B
    ud+                 @   s  d Z ddlZddlZddlmZ ddlZddlZddlZddlZ	ddl
mZ ddlmZ ddlmZ ddlmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddddZdefddZG dd dZG dd dZ G dd dZ!G dd dZ"G dd dZ#G d d! d!Z$G d"d# d#Z%G d$d% d%Z&G d&d' d'Z'G d(d) d)Z(G d*d+ d+Z)G d,d- d-Z*d.d/ Z+d0d1 Z,d2d3 Z-d4d5 Z.dS )6z Base classes for all estimators.    N)defaultdict   )__version__)
get_config)	_IS_32BIT)_DEFAULT_TAGS
_safe_tags)	check_X_y)check_array)_check_y)_num_features)_check_feature_names_in)estimator_html_repr)_get_feature_namesT)safec               s  t | }|ttttfkr.| fdd| D S t| drBt| t r| sPt| S t| t rdt	dnt	dt
| t | f | j}| jdd}x$| D ]\}}t|dd||< qW |f |}|jdd}x4|D ],}|| }	|| }
|	|
k	rtd	| |f qW |S )
ar  Construct a new unfitted estimator with the same parameters.

    Clone does a deep copy of the model in an estimator
    without actually copying attached data. It returns a new estimator
    with the same parameters that has not been fitted on any data.

    Parameters
    ----------
    estimator : {list, tuple, set} of estimator instance or a single             estimator instance
        The estimator or group of estimators to be cloned.
    safe : bool, default=True
        If safe is False, clone will fall back to a deep copy on objects
        that are not estimators.

    Returns
    -------
    estimator : object
        The deep copy of the input, an estimator if input is an estimator.

    Notes
    -----
    If the estimator's `random_state` parameter is an integer (or if the
    estimator doesn't have a `random_state` parameter), an *exact clone* is
    returned: the clone and the original estimator will give the exact same
    results. Otherwise, *statistical clone* is returned: the clone might
    return different results from the original estimator. More details can be
    found in :ref:`randomness`.
    c                s   g | ]}t | d qS ))r   )clone).0e)r    Y/work/yifan.wang/ringdown/master-ringdown-env/lib/python3.7/site-packages/sklearn/base.py
<listcomp>@   s    zclone.<locals>.<listcomp>
get_paramszaCannot clone object. You should provide an instance of scikit-learn estimator instead of a class.zCannot clone object '%s' (type %s): it does not seem to be a scikit-learn estimator as it does not implement a 'get_params' method.F)deep)r   zWCannot clone object %s, as the constructor either does not set or modifies parameter %s)typelisttupleset	frozensethasattr
isinstancecopydeepcopy	TypeErrorrepr	__class__r   itemsr   RuntimeError)	estimatorr   Zestimator_typeklassZnew_object_paramsnameparamZ
new_objectZ
params_setZparam1Zparam2r   )r   r   r      s4    



r   c             C   s>  t  }t jdddd t }|}dd|d  d  }xtt|  D ]\}\}}	t|	tkrrd|t	|	f }
nd|||	f }
t
|
d	kr|
d
d d |
dd
  }
|dkr|t
|
 dksd|
kr|| t
|}n|d |d7 }||
 |t
|
7 }qHW t jf | d|}ddd |dD }|S )af  Pretty print the dictionary 'params'

    Parameters
    ----------
    params : dict
        The dictionary to pretty print

    offset : int, default=0
        The offset in characters to add at the begin of each line.

    printer : callable, default=repr
        The function to convert entries to strings, typically
        the builtin str or repr

       @      )	precision	thresholdZ	edgeitemsz,
r    z%s=%si  Ni,  z...ir   K   
z,  c             s   s   | ]}| d V  qdS )r0   N)rstrip)r   lr   r   r   	<genexpr>   s    z_pprint.<locals>.<genexpr>)npZget_printoptionsZset_printoptionsr   	enumeratesortedr%   r   floatstrlenappendjoinsplit)paramsoffsetprinteroptionsZparams_listZthis_line_lengthZline_sepikvZ	this_reprlinesr   r   r   _pprintf   s.    




rH   c                   s   e Zd ZdZedd Zd"ddZdd Zd#d
dZ fddZ	 fddZ
dd Zdd Zdd Zdd Zd$ddZedd Zdd Zd d! Z  ZS )%BaseEstimatorzBase class for all estimators in scikit-learn.

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    c             C   sx   t | jd| j}|tjkrg S t|}dd |j D }x(|D ] }|j|jkrBt	d| |f qBW t
dd |D S )z%Get parameter names for the estimatorZdeprecated_originalc             S   s&   g | ]}|j d kr|j|jkr|qS )self)r)   kindVAR_KEYWORD)r   pr   r   r   r      s   z2BaseEstimator._get_param_names.<locals>.<listcomp>zscikit-learn estimators should always specify their parameters in the signature of their __init__ (no varargs). %s with constructor %s doesn't  follow this convention.c             S   s   g | ]
}|j qS r   )r)   )r   rM   r   r   r   r      s    )getattr__init__objectinspect	signature
parametersvaluesrK   VAR_POSITIONALr&   r9   )clsinitZinit_signaturerS   rM   r   r   r   _get_param_names   s    


zBaseEstimator._get_param_namesTc                s`   t  }xT|  D ]H t|  }|rPt|drP|  }| fdd|D  || < qW |S )ae  
        Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        r   c             3   s"   | ]\}} d  | |fV  qdS )__Nr   )r   rE   val)keyr   r   r6      s    z+BaseEstimator.get_params.<locals>.<genexpr>)dictrX   rN   r   r   r%   update)rJ   r   outvalueZ
deep_itemsr   )r[   r   r      s    
zBaseEstimator.get_paramsc       	      K   s   |s| S | j dd}tt}xb| D ]V\}}|d\}}}||krVtd|| f |rh||| |< q&t| || |||< q&W x$| D ]\}}|| jf | qW | S )a  
        Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as :class:`~sklearn.pipeline.Pipeline`). The latter have
        parameters of the form ``<component>__<parameter>`` so that it's
        possible to update each component of a nested object.

        Parameters
        ----------
        **params : dict
            Estimator parameters.

        Returns
        -------
        self : estimator instance
            Estimator instance.
        T)r   rY   zsInvalid parameter %s for estimator %s. Check the list of available parameters with `estimator.get_params().keys()`.)r   r   r\   r%   	partition
ValueErrorsetattr
set_params)	rJ   r@   Zvalid_paramsZnested_paramsr[   r_   delimZsub_keyZ
sub_paramsr   r   r   rc      s"    zBaseEstimator.set_params  c             C   s   ddl m} d}|ddd|d}|| }td| }||kr|d }d| }t|| }	t||d d d	  }
d
||	|
  kr|d7 }t||d d d	  }
d}|	t| t||
 k r|d |	 d ||
 d   }|S )Nr   )_EstimatorPrettyPrinter   T)compactindentZindent_at_nameZn_max_elements_to_showr3   r-   z^(\s*\S){%d}r2   z[^\n]*\nz...)	Zutils._pprintrf   pformatr<   r>   r?   rematchend)rJ   Z
N_CHAR_MAXrf   ZN_MAX_ELEMENTS_TO_SHOWpprepr_Z
n_nonblankZlimregexZleft_limZ	right_limellipsisr   r   r   __repr__  s*    
	zBaseEstimator.__repr__c                sV   yt   }W n tk
r,   | j }Y nX t| jdrNt|	 t
dS |S d S )Nzsklearn.)_sklearn_version)super__getstate__AttributeError__dict__r    r   
__module__
startswithr\   r%   r   )rJ   state)r$   r   r   rv   :  s    zBaseEstimator.__getstate__c                st   t | jdr>|dd}|tkr>td| jj	|tt
 yt | W n  tk
rn   | j| Y nX d S )Nzsklearn.rt   zpre-0.18a  Trying to unpickle estimator {0} from version {1} when using version {2}. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-limitations)r   ry   rz   popr   warningswarnformatr$   __name__UserWarningru   __setstate__rw   rx   r]   )rJ   r{   Zpickle_version)r$   r   r   r   E  s    zBaseEstimator.__setstate__c             C   s   t S )N)r   )rJ   r   r   r   
_more_tagsY  s    zBaseEstimator._more_tagsc             C   s@   i }x6t t| jD ]"}t|dr|| }|| qW |S )Nr   )reversedrQ   getmror$   r   r   r]   )rJ   Zcollected_tagsZ
base_classZ	more_tagsr   r   r   	_get_tags\  s    

zBaseEstimator._get_tagsc          
   C   s   yt |}W nN tk
rZ } z0|sJt| drJtd| jj d| j d|dS d}~X Y nX |rj|| _dS t| dsxdS || jkrtd| d| jj d| j ddS )	a  Set the `n_features_in_` attribute, or check against it.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            The input samples.
        reset : bool
            If True, the `n_features_in_` attribute is set to `X.shape[1]`.
            If False and the attribute exists, then check that it is equal to
            `X.shape[1]`. If False and the attribute does *not* exist, then
            the check is skipped.
            .. note::
               It is recommended to call reset=True in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.
        n_features_in_z%X does not contain any features, but z is expecting z	 featuresNzX has z features, but z features as input.)r   r"   r   ra   r$   r   r   )rJ   XresetZ
n_featuresr   r   r   r   _check_n_featuresg  s     

zBaseEstimator._check_n_featuresc            C   s\  |r4t |}|dk	r|| _nt| dr0t| d dS t| dd}t |}|dkr\|dkr\dS |dk	r|dkrtd| jj d dS |dkr|dk	rtd| jj d dS t	|t	|kst
||krXd}t|}t|}t|| }	t|| }
dd	 }|	r|d
7 }|||	7 }|
r8|d7 }|||
7 }|
sL|
sL|d7 }t|t dS )a  Set or check the `feature_names_in_` attribute.

        .. versionadded:: 1.0

        Parameters
        ----------
        X : {ndarray, dataframe} of shape (n_samples, n_features)
            The input samples.

        reset : bool
            Whether to reset the `feature_names_in_` attribute.
            If False, the input will be checked for consistency with
            feature names of data provided when reset was last True.
            .. note::
               It is recommended to call `reset=True` in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.
        Nfeature_names_in_zX has feature names, but z! was fitted without feature namesz)X does not have valid feature names, but z was fitted with feature nameszqThe feature names should match those that were passed during fit. Starting version 1.2, an error will be raised.
c             S   sD   d}d}x6t | D ]*\}}||kr,|d7 }P |d| d7 }qW |S )Nr3   r+   z- ...
z- r2   )r8   )namesoutputZmax_n_namesrD   r)   r   r   r   	add_names  s    z5BaseEstimator._check_feature_names.<locals>.add_namesz"Feature names unseen at fit time:
z1Feature names seen at fit time, yet now missing:
z=Feature names must be in the same order as they were in fit.
)r   r   r   delattrrN   r}   r~   r$   r   r<   r7   anyr   r9   FutureWarning)rJ   r   r   Zfeature_names_inZfitted_feature_namesZX_feature_namesmessageZfitted_feature_names_setZX_feature_names_setZunexpected_namesZmissing_namesr   r   r   r   _check_feature_names  sJ    


z"BaseEstimator._check_feature_namesno_validationFc             K   s  | j ||d |dkr6|  d r6td| jj dt|toF|dk}|dkp`t|to`|dk}|rt|rttdnt|s|rt|f|}|}nZ|r|st|f|}|}n@|r|\}	}
t|f|	}t|f|
}nt	||f|\}}||f}|s
|
dd	r
| j||d |S )
aF	  Validate input data and set or check the `n_features_in_` attribute.

        Parameters
        ----------
        X : {array-like, sparse matrix, dataframe} of shape                 (n_samples, n_features), default='no validation'
            The input samples.
            If `'no_validation'`, no validation is performed on `X`. This is
            useful for meta-estimator which can delegate input validation to
            their underlying estimator(s). In that case `y` must be passed and
            the only accepted `check_params` are `multi_output` and
            `y_numeric`.

        y : array-like of shape (n_samples,), default='no_validation'
            The targets.

            - If `None`, `check_array` is called on `X`. If the estimator's
              requires_y tag is True, then an error will be raised.
            - If `'no_validation'`, `check_array` is called on `X` and the
              estimator's requires_y tag is ignored. This is a default
              placeholder and is never meant to be explicitly set. In that case
              `X` must be passed.
            - Otherwise, only `y` with `_check_y` or both `X` and `y` are
              checked with either `check_array` or `check_X_y` depending on
              `validate_separately`.

        reset : bool, default=True
            Whether to reset the `n_features_in_` attribute.
            If False, the input will be checked for consistency with data
            provided when reset was last True.
            .. note::
               It is recommended to call reset=True in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.
        validate_separately : False or tuple of dicts, default=False
            Only used if y is not None.
            If False, call validate_X_y(). Else, it must be a tuple of kwargs
            to be used for calling check_array() on X and y respectively.
        **check_params : kwargs
            Parameters passed to :func:`sklearn.utils.check_array` or
            :func:`sklearn.utils.check_X_y`. Ignored if validate_separately
            is not False.

        Returns
        -------
        out : {ndarray, sparse matrix} or tuple of these
            The validated input. A tuple is returned if both `X` and `y` are
            validated.
        )r   N
requires_yzThis z= estimator requires y to be passed, but the target y is None.r   z*Validation should be done on X, y or both.Z	ensure_2dT)r   r   ra   r$   r   r   r;   r
   r   r	   getr   )rJ   r   yr   Zvalidate_separatelyZcheck_paramsZno_val_XZno_val_yr^   Zcheck_X_paramsZcheck_y_paramsr   r   r   _validate_data  s.    9
zBaseEstimator._validate_datac             C   s   t  d dkrtd| jS )a  HTML representation of estimator.

        This is redundant with the logic of `_repr_mimebundle_`. The latter
        should be favorted in the long term, `_repr_html_` is only
        implemented for consumers who do not interpret `_repr_mimbundle_`.
        displaydiagramzW_repr_html_ is only defined when the 'display' configuration option is set to 'diagram')r   rw   _repr_html_inner)rJ   r   r   r   _repr_html_M  s    zBaseEstimator._repr_html_c             C   s   t | S )zThis function is returned by the @property `_repr_html_` to make
        `hasattr(estimator, "_repr_html_") return `True` or `False` depending
        on `get_config()["display"]`.
        )r   )rJ   r   r   r   r   ]  s    zBaseEstimator._repr_html_innerc             K   s*   dt | i}t d dkr&t| |d< |S )z8Mime bundle used by jupyter kernels to display estimatorz
text/plainr   r   z	text/html)r#   r   r   )rJ   kwargsr   r   r   r   _repr_mimebundle_d  s    zBaseEstimator._repr_mimebundle_)T)re   )r   r   TF)r   ry   __qualname____doc__classmethodrX   r   rc   rs   rv   r   r   r   r   r   r   propertyr   r   r   __classcell__r   r   )r$   r   rI      s$   
-
4.\   
YrI   c               @   s&   e Zd ZdZdZdddZdd ZdS )	ClassifierMixinz0Mixin class for all classifiers in scikit-learn.
classifierNc             C   s    ddl m} ||| ||dS )a  
        Return the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for `X`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of ``self.predict(X)`` wrt. `y`.
        r   )accuracy_score)sample_weight)metricsr   predict)rJ   r   r   r   r   r   r   r   scoreq  s    zClassifierMixin.scorec             C   s   ddiS )Nr   Tr   )rJ   r   r   r   r     s    zClassifierMixin._more_tags)N)r   ry   r   r   _estimator_typer   r   r   r   r   r   r   l  s   
r   c               @   s&   e Zd ZdZdZdddZdd ZdS )	RegressorMixinz:Mixin class for all regression estimators in scikit-learn.	regressorNc             C   s$   ddl m} | |}||||dS )a  Return the coefficient of determination of the prediction.

        The coefficient of determination :math:`R^2` is defined as
        :math:`(1 - \frac{u}{v})`, where :math:`u` is the residual
        sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
        is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
        The best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always predicts
        the expected value of `y`, disregarding the input features, would get
        a :math:`R^2` score of 0.0.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples. For some estimators this may be a precomputed
            kernel matrix or a list of generic objects instead with shape
            ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
            is the number of samples used in the fitting for the estimator.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for `X`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            :math:`R^2` of ``self.predict(X)`` wrt. `y`.

        Notes
        -----
        The :math:`R^2` score used when calling ``score`` on a regressor uses
        ``multioutput='uniform_average'`` from version 0.23 to keep consistent
        with default value of :func:`~sklearn.metrics.r2_score`.
        This influences the ``score`` method of all the multioutput
        regressors (except for
        :class:`~sklearn.multioutput.MultiOutputRegressor`).
        r   )r2_score)r   )r   r   r   )rJ   r   r   r   r   Zy_predr   r   r   r     s    )
zRegressorMixin.scorec             C   s   ddiS )Nr   Tr   )rJ   r   r   r   r     s    zRegressorMixin._more_tags)N)r   ry   r   r   r   r   r   r   r   r   r   r     s   
.r   c               @   s&   e Zd ZdZdZdddZdd ZdS )	ClusterMixinz7Mixin class for all cluster estimators in scikit-learn.Z	clustererNc             C   s   |  | | jS )a  
        Perform clustering on `X` and returns cluster labels.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        labels : ndarray of shape (n_samples,), dtype=np.int64
            Cluster labels.
        )fitZlabels_)rJ   r   r   r   r   r   fit_predict  s    
zClusterMixin.fit_predictc             C   s   dg iS )NZpreserves_dtyper   )rJ   r   r   r   r     s    zClusterMixin._more_tags)N)r   ry   r   r   r   r   r   r   r   r   r   r     s   
r   c               @   s4   e Zd ZdZedd Zdd Zdd Zdd	 Zd
S )BiclusterMixinz9Mixin class for all bicluster estimators in scikit-learn.c             C   s   | j | jfS )z{Convenient way to get row and column indicators together.

        Returns the ``rows_`` and ``columns_`` members.
        )rows_columns_)rJ   r   r   r   biclusters_  s    zBiclusterMixin.biclusters_c             C   s0   | j | }| j| }t|d t|d fS )a  Row and column indices of the `i`'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        row_ind : ndarray, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : ndarray, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.
        r   )r   r   r7   Znonzero)rJ   rD   rowscolumnsr   r   r   get_indices  s    

zBiclusterMixin.get_indicesc             C   s   |  |}tdd |D S )a-  Shape of the `i`'th bicluster.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        n_rows : int
            Number of rows in the bicluster.

        n_cols : int
            Number of columns in the bicluster.
        c             s   s   | ]}t |V  qd S )N)r<   )r   rD   r   r   r   r6     s    z+BiclusterMixin.get_shape.<locals>.<genexpr>)r   r   )rJ   rD   indicesr   r   r   	get_shape  s    
zBiclusterMixin.get_shapec             C   s@   ddl m} ||dd}| |\}}||ddtjf |f S )a   Return the submatrix corresponding to bicluster `i`.

        Parameters
        ----------
        i : int
            The index of the cluster.
        data : array-like of shape (n_samples, n_features)
            The data.

        Returns
        -------
        submatrix : ndarray of shape (n_rows, n_cols)
            The submatrix corresponding to bicluster `i`.

        Notes
        -----
        Works with sparse matrices. Only works if ``rows_`` and
        ``columns_`` attributes exist.
        r   )r
   Zcsr)Zaccept_sparseN)utils.validationr
   r   r7   Znewaxis)rJ   rD   datar
   Zrow_indZcol_indr   r   r   get_submatrix  s    zBiclusterMixin.get_submatrixN)	r   ry   r   r   r   r   r   r   r   r   r   r   r   r     s
   r   c               @   s   e Zd ZdZdddZdS )TransformerMixinz1Mixin class for all transformers in scikit-learn.Nc             K   s6   |dkr| j |f||S | j ||f||S dS )a  
        Fit to data, then transform it.

        Fits transformer to `X` and `y` with optional parameters `fit_params`
        and returns a transformed version of `X`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input samples.

        y :  array-like of shape (n_samples,) or (n_samples, n_outputs),                 default=None
            Target values (None for unsupervised transformations).

        **fit_params : dict
            Additional fit parameters.

        Returns
        -------
        X_new : ndarray array of shape (n_samples, n_features_new)
            Transformed array.
        N)r   Z	transform)rJ   r   r   Z
fit_paramsr   r   r   fit_transform8  s    zTransformerMixin.fit_transform)N)r   ry   r   r   r   r   r   r   r   r   5  s   r   c               @   s   e Zd ZdZdddZdS )_OneToOneFeatureMixinzProvides `get_feature_names_out` for simple transformers.

    Assumes there's a 1-to-1 correspondence between input features
    and output features.
    Nc             C   s
   t | |S )a  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then names are generated: `[x0, x1, ..., x(n_features_in_)]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Same as input features.
        )r   )rJ   Zinput_featuresr   r   r   get_feature_names_outa  s    z+_OneToOneFeatureMixin.get_feature_names_out)N)r   ry   r   r   r   r   r   r   r   r   Z  s   r   c               @   s   e Zd ZdZdZdddZdS )DensityMixinz7Mixin class for all density estimators in scikit-learn.ZDensityEstimatorNc             C   s   dS )a=  Return the score of the model on the data `X`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        score : float
        Nr   )rJ   r   r   r   r   r   r   |  s    zDensityMixin.score)N)r   ry   r   r   r   r   r   r   r   r   r   w  s   r   c               @   s   e Zd ZdZdZdddZdS )OutlierMixinzAMixin class for all outlier detection estimators in scikit-learn.outlier_detectorNc             C   s   |  ||S )a  Perform fit on X and returns labels for X.

        Returns -1 for outliers and 1 for inliers.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            1 for inliers, -1 for outliers.
        )r   r   )rJ   r   r   r   r   r   r     s    zOutlierMixin.fit_predict)N)r   ry   r   r   r   r   r   r   r   r   r     s   r   c               @   s   e Zd ZdgZdS )MetaEstimatorMixinr'   N)r   ry   r   Z_required_parametersr   r   r   r   r     s   r   c               @   s   e Zd ZdZdd ZdS )MultiOutputMixinz2Mixin to mark estimators that support multioutput.c             C   s   ddiS )NZmultioutputTr   )rJ   r   r   r   r     s    zMultiOutputMixin._more_tagsN)r   ry   r   r   r   r   r   r   r   r     s   r   c               @   s   e Zd ZdZdd ZdS )_UnstableArchMixinz=Mark estimators that are non-determinstic on 32bit or PowerPCc             C   s   dt pt diS )NZnon_deterministic)ppcZpowerpc)r   platformmachinerz   )rJ   r   r   r   r     s    z_UnstableArchMixin._more_tagsN)r   ry   r   r   r   r   r   r   r   r     s   r   c             C   s   t | dddkS )a  Return True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    r   Nr   )rN   )r'   r   r   r   is_classifier  s    r   c             C   s   t | dddkS )a  Return True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : estimator instance
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    r   Nr   )rN   )r'   r   r   r   is_regressor  s    r   c             C   s   t | dddkS )a  Return True if the given estimator is (probably) an outlier detector.

    Parameters
    ----------
    estimator : estimator instance
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is an outlier detector and False otherwise.
    r   Nr   )rN   )r'   r   r   r   is_outlier_detector  s    r   c          	   C   sd   t  * t jdtd t| d}t| dd}W dQ R X t| dd}|r`||kr\t dt |S |S )	a  Returns True if estimator is pairwise.

    - If the `_pairwise` attribute and the tag are present and consistent,
      then use the value and not issue a warning.
    - If the `_pairwise` attribute and the tag are present and not
      consistent, use the `_pairwise` value and issue a deprecation
      warning.
    - If only the `_pairwise` attribute is present and it is not False,
      issue a deprecation warning and use the `_pairwise` value.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if the estimator is pairwise and False otherwise.
    ignore)categoryZ	_pairwiseFNpairwise)r[   z_pairwise was deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). Set the estimator tags of your estimator instead)r}   catch_warningsfilterwarningsr   r   rN   r   r~   )r'   Zhas_pairwise_attributeZpairwise_attributeZpairwise_tagr   r   r   _is_pairwise  s    

r   )/r   r    r}   collectionsr   r   rQ   rl   numpyr7   r3   r   _configr   utilsr   Zutils._tagsr   r   r   r	   r
   r   r   r   Zutils._estimator_html_reprr   r   r   r#   rH   rI   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   sN   G2   W%7N%