B
    ud7`                 @   s   d dl Z d dlZd dlmZ ddlmZmZm	Z	 ddlm
Z
 ddlmZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZmZ ddlmZ ddlmZ ddlmZ G dd de
eeZG dd de
e	eZdS )    N   )BaseEstimatorClassifierMixinRegressorMixin)MultiOutputMixin)check_random_state)
deprecated)_num_samples)check_array)check_consistent_length)check_is_fitted_check_sample_weight)_random_choice_csc)_weighted_percentile)class_distributionc                   sr   e Zd ZdZddddddZdddZd	d
 Zdd Zdd Zdd Z	d fdd	Z
ededd Z  ZS )DummyClassifiera  DummyClassifier makes predictions that ignore the input features.

    This classifier serves as a simple baseline to compare against other more
    complex classifiers.

    The specific behavior of the baseline is selected with the `strategy`
    parameter.

    All strategies make predictions that ignore the input feature values passed
    as the `X` argument to `fit` and `predict`. The predictions, however,
    typically depend on values observed in the `y` parameter passed to `fit`.

    Note that the "stratified" and "uniform" strategies lead to
    non-deterministic predictions that can be rendered deterministic by setting
    the `random_state` parameter if needed. The other strategies are naturally
    deterministic and, once fit, always return a the same constant prediction
    for any value of `X`.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    strategy : {"most_frequent", "prior", "stratified", "uniform",             "constant"}, default="prior"
        Strategy to use to generate predictions.

        * "most_frequent": the `predict` method always returns the most
          frequent class label in the observed `y` argument passed to `fit`.
          The `predict_proba` method returns the matching one-hot encoded
          vector.
        * "prior": the `predict` method always returns the most frequent
          class label in the observed `y` argument passed to `fit` (like
          "most_frequent"). ``predict_proba`` always returns the empirical
          class distribution of `y` also known as the empirical class prior
          distribution.
        * "stratified": the `predict_proba` method randomly samples one-hot
          vectors from a multinomial distribution parametrized by the empirical
          class prior probabilities.
          The `predict` method returns the class label which got probability
          one in the one-hot vector of `predict_proba`.
          Each sampled row of both methods is therefore independent and
          identically distributed.
        * "uniform": generates predictions uniformly at random from the list
          of unique classes observed in `y`, i.e. each class has equal
          probability.
        * "constant": always predicts a constant label that is provided by
          the user. This is useful for metrics that evaluate a non-majority
          class.

          .. versionchanged:: 0.24
             The default value of `strategy` has changed to "prior" in version
             0.24.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness to generate the predictions when
        ``strategy='stratified'`` or ``strategy='uniform'``.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    constant : int or str or array-like of shape (n_outputs,), default=None
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of such arrays
        Unique class labels observed in `y`. For multi-output classification
        problems, this attribute is a list of arrays as each output has an
        independent set of possible classes.

    n_classes_ : int or list of int
        Number of label for each output.

    class_prior_ : ndarray of shape (n_classes,) or list of such arrays
        Frequency of each class observed in `y`. For multioutput classification
        problems, this is computed independently for each output.

    n_outputs_ : int
        Number of outputs.

    n_features_in_ : `None`
        Always set to `None`.

        .. versionadded:: 0.24
        .. deprecated:: 1.0
            Will be removed in 1.0

    sparse_output_ : bool
        True if the array returned from predict is to be in sparse CSC format.
        Is automatically set to True if the input `y` is passed in sparse
        format.

