.nside2npix(7)
    588
    """
    return 12 * nside * nside


def nside2order(nside):
    """Give the resolution order for a given nside.

    Parameters
    ----------
    nside : int
      healpix nside parameter; an exception is raised if nside is not valid
      (nside must be a power of 2, less than 2**30)

    Returns
    -------
    order : int
      corresponding order where nside = 2**(order)

    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> import numpy as np
    >>> hp.nside2order(128)
    7

    >>> np.all([hp.nside2order(2**o) == o for o in range(30)])
    True

    >>> hp.nside2order(7)
    Traceback (most recent call last):
        ...
    ValueError: 7 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    check_nside(nside, nest=True)
    return len("{0:b}".format(nside)) - 1


def nside2resol(nside, arcmin=False):
    """Give approximate resolution (pixel size in radian or arcmin) for nside.

    Resolution is just the square root of the pixel area, which is a gross
    approximation given the different pixel shapes

    Parameters
    ----------
    nside : int
      healpix nside parameter, must be a power of 2, less than 2**30
    arcmin : bool
      if True, return resolution in arcmin, otherwise in radian

    Returns
    -------
    resol : float
      approximate pixel size in radians or arcmin

    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.nside2resol(128, arcmin = True)  # doctest: +FLOAT_CMP
    27.483891294539248

    >>> hp.nside2resol(256)
    0.0039973699529159707

    >>> hp.nside2resol(7)
    0.1461895297066412
    """

    resol = np.sqrt(nside2pixarea(nside))

    if arcmin:
        resol = np.rad2deg(resol) * 60

    return resol


def nside2pixarea(nside, degrees=False):
    """Give pixel area given nside in square radians or square degrees.

    Parameters
    ----------
    nside : int
      healpix nside parameter, must be a power of 2, less than 2**30
    degrees : bool
      if True, returns pixel area in square degrees, in square radians otherwise

    Returns
    -------
    pixarea : float
      pixel area in square radian or square degree

    Notes
    -----
    Raise a ValueError exception if nside is not valid.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.nside2pixarea(128, degrees = True)  # doctest: +FLOAT_CMP
    0.2098234113027917

    >>> hp.nside2pixarea(256)
    1.5978966540475428e-05

    >>> hp.nside2pixarea(7)
    0.021371378595848933
    """

    pixarea = 4 * np.pi / nside2npix(nside)

    if degrees:
        pixarea = np.rad2deg(np.rad2deg(pixarea))

    return pixarea


def npix2nside(npix):
    """Give the nside parameter for the given number of pixels.

    Parameters
    ----------
    npix : int
      the number of pixels

    Returns
    -------
    nside : int
      the nside parameter corresponding to npix

    Notes
    -----
    Raise a ValueError exception if number of pixel does not correspond to
    the number of pixel of a healpix map.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.npix2nside(768)
    8

    >>> np.all([hp.npix2nside(12 * nside**2) == nside for nside in [2**n for n in range(12)]])
    True

    >>> hp.npix2nside(1000)
    Traceback (most recent call last):
        ...
    ValueError: Wrong pixel number (it is not 12*nside**2)
    """
    if not isnpixok(npix):
        raise ValueError("Wrong pixel number (it is not 12*nside**2)")
    return int(np.sqrt(npix / 12.0))


def order2nside(order):
    """Give the nside parameter for the given resolution order.

    Parameters
    ----------
    order : int
      the resolution order

    Returns
    -------
    nside : int
      the nside parameter corresponding to order

    Notes
    -----
    Raise a ValueError exception if order produces an nside out of range.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.order2nside(7)
    128

    >>> print(hp.order2nside(np.arange(8)))
    [  1   2   4   8  16  32  64 128]

    >>> hp.order2nside(31)
    Traceback (most recent call last):
        ...
    ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    nside = 1 << order
    check_nside(nside, nest=True)
    return nside


def order2npix(order):
    """Give the number of pixels for the given resolution order.

