Pegasus 4.9.3 User Guide



Pegasus 4.9.3 User Guide




Table of Contents

I 1110 [T o P 1
OVEIVIEW BN FEAIUINES ...ttt et et ettt ettt et e et et e et e aeenees 1
WOTKEIOW GallErY . .eieieie i e et eeeeeeeeeeeeeeeeeaeaa e 2
ADOUL ThiS DOCUIMENT ...ttt et et e et ettt et e et et et e et eneaeaenas 2
Document Formats (Wb, PDF) .....oiii i e e 2

P22 I o - P 3
1o 01 o o PP 3
GEEING SHatE ... e e e 3
What are SCIentific WOIKFIOWS ... ..iu e 4
Submitting an Example WOrkflow ... 5
Workflow Dashboard for Monitoring and DebUGGING ... ..vuvuininiiiiiee e 7
Command line tools for Monitoring and DebUggING ... ...oviviiiiiii e 16

pegasus-status - monitoring the Workflow ... 16
pegasus-analyzer - debug a failed WOrkflow ..o 16
pegasus-statistics - collect statistics about aworkflow run ............cooviiiiiiii 18
RECOVENY from FallUrES . ...t e 19
Submitting ReSCUE WOIKFIOWS ... .. v e 20
Generating the WOrKIIOW .. ... e e e 22
INfOrMALION CalalOgS ...t vttt ettt e e e e e e et aas 23
THE St CalalOg ... .vuei i e e e e e e et 23
The Transformation CatalOog .. ... .vuvuiniii e aaaas 25
The REPICA CatalOog .. . vveiiiei e e e ettt aes 26
CONfIQUIING PEOASUS .....utititit ittt e e et e et e e e aans 26
L0000t 11 o 27

R 10 1 = P 28
(= =0 (U115 1 (=< 28
(0] 011010 o A1 TP 28
01V 01111 o P 28
RHEL / CentOS / SCIENLITIC LINMUX ....vuintinitiiee ettt enea e 29
L] o1 1 PP 29
D o1 T o P 29
Y o 0 15 P 30
Pegasus from Tarballs ... 30

4, Creating WOTKI WS . ... e e e e e e e 31
ADSIraCt WOTKFIOWS (DA X)) ettt e e e e e e e e e 31
Data Discovery (RepliCa Catalog) ......ouiviriritititat ettt e 34

Il e 34
R ettt e 35
1= o1 (o) VPP 35
O 2 O P 36
MR C it 36
Resource DisCoVEry (Sit€ CalalOg) .....ovoririrerititit ittt ettt 38
KM L i e 38
D P 40
Site Catalog Converter PegasUS-SC-CONVEITET ... .....iuiree ettt ettt e e e ae e et e anaaaaaans 41
Executable Discovery (Transformation Catalog) .......o.vveeiiiiiiiiiiiiiiiiie e 42
MultiLine Text based TC (TEXL) ..ouvuininiiiiee e et aaas 42
TC Client PegasUSTC-ClIENt .....iiiii e aea 44
TC Converter Client pegasus-tC-CONVEITEN ........ouiiiiie e e aaes 45
Variale EXPaNSION .. ..ttt e e e e e e e 45

5. RUNNING WOTKEIOWS ... e e e e 47
Executable WOTKFIOWS (DAG) ....uiuititititi et e e e e e e a e e 47
MapPIiNGg REFINEMENT SEEPS ...ttt aae e 48

DELA REUSE . ...ttt 49
S (S = 1o o PP 50
oo @[ =4 oo PRSP 52
Addition of Data Transfer and Registration NOGES ............ovuiniiiiiiiiiiiie e, 52




Pegasus 4.9.3 User Guide

Addition of Create Dir and Cleanup JODS ..........iuieiiie e 54

€008 GENMEIBIION ... ..eeeeet ettt ettt et et ettt ettt et 55

Data Staging CONfIGUIBLTION .. .....uie ettt ettt et ettt et es 56
Shared File Sy stom ...t 57

NON Shared FIlESYSIEIM ...t et 58
Condor Pool Without a Shared FIlESYyStem .........vuieiii e 60
PEOBSUSLITE ...t 61
PEOBSUS-PIAN ..ot 62
BaSIC PrO D I ES ...ttt 62
PEOASUS.NIOIME ... . 63
Catalog RelAted PrOPErtiES ... e e 63

Data Staging Configuration ProPErtieS ...........vuorieiiie e 68

6. Monitoring, Debugging @0 SEALISHICS ......vuvntieee ettt e 71
WOTKFIOW SEBEUS ...ttt e e ettt et ettt ettt e e n e 71
0150 2 S U = (PN 71
PEOASUS-ANAIYZEN ...t ettt et 72

8150 2 SN (= 1110 PP 73
Resubmitting failed WOrKFIOWS ..o 73
PLOtEING @NO SEALISICS ... et ettt et et 73
PEOASUS-SEALISHICS ettt ettt ettt 73
PEOASUS PIOLS ..ttt ettt e 80
DashDOBIT ...t 85
WOrKFIOW D@SHDOBIT ... ettt 85
NOUTICAIONS ...t e e et ettt et e ens 98
Specifying Notifications in the DAX ... 99
Notify File created by Pegasus in the submit dir€Ctory ............ccovviiiiiiiiiiie, 100
Configuring pegasus-monitord for NOtIfiCatioNS ...........c.vviriiii e 100
Default NOtifiCation SCIIPLS ... .. e 101
MONITOITNG DELADESE .. ...ttt et et ettt e eeae e 102
PEJASUS-MONITONT ...ttt ettt et et ettt et et ettt e e 102
Overview of the Workflow Database SChemMaL .........ovveiriiiiie e 104
Stampede WOTKFIOW BEVENES ......oeee et eenas 107
Ty DB S e 107
GOUPIMGS -+ttt ettt et ettt et e e ettt et ettt et et et e 109

BV IS . 111
Publishing t0 AMQP MESSAJE SEIVEI'S ......uietet ettt et ettt et eene e 125
CONFIGUIBLTION ...ttt e et et et 125
Monitord, RabbitMQ, ElasticSearch EXample ..........cooviiiiiiiiiiiii e, 126

A Pre-Configured Data Collection PIpeling .........c.oiiiiiii e 127

7. EXECULION ENVIFONIMENTS ... ..ttt ettt et et et ettt e e ettt e et e e e enene 129
LOCAINOSE ...ttt 129
CONAOT POOL ...t e e 129
GlIBINS ..t e 131
(6007070 (o] { O PP PRPPPP 131
Cloud (Amazon EC2/S3, G0O0GIE ClOU, ...) «.uenieeitetieetie e 133
AMBZON EC2 ... 134
GOoOgle Cloud PIAtfOrM ... 135
AMAZON AWS BaICh ... 135
SBlUD et 135
Creation of AWS Batch Entities for your Workflow .............cooiiiiiiiiiie 137

Site Catalog Entry for AWS BatCh .......ceiieiii e 138
(0] 0= 1= PP PPPP 138
Remote Cluster usSiNg PYGIIAEIN .......ouie e e 139
Remote Cluster using GIobUS GRAM ...t 142
Remote Cluster using CREAMGCE ... ..ot e 143
Local Campus Cluster USING GlIte .....uueiieieieee e 144
SELting JOD FEQUITEIMENTS ... .ttt et 146
Specifying aremote directory for the Job ..o 150
SDSC Comet With BOSCO GIIAEINS ....c.eiietieeee et eenes 150
Remote PBS Cluster using BOSCO and SSH ... ..cuvuiiiiiiiiien e 151




Pegasus 4.9.3 User Guide

CAMPUS CIUSLEN ...ttt ettt et et e et e et e et e e e et e e e e e 152
K OEDE .ottt 153
TN USING GlITe ..ot 154
Open Science Grid Using glideinWIMS ... 154
..................................................................................................................... 154
Ao g = = £ PP PR 155
OVBIVIBIW .ottt et et et e e e 155
Configuring WOrkflows TO USE CONTAINETS ... ...vueetiitiie et e 155
Containerized Applications in the Transformation Catalog ..........ccevvvieiiiiiiiiiiiieeenen, 155
CONLAINEIS ON OSG ...ttt et ettt ettt et et ettt 156
Container EXeCUtION MOEL ....... ..o 157
Staging of AppliCation CONTAINETS ... ...vuie e eae e 158
ShIftEr CONTAINETS ... ..ttt et e ettt e enas 159
Symlinking and File Copy From HOSE OS .......cuiiiiiieiiiie e 159
Container Example - Montage WOrKFIOW .........o.ieeiniiii e 160
Montage USING CONTAINETS ... ..ttt ettt ettt a s 160

9. EXAMPIE WOTKFIOWS ... et 162
Gl EXAMPIES ..ot e e e 162
BIaCK DIGIMONG ... ..ttt et e 162
NASA/TPAC MONTAGE ... eteete ettt ettt et ettt aens 164
ROSEHIAL . ... 164
CONAOr EXAMPIES ...ttt et et e 164
Black DIiamond - CONTOIO ......ueeeitet ettt 164
CONtaiNEr EXBMPIES ...ttt 165
Montage USING CONTAINETS ... ..ttt ettt et e s 165

LOCaAl SNEIl EXAMPIES ...ttt e 166
BIACK DIGMONG ... ..ttt et et 166
NOLTICATONS EXAMPIE ... e 166
WOrKFIOW Of WOTKFIOWS ... et e 166
GAIACHC PLANE .. ..eeee e 166

10. DA MBNGEIMENT ... ..ttt et e e e e e e e et 168
REDIICA SEIECHION ...t 168
CONFIGUIBLTON ... et e ettt et e 168
Supported REPIICA SEIECLONS .. ...t e 168

(Dt B I =0 1= £ PPN 170
Data Staging CONfiGUIBLTION ... .. .euie ettt et et een e 170

Local VErsus REMOLE TranSfErS ... .uie it 175
Controlling Transfer Parall€lism ..........c.ouiiii e 176
Symlinking AQainNst INPUE Data ... ..uuenieeitee e 176
Addition of Separate Data Movement Nodes to Executable Workflow ..............ccoeviiiiiