# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
Creates a common namespace for all pre-defined models.
"""

# pylint: disable=unused-wildcard-import, unused-import, wildcard-import

from .core import custom_model, hide_inverse, fix_inputs # pylint: disable=W0611
from .mappings import *
from .projections import *
from .rotations import *
from .polynomial import *
from .functional_models import *
from .physical_models import *
from .powerlaws import *
from .tabular import *
from . import math_functions as math

# Deprecated models that are not defined in __all__
from .functional_models import MexicanHat1D, MexicanHat2D


# Attach a docstring explaining constraints to all models which support them.
# Note: add new models to this list

CONSTRAINTS_DOC = """
    Other Parameters
    ----------------
    fixed : a dict, optional
        A dictionary ``{parameter_name: boolean}`` of parameters to not be
        varied during fitting. True means the parameter is held fixed.
        Alternatively the `~astropy.modeling.Parameter.fixed`
        property of a parameter may be used.
    tied : dict, optional
        A dictionary ``{parameter_name: callable}`` of parameters which are
        linked to some other parameter. The dictionary values are callables
        providing the linking relationship.  Alternatively the
        `~astropy.modeling.Parameter.tied` property of a parameter
        may be used.
    bounds : dict, optional
        A dictionary ``{parameter_name: value}`` of lower and upper bounds of
        parameters. Keys are parameter names. Values are a list or a tuple
        of length 2 giving the desired range for the parameter.
        Alternatively, the
        `~astropy.modeling.Parameter.min` and
        `~astropy.modeling.Parameter.max` properties of a parameter
        may be used.
    eqcons : list, optional
        A list of functions of length ``n`` such that ``eqcons[j](x0,*args) ==
        0.0`` in a successfully optimized problem.
    ineqcons : list, optional
        A list of functions of length ``n`` such that ``ieqcons[j](x0,*args) >=
        0.0`` is a successfully optimized problem.
"""


MODELS_WITH_CONSTRAINTS = [
    AiryDisk2D, Moffat1D, Moffat2D, Box1D, Box2D,
    Const1D, Const2D, Ellipse2D, Disk2D,
    Gaussian1D, Gaussian2D,
    Linear1D, Lorentz1D, RickerWavelet1D, RickerWavelet2D,
    PowerLaw1D, Sersic1D, Sersic2D, Sine1D, Trapezoid1D, TrapezoidDisk2D,
    Chebyshev1D, Chebyshev2D, Hermite1D, Hermite2D, Legendre2D, Legendre1D,
    Polynomial1D, Polynomial2D, Voigt1D, KingProjectedAnalytic1D,
    NFW
]


for item in MODELS_WITH_CONSTRAINTS:
    if isinstance(item.__doc__, str):
        item.__doc__ += CONSTRAINTS_DOC