    See Also
    --------
    DummyRegressor : Regressor that makes predictions using simple rules.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.dummy import DummyClassifier
    >>> X = np.array([-1, 1, 1, 1])
    >>> y = np.array([0, 1, 1, 1])
    >>> dummy_clf = DummyClassifier(strategy="most_frequent")
    >>> dummy_clf.fit(X, y)
    DummyClassifier(strategy='most_frequent')
    >>> dummy_clf.predict(X)
    array([1, 1, 1, 1])
    >>> dummy_clf.score(X, y)
    0.75
    priorN)strategyrandom_stateconstantc            C   s   || _ || _|| _d S )N)r   r   r   )selfr   r   r    r   Z/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sklearn/dummy.py__init__   s    zDummyClassifier.__init__c                s  d}| j |kr td| j |f | j | _| jdkrPt|rP| }tdt t|| _	| j	svt
|}t
|}|jdkrt
|d}|jd | _t|| |dk	rt||}| jdkr| jdkrtd	n4t
t
| jd  jd
 | jkrtd| j t||\| _| _| _| jdkrxTt| jD ]Ft fdd| j D s6d| jt| j }t|q6W | jdkr| jd
 | _| jd
 | _| jd
 | _| S )a  Fit the baseline classifier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        self : object
            Returns the instance itself.
        )most_frequent
stratifieduniformr   r   z.Unknown strategy type: %s, expected one of %s.r   zA local copy of the target data has been converted to a numpy array. Predicting on sparse target data with the uniform strategy would not save memory and would be slower.r   )r   Nr   zMConstant target value has to be specified when the constant strategy is used.r   z0Constant target value should have shape (%d, 1).c             3   s   | ]}  d  |kV  qdS )r   Nr   ).0c)r   kr   r   	<genexpr>   s    z&DummyClassifier.fit.<locals>.<genexpr>zrThe constant target value must be present in the training data. You provided constant={}. Possible values are: {}.)r   
ValueError	_strategyspissparseZtoarraywarningswarnUserWarningsparse_output_npZasarrayZ
atleast_1dndimreshapeshape
n_outputs_r   r   r   r   classes_
n_classes_class_prior_rangeanyformatlist)r   Xysample_weightallowed_strategieserr_msgr   )r   r    r   fit   sV    







 zDummyClassifier.fitc                s  t |  t|t| j| j| j| j | j}| jdkrTgg g |g}| j	dkrx| 
|| jdkrxg| jrd}| j	dkrdd  D n<| j	dkr }n,| j	dkrtdn| j	d	krd
d |D t|| j}n| j	dkrt fddt| jD dg}n| j	dkrNtfddt| jD j}nV| j	dkrfddt| jD }t|j}n| j	d	krt| jdf}| jdkrt|}|S )a;  Perform classification on test vectors X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.

        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Predicted target values for X.
        r   r   N)r   r   c             S   s   g | ]}t | gqS r   )r*   arrayargmax)r   cpr   r   r   
<listcomp>  s    z+DummyClassifier.predict.<locals>.<listcomp>r   zCSparse target prediction is not supported with the uniform strategyr   c             S   s   g | ]}t |gqS r   )r*   r<   )r   r   r   r   r   r?   %  s    c                s    g | ]}|  |    qS r   )r=   )r   r    )r1   r/   r   r   r?   ,  s   c                s$   g | ]} | | j d d qS )r   )axis)r=   )r   r    )r/   probar   r   r?   5  s   c                s&   g | ]} | j | d  qS ))size)randint)r   r    )r/   r0   	n_samplesrsr   r   r?   <  s   )r   r	   r   r   r0   r/   r1   r   r.   r#   predict_probar)   r"   r   r*   Ztiler2   ZvstackTravel)r   r6   r   Z
class_probr7   retr   )r1   r/   r0   rD   rA   rE   r   predict   s\    









zDummyClassifier.predictc             C   s  t |  t|}t| j}| j}| j}| j}| j}| jdkrT|g}|g}|g}|g}g }x(t	| jD ]}	| j
dkr||	  }
tj|||	 ftjd}d|dd|
f< n| j
dkrt|df||	  }n| j
dkr|jd||	 |d}|tj}n|| j
d	kr,tj|||	 ftjd}|||	  }nJ| j
d
krvt||	 ||	 k}
tj|||	 ftjd}d|dd|
f< || qfW | jdkr|d }|S )a  
        Return probability estimates for the test vectors X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.

        Returns
        -------
        P : ndarray of shape (n_samples, n_classes) or list of such arrays
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically, for each
            output.
        r   r   )dtypeg      ?Nr   r   )rB   r   r   r   )r   r	   r   r   r0   r/   r1   r   r.   r2   r#   r=   r*   zerosZfloat64ZonesZmultinomialZastypewhereappend)r   r6   rD   rE   r0   r/   r1   r   Pr    indoutr   r   r   rF   I  sD    




zDummyClassifier.predict_probac             C   s0   |  |}| jdkrt|S dd |D S dS )a  
        Return log probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data.

        Returns
        -------
        P : ndarray of shape (n_samples, n_classes) or list of such arrays
            Returns the log probability of the sample for each class in
            the model, where classes are ordered arithmetically for each
            output.
        r   c             S   s   g | ]}t |qS r   )r*   log)r   pr   r   r   r?     s    z5DummyClassifier.predict_log_proba.<locals>.<listcomp>N)rF   r.   r*   rR   )r   r6   rA   r   r   r   predict_log_proba  s    


z!DummyClassifier.predict_log_probac             C   s   ddddddS )NTzfails for the predict method)Zcheck_methods_subset_invarianceZ%check_methods_sample_order_invariance)
poor_scoreno_validationZ_xfail_checksr   )r   r   r   r   
_more_tags  s    zDummyClassifier._more_tagsc                s,   |dkrt jt|dfd}t |||S )ai  Return the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : None or array-like of shape (n_samples, n_features)
            Test samples. Passing None as test samples gives the same result
            as passing real test samples, since DummyClassifier
            operates independently of the sampled observations.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) wrt. y.
        Nr   )r-   )r*   rL   lensuperscore)r   r6   r7   r8   )	__class__r   r   rZ     s    zDummyClassifier.scorezA`n_features_in_` is deprecated in 1.0 and will be removed in 1.2.c             C   s   t |  d S )N)r   )r   r   r   r   n_features_in_  s    zDummyClassifier.n_features_in_)N)N)__name__
__module____qualname____doc__r   r;   rJ   rF   rT   rW   rZ   r   propertyr\   __classcell__r   r   )r[   r   r      s   p
dW?
r   c                   sd   e Zd ZdZddddddZdddZdd
dZdd Zd fdd	Ze	de
dd Z  ZS )DummyRegressora4  Regressor that makes predictions using simple rules.

    This regressor is useful as a simple baseline to compare with other
    (real) regressors. Do not use it for real problems.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    strategy : {"mean", "median", "quantile", "constant"}, default="mean"
        Strategy to use to generate predictions.

        * "mean": always predicts the mean of the training set
        * "median": always predicts the median of the training set
        * "quantile": always predicts a specified quantile of the training set,
          provided with the quantile parameter.
        * "constant": always predicts a constant value that is provided by
          the user.

    constant : int or float or array-like of shape (n_outputs,), default=None
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    quantile : float in [0.0, 1.0], default=None
        The quantile to predict using the "quantile" strategy. A quantile of
        0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
        maximum.

    Attributes
    ----------
    constant_ : ndarray of shape (1, n_outputs)
        Mean or median or quantile of the training targets or constant value
        given by the user.

    n_features_in_ : `None`
        Always set to `None`.

        .. versionadded:: 0.24
        .. deprecated:: 1.0
            Will be removed in 1.0

    n_outputs_ : int
        Number of outputs.

    See Also
    --------
    DummyClassifier: Classifier that makes predictions using simple rules.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.dummy import DummyRegressor
    >>> X = np.array([1.0, 2.0, 3.0, 4.0])
    >>> y = np.array([2.0, 3.0, 5.0, 10.0])
    >>> dummy_regr = DummyRegressor(strategy="mean")
    >>> dummy_regr.fit(X, y)
    DummyRegressor()
    >>> dummy_regr.predict(X)
    array([5., 5., 5., 5.])
    >>> dummy_regr.score(X, y)
    0.0
    meanN)r   r   quantilec            C   s   || _ || _|| _d S )N)r   r   re   )r   r   r   re   r   r   r   r     s    zDummyRegressor.__init__c                s  d}| j |kr td| j |f tddtdkr@tdjdkrVtdjd | _t	| d	k	rt
|| j d
krtjdd| _n6| j dkrd	krtjdd| _nfddt| jD | _n| j dkr^| jd	kst| jstd| j | jd  d	kr>tjd d| _n fddt| jD | _nx| j dkr| jd	kr~tdt| jdddgddd| _| jdkr| jjd jd krtdjd  | j| _t| jd| _| S )a  Fit the random regressor.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        self : object
            Fitted estimator.
        )rd   medianre   r   z.Unknown strategy type: %s, expected one of %s.F)	ensure_2dr   zy must not be empty.r   )r   r   Nrd   )r@   weightsrf   )r@   c                s&   g | ]}t d d |f  ddqS )Ng      I@)
percentile)r   )r   r    )r8   r7   r   r   r?   F  s   z&DummyRegressor.fit.<locals>.<listcomp>re   z>Quantile must be a scalar in the range [0.0, 1.0], but got %s.g      Y@)r@   qc                s&   g | ]}t d d |f  dqS )N)ri   )r   )r   r    )ri   r8   r7   r   r   r?   V  s   r   zMConstant target value has to be specified when the constant strategy is used.ZcsrZcscZcoo)Zaccept_sparserg   Zensure_min_samplesz0Constant target value should have shape (%d, 1).)r   r   )r   r"   r
   rX   r+   r*   r,   r-   r.   r   r   Zaverage	constant_rf   r2   re   Zisscalarri   r   	TypeError)r   r6   r7   r8   r9   r   )ri   r8   r7   r   r;     s\    








$zDummyRegressor.fitFc             C   sp   t |  t|}tj|| jf| jt| jjd}t|| jf}| jdkr`t	|}t	|}|rl||fS |S )a  Perform classification on test vectors X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test data.

        return_std : bool, default=False
            Whether to return the standard deviation of posterior prediction.
            All zeros in this case.

            .. versionadded:: 0.20

        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Predicted target values for X.

        y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)
            Standard deviation of predictive distribution of query points.
        )rK   r   )
r   r	   r*   fullr.   rk   r<   rK   rL   rH   )r   r6   Z
return_stdrD   r7   Zy_stdr   r   r   rJ   r  s    


zDummyRegressor.predictc             C   s
   dddS )NT)rU   rV   r   )r   r   r   r   rW     s    zDummyRegressor._more_tagsc                s,   |dkrt jt|dfd}t |||S )a  Return the coefficient of determination R^2 of the prediction.

        The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the
        residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the
        total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best
        possible score is 1.0 and it can be negative (because the model can be
        arbitrarily worse). A constant model that always predicts the expected
        value of y, disregarding the input features, would get a R^2 score of
        0.0.

        Parameters
        ----------
        X : None or array-like of shape (n_samples, n_features)
            Test samples. Passing None as test samples gives the same result
            as passing real test samples, since `DummyRegressor`
            operates independently of the sampled observations.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            R^2 of `self.predict(X)` wrt. y.
        Nr   )r-   )r*   rL   rX   rY   rZ   )r   r6   r7   r8   )r[   r   r   rZ     s    zDummyRegressor.scorezA`n_features_in_` is deprecated in 1.0 and will be removed in 1.2.c             C   s   t |  d S )N)r   )r   r   r   r   r\     s    zDummyRegressor.n_features_in_)N)F)N)r]   r^   r_   r`   r   r;   rJ   rW   rZ   r   ra   r\   rb   r   r   )r[   r   rc     s   @
[
&#rc   )r&   numpyr*   Zscipy.sparsesparser$   baser   r   r   r   utilsr   r   Zutils.validationr	   r
   r   r   r   Zutils.randomr   Zutils.statsr   Zutils.multiclassr   r   rc   r   r   r   r   <module>   s$      <