    Parameters
    ----------
    order : int
      the resolution order

    Returns
    -------
    npix : int
      corresponding number of pixels

    Notes
    -----
    A convenience function that successively applies order2nside then nside2npix to order.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.order2npix(7)
    196608

    >>> print(hp.order2npix(np.arange(8)))
    [    12     48    192    768   3072  12288  49152 196608]

    >>> hp.order2npix(31)
    Traceback (most recent call last):
        ...
    ValueError: 2147483648 is not a valid nside parameter (must be a power of 2, less than 2**30)
    """
    nside = order2nside(order)
    npix = nside2npix(nside)
    return npix


def npix2order(npix):
    """Give the resolution order for the given number of pixels.

    Parameters
    ----------
    npix : int
      the number of pixels

    Returns
    -------
    order : int
      corresponding resolution order

    Notes
    -----
    A convenience function that successively applies npix2nside then nside2order to npix.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.npix2order(768)
    3

    >>> np.all([hp.npix2order(12 * 4**order) == order for order in range(12)])
    True

    >>> hp.npix2order(1000)
    Traceback (most recent call last):
        ...
    ValueError: Wrong pixel number (it is not 12*nside**2)
    """
    nside = npix2nside(npix)
    order = nside2order(nside)
    return order


def isnsideok(nside, nest=False):
    """Returns :const:`True` if nside is a valid nside parameter, :const:`False` otherwise.

    NSIDE needs to be a power of 2 only for nested ordering

    Parameters
    ----------
    nside : int, scalar or array-like
      integer value to be tested

    Returns
    -------
    ok : bool, scalar or array-like
      :const:`True` if given value is a valid nside, :const:`False` otherwise.

    Examples
    --------
    >>> import healpy as hp
    >>> hp.isnsideok(13, nest=True)
    False

    >>> hp.isnsideok(13, nest=False)
    True

    >>> hp.isnsideok(32)
    True

    >>> hp.isnsideok([1, 2, 3, 4, 8, 16], nest=True)
    array([ True,  True, False,  True,  True,  True], dtype=bool)
    """
    # we use standard bithacks from http://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2
    if hasattr(nside, "__len__"):
        if not isinstance(nside, np.ndarray):
            nside = np.asarray(nside)
        is_nside_ok = (
            (nside == nside.astype(int)) & (nside > 0) & (nside <= max_nside)
        )
        if nest:
            is_nside_ok &= (nside.astype(int) & (nside.astype(int) - 1)) == 0
    else:
        is_nside_ok = nside == int(nside) and 0 < nside <= max_nside
        if nest:
            is_nside_ok = is_nside_ok and (int(nside) & (int(nside) - 1)) == 0
    return is_nside_ok


def check_nside(nside, nest=False):
    """Raises exception is nside is not valid"""
    if not np.all(isnsideok(nside, nest=nest)):
        raise ValueError(
            "%s is not a valid nside parameter (must be a power of 2, less than 2**30)"
            % str(nside)
        )


def isnpixok(npix):
    """Return :const:`True` if npix is a valid value for healpix map size, :const:`False` otherwise.

    Parameters
    ----------
    npix : int, scalar or array-like
      integer value to be tested

    Returns
    -------
    ok : bool, scalar or array-like
      :const:`True` if given value is a valid number of pixel, :const:`False` otherwise

    Examples
    --------
    >>> import healpy as hp
    >>> hp.isnpixok(12)
    True

    >>> hp.isnpixok(768)
    True

    >>> hp.isnpixok([12, 768, 1002])
    array([ True,  True, False], dtype=bool)
    """
    nside = np.sqrt(np.asarray(npix) / 12.0)
    return nside == np.floor(nside)


def get_interp_val(m, theta, phi, nest=False, lonlat=False):
    """Return the bi-linear interpolation value of a map using 4 nearest neighbours.

    Parameters
    ----------
    m : array-like
      a healpix map, accepts masked arrays
    theta, phi : float, scalar or array-like
      angular coordinates of point at which to interpolate the map
    nest : bool
      if True, the is assumed to be in NESTED ordering.
    lonlat : bool
      If True, input angles are assumed to be longitude and latitude in degree,
      otherwise, they are co-latitude and longitude in radians.

    Returns
    -------
      val : float, scalar or arry-like
        the interpolated value(s), usual numpy broadcasting rules apply.

    See Also
    --------
    get_interp_weights, get_all_neighbours

    Examples
    --------
    >>> import healpy as hp
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, 0)
    4.0
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2)
    5.0
    >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2 + 2*np.pi)
    5.0
    >>> hp.get_interp_val(np.arange(12.), np.linspace(0, np.pi, 10), 0)
    array([ 1.5       ,  1.5       ,  1.5       ,  2.20618428,  3.40206143,
            5.31546486,  7.94639458,  9.5       ,  9.5       ,  9.5       ])
    >>> hp.get_interp_val(np.arange(12.), 0, np.linspace(90, -90, 10), lonlat=True)
    array([ 1.5       ,  1.5       ,  1.5       ,  2.20618428,  3.40206143,
            5.31546486,  7.94639458,  9.5       ,  9.5       ,  9.5       ])
    """
    m2 = m.ravel()
    nside = npix2nside(m2.size)
    if lonlat:
        theta, phi = lonlat2thetaphi(theta, phi)
    if nest:
        r = pixlib._get_interpol_nest(nside, theta, phi)
    else:
        r = pixlib._get_interpol_ring(nside, theta, phi)
    p = np.array(r[0:4])
    w = np.array(r[4:8])
    del r
    return np.sum(m2[p] * w, 0)


def get_interp_weights(nside, theta, phi=None, nest=False, lonlat=False):
    """Return the 4 closest pixels on the two rings above and below the
    location and corresponding weights.
    Weights are provided for bilinear interpolation along latitude and longitude

    Parameters
    ----------
    nside : int
      the healpix nside
    theta, phi : float, scalar or array-like
      if phi is not given, theta is interpreted as pixel number,
      otherwise theta[rad],phi[rad] are angular coordinates
    nest : bool
      if ``True``, NESTED ordering, otherwise RING ordering.
    lonlat : bool
      If True, input angles are assumed to be longitude and latitude in degree,
      otherwise, they are co-latitude and longitude in radians.

    Returns
    -------
    res : tuple of length 2
      contains pixel numbers in res[0] and weights in res[1].
      Usual numpy broadcasting rules apply.

    See Also
    --------
    get_interp_val, get_all_neighbours

    Examples
    --------
    Note that some of the test inputs below that are on pixel boundaries
    such as theta=pi/2, phi=pi/2, have a tiny value of 1e-15 added to them
    to make them reproducible on i386 machines using x87 floating point
    instruction set (see https://github.com/healpy/healpy/issues/528).

    >>> import healpy as hp
    >>> pix, weights = hp.get_interp_weights(1, 0)
    >>> print(pix)
    [0 1 4 5]
    >>> weights
    array([ 1.,  0.,  0.,  0.])

    >>> pix, weights = hp.get_interp_weights(1, 0, 0)
    >>> print(pix)
    [1 2 3 0]
    >>> weights
    array([ 0.25,  0.25,  0.25,  0.25])

    >>> pix, weights = hp.get_interp_weights(1, 0, 90, lonlat=True)
    >>> print(pix)
    [1 2 3 0]
    >>> weights
    array([ 0.25,  0.25,  0.25,  0.25])

    >>> pix, weights = hp.get_interp_weights(1, [0, np.pi/2 + 1e-15], 0)
    >>> print(pix)
    [[ 1  4]
     [ 2  5]
     [ 3 11]
     [ 0  8]]
    >>> np.testing.assert_allclose(
    ...     weights,
    ...     np.array([[ 0.25,  1.  ],
    ...               [ 0.25,  0.  ],
    ...               [ 0.25,  0.  ],
    ...               [ 0.25,  0.  ]]), rtol=0, atol=1e-14)
    """
    check_nside(nside, nest=nest)
    if phi is None:
        theta, phi = pix2ang(nside, theta, nest=nest)
    elif lonlat:
        theta, phi = lonlat2thetaphi(theta, phi)
    if nest:
        r = pixlib._get_interpol_nest(nside, theta, phi)
    else:
        r = pixlib._get_interpol_ring(nside, theta, phi)
    p = np.array(r[0:4])
    w = np.array(r[4:8])
    return (p, w)


def get_all_neighbours(nside, theta, phi=None, nest=False, lonlat=False):
    """Return the 8 nearest pixels.

    Parameters
    ----------
    nside : int
      the nside to work with
    theta, phi : scalar or array-like
      if phi is not given or None, theta is interpreted as pixel number,
      otherwise, theta[rad],phi[rad] are angular coordinates
    nest : bool
      if ``True``, pixel number will be NESTED ordering, otherwise RING ordering.
    lonlat : bool
      If True, input angles are assumed to be longitude and latitude in degree,
      otherwise, they are co-latitude and longitude in radians.

    Returns
    -------
    ipix : int, array
      pixel number of the SW, W, NW, N, NE, E, SE and S neighbours,
      shape is (8,) if input is scalar, otherwise shape is (8, N) if input is
      of length N. If a neighbor does not exist (it can be the case for W, N, E and S)
      the corresponding pixel number will be -1.

    See Also
    --------
    get_interp_weights, get_interp_val

    Examples
    --------
    >>> import healpy as hp
    >>> print(hp.get_all_neighbours(1, 4))
    [11  7  3 -1  0  5  8 -1]

    >>> print(hp.get_all_neighbours(1, np.pi/2, np.pi/2))
    [ 8  4  0 -1  1  6  9 -1]

    >>> print(hp.get_all_neighbours(1, 90, 0, lonlat=True))
    [ 8  4  0 -1  1  6  9 -1]
    """
    check_nside(nside, nest=nest)
    if phi is not None:
        theta = ang2pix(nside, theta, phi, nest=nest, lonlat=lonlat)
    if nest:
        r = pixlib._get_neighbors_nest(nside, theta)
    else:
        r = pixlib._get_neighbors_ring(nside, theta)
    res = np.array(r[0:8])
    return res


def max_pixrad(nside, degrees=False):
    """Maximum angular distance between any pixel center and its corners

    Parameters
    ----------
    nside : int
      the nside to work with
    degrees : bool
      if True, returns pixel radius in degrees, in radians otherwise

    Returns
    -------
    rads: double
       angular distance (in radians or degrees)

    Examples
    --------
    >>> '%.14f' % max_pixrad(1)
    '0.84106867056793'
    >>> '%.14f' % max_pixrad(16)
    '0.06601476143251'
    """
    check_nside(nside, nest=False)

    if degrees:
        return np.rad2deg(pixlib._max_pixrad(nside))

    return pixlib._max_pixrad(nside)


def fit_dipole(m, nest=False, bad=UNSEEN, gal_cut=0):
    """Fit a dipole and a monopole to the map, excluding bad pixels.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked maps
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float [degrees]
      pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account

    Returns
    -------
    res : tuple of length 2
      the monopole value in res[0] and the dipole vector (as array) in res[1]

    See Also
    --------
    remove_dipole, fit_monopole, remove_monopole
    """
    m = ma_to_array(m)
    m = np.asarray(m)
    npix = m.size
    nside = npix2nside(npix)
    if nside > 128:
        bunchsize = npix // 24
    else:
        bunchsize = npix
    aa = np.zeros((4, 4), dtype=np.float64)
    v = np.zeros(4, dtype=np.float64)
    for ibunch in range(npix // bunchsize):
        ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
        ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))]
        x, y, z = pix2vec(nside, ipix, nest)
        if gal_cut > 0:
            w = np.abs(z) >= np.sin(gal_cut * np.pi / 180)
            ipix = ipix[w]
            x = x[w]
            y = y[w]
            z = z[w]
            del w
        aa[0, 0] += ipix.size
        aa[1, 0] += x.sum()
        aa[2, 0] += y.sum()
        aa[3, 0] += z.sum()
        aa[1, 1] += (x ** 2).sum()
        aa[2, 1] += (x * y).sum()
        aa[3, 1] += (x * z).sum()
        aa[2, 2] += (y ** 2).sum()
        aa[3, 2] += (y * z).sum()
        aa[3, 3] += (z ** 2).sum()
        v[0] += m.flat[ipix].sum()
        v[1] += (m.flat[ipix] * x).sum()
        v[2] += (m.flat[ipix] * y).sum()
        v[3] += (m.flat[ipix] * z).sum()
    aa[0, 1] = aa[1, 0]
    aa[0, 2] = aa[2, 0]
    aa[0, 3] = aa[3, 0]
    aa[1, 2] = aa[2, 1]
    aa[1, 3] = aa[3, 1]
    aa[2, 3] = aa[3, 2]
    res = np.dot(np.linalg.inv(aa), v)
    mono = res[0]
    dipole = res[1:4]
    return mono, dipole


@deprecated_renamed_argument("verbose", None, "1.15.0")
def remove_dipole(
    m, nest=False, bad=UNSEEN, gal_cut=0, fitval=False, copy=True, verbose=True
):
    """Fit and subtract the dipole and the monopole from the given map m.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked arrays
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float [degrees]
      pixels at latitude in [-gal_cut;+gal_cut] are not taken into account
    fitval : bool
      whether to return or not the fitted values of monopole and dipole
    copy : bool
      whether to modify input map or not (by default, make a copy)
    verbose : bool
      deprecated, no effect

    Returns
    -------
    res : array or tuple of length 3
      if fitval is False, returns map with monopole and dipole subtracted,
      otherwise, returns map (array, in res[0]), monopole (float, in res[1]),
      dipole_vector (array, in res[2])

    See Also
    --------
    fit_dipole, fit_monopole, remove_monopole
    """
    input_ma = is_ma(m)
    m = ma_to_array(m)
    m = np.array(m, copy=copy)
    npix = m.size
    nside = npix2nside(npix)
    if nside > 128:
        bunchsize = npix // 24
    else:
        bunchsize = npix
    mono, dipole = fit_dipole(m, nest=nest, bad=bad, gal_cut=gal_cut)
    for ibunch in range(npix // bunchsize):
        ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
        ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))]
        x, y, z = pix2vec(nside, ipix, nest)
        m.flat[ipix] -= dipole[0] * x
        m.flat[ipix] -= dipole[1] * y
        m.flat[ipix] -= dipole[2] * z
        m.flat[ipix] -= mono

    # imported here to avoid circular import
    from . import rotator as R

    lon, lat = R.vec2dir(dipole, lonlat=True)
    amp = np.sqrt((dipole * dipole).sum())
    log.info(
        "monopole: %.2g  dipole: lon: %.2g}, lat: %.2g}, amp: %.2g", mono, lon, lat, amp
    )
    if is_ma:
        m = ma(m)
    if fitval:
        return m, mono, dipole
    else:
        return m


def fit_monopole(m, nest=False, bad=UNSEEN, gal_cut=0):
    """Fit a monopole to the map, excluding unseen pixels.

    Parameters
    ----------
    m : float, array-like
      the map to which a dipole is fitted and subtracted, accepts masked arrays
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float [degrees]
      pixels at latitude in [-gal_cut;+gal_cut] degrees are not taken into account

    Returns
    -------
    res: float
      fitted monopole value

    See Also
    --------
    fit_dipole, remove_monopole, remove_monopole
    """
    m = ma_to_array(m)
    m = np.asarray(m)
    npix = m.size
    nside = npix2nside(npix)
    if nside > 128:
        bunchsize = npix // 24
    else:
        bunchsize = npix
    aa = v = 0.0
    for ibunch in range(npix // bunchsize):
        ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
        ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))]
        x, y, z = pix2vec(nside, ipix, nest)
        if gal_cut > 0:
            w = np.abs(z) >= np.sin(gal_cut * np.pi / 180)
            ipix = ipix[w]
            x = x[w]
            y = y[w]
            z = z[w]
            del w
        aa += ipix.size
        v += m.flat[ipix].sum()
    mono = v / aa
    return mono


@deprecated_renamed_argument("verbose", None, "1.15.0")
def remove_monopole(
    m, nest=False, bad=UNSEEN, gal_cut=0, fitval=False, copy=True, verbose=True
):
    """Fit and subtract the monopole from the given map m.

    Parameters
    ----------
    m : float, array-like
      the map to which a monopole is fitted and subtracted
    nest : bool
      if ``False`` m is assumed in RING scheme, otherwise map is NESTED
    bad : float
      bad values of pixel, default to :const:`UNSEEN`.
    gal_cut : float [degrees]
      pixels at latitude in [-gal_cut;+gal_cut] are not taken into account
    fitval : bool
      whether to return or not the fitted value of monopole
    copy : bool
      whether to modify input map or not (by default, make a copy)
    verbose: bool
      deprecated, no effect

    Returns
    -------
    res : array or tuple of length 3
      if fitval is False, returns map with monopole subtracted,
      otherwise, returns map (array, in res[0]) and monopole (float, in res[1])

    See Also
    --------
    fit_dipole, fit_monopole, remove_dipole
    """
    input_ma = is_ma(m)
    m = ma_to_array(m)
    m = np.array(m, copy=copy)
    npix = m.size
    nside = npix2nside(npix)
    if nside > 128:
        bunchsize = npix // 24
    else:
        bunchsize = npix
    mono = fit_monopole(m, nest=nest, bad=bad, gal_cut=gal_cut)
    for ibunch in range(npix // bunchsize):
        ipix = np.arange(ibunch * bunchsize, (ibunch + 1) * bunchsize)
        ipix = ipix[(m.flat[ipix] != bad) & (np.isfinite(m.flat[ipix]))]
        x, y, z = pix2vec(nside, ipix, nest)
        m.flat[ipix] -= mono
    log.info("monopole: %.3g", mono)
    if input_ma:
        m = ma(m)
    if fitval:
        return m, mono
    else:
        return m


def get_map_size(m):
    """Returns the npix of a given map (implicit or explicit pixelization).

     If map is a dict type, assumes explicit pixelization: use nside key if present, or use
     nside attribute if present, otherwise use the smallest valid npix given the maximum key value.
     otherwise assumes implicit pixelization and returns len(m).

     Parameters
     ----------
     m : array-like or dict-like
       a map with implicit (array-like) or explicit (dict-like) pixellization

     Returns
     -------
     npix : int
       a valid number of pixel

     Notes
     -----
     In implicit pixellization, raise a ValueError exception if the size of the input
     is not a valid pixel number.

     Examples
     --------
    >>> import healpy as hp
     >>> m = {0: 1, 1: 1, 2: 1, 'nside': 1}
     >>> print(hp.get_map_size(m))
     12

     >>> m = {0: 1, 767: 1}
     >>> print(hp.get_map_size(m))
     768

     >>> print(hp.get_map_size(np.zeros(12 * 8 ** 2)))
     768
    """
    if isinstance(m, dict):
        if "nside" in m:
            return nside2npix(m["nside"])
        elif hasattr(ma, "nside"):
            return nside2npix(m.nside)
        else:
            nside = get_min_valid_nside(max(m.keys()) + 1)
            return nside2npix(nside)
    else:
        if isnpixok(len(m)):
            return len(m)
        else:
            raise ValueError("Wrong pixel number (it is not 12*nside**2)")


def get_min_valid_nside(npix):
    """Returns the minimum acceptable nside so that npix <= nside2npix(nside).

    Parameters
    ----------
    npix : int
      a minimal number of pixel

    Returns
    -------
    nside : int
      a valid healpix nside so that 12 * nside ** 2 >= npix

    Examples
    --------
    >>> import healpy as hp
    >>> hp.pixelfunc.get_min_valid_nside(355)
    8
    >>> hp.pixelfunc.get_min_valid_nside(768)
    8
    """
    order = 0.5 * np.log2(npix / 12.0)
    return 1 << int(np.ceil(order))


def get_nside(m):
    """Return the nside of the given map.

    Parameters
    ----------
    m : sequence
      the map to get the nside from.

    Returns
    -------
    nside : int
      the healpix nside parameter of the map (or sequence of maps)

    Notes
    -----
    If the input is a sequence of maps, all of them must have same size.
    If the input is not a valid map (not a sequence, unvalid number of pixels),
    a TypeError exception is raised.
    """
    typ = maptype(m)
    if typ == 0:
        return npix2nside(len(m))
    else:
        return npix2nside(len(m[0]))


@accept_ma
def ud_grade(
    map_in,
    nside_out,
    pess=False,
    order_in="RING",
    order_out=None,
    power=None,
    dtype=None,
):
    """Upgrade or degrade resolution of a map (or list of maps).

    in degrading the resolution, ud_grade sets the value of the superpixel
    as the mean of the children pixels.

    Parameters
    ----------
    map_in : array-like or sequence of array-like
      the input map(s) (if a sequence of maps, all must have same size)
    nside_out : int
      the desired nside of the output map(s)
    pess : bool
      if ``True``, in degrading, reject pixels which contains
      a bad sub_pixel. Otherwise, estimate average with good pixels
    order_in, order_out : str
      pixel ordering of input and output ('RING' or 'NESTED')
    power : float
      if non-zero, divide the result by (nside_in/nside_out)**power
      Examples:
      power=-2 keeps the sum of the map invariant (useful for hitmaps),
      power=2 divides the mean by another factor of (nside_in/nside_out)**2
      (useful for variance maps)
    dtype : type
      the type of the output map

    Returns
    -------
    map_out : array-like or sequence of array-like
      the upgraded or degraded map(s)

    Examples
    --------
    >>> import healpy as hp
    >>> hp.ud_grade(np.arange(48.), 1)
    array([  5.5 ,   7.25,   9.  ,  10.75,  21.75,  21.75,  23.75,  25.75,
            36.5 ,  38.25,  40.  ,  41.75])
    """
    check_nside(nside_out, nest=order_in != "RING")
    typ = maptype(map_in)
    if typ < 0:
        raise TypeError("Invalid map")
    if typ == 0:
        m_in = [map_in]
    else:
        m_in = map_in
    mapout = []
    if order_out is None:
        order_out = order_in
    for m in m_in:
        if str(order_in).upper()[0:4] == "RING":
            m = reorder(m, r2n=True)
        mout = _ud_grade_core(m, nside_out, pess=pess, power=power, dtype=dtype)
        if str(order_out).upper()[0:4] == "RING":
            mout = reorder(mout, n2r=True)
        mapout.append(mout)
    if typ == 0:
        return mapout[0]
    else:
        return np.array(mapout)


def _ud_grade_core(m, nside_out, pess=False, power=None, dtype=None):
    """Internal routine used by ud_grade. It assumes that the map is NESTED
    and single (not a list of maps)
    """
    nside_in = get_nside(m)
    if dtype:
        type_out = dtype
    else:
        type_out = type(m[0])
    check_nside(nside_out, nest=True)
    npix_in = nside2npix(nside_in)
    npix_out = nside2npix(nside_out)

    if power:
        power = float(power)
        ratio = (float(nside_out) / float(nside_in)) ** power
    else:
        ratio = 1

    if nside_out > nside_in:
        rat2 = npix_out // npix_in
        fact = np.ones(rat2, dtype=type_out) * ratio
        map_out = np.outer(m, fact).reshape(npix_out)
    elif nside_out < nside_in:
        rat2 = npix_in // npix_out
        mr = m.reshape(npix_out, rat2)
        goods = ~(mask_bad(mr) | (~np.isfinite(mr)))
        map_out = np.sum(mr * goods, axis=1).astype(type_out)
        nhit = goods.sum(axis=1)
        if pess:
            badout = np.where(nhit != rat2)
        else:
            badout = np.where(nhit == 0)
        if power:
            nhit = nhit / ratio
        map_out[nhit != 0] = map_out[nhit != 0] / nhit[nhit != 0]
        try:
            map_out[badout] = UNSEEN
        except OverflowError:
            pass
    else:
        map_out = m
    return map_out.astype(type_out)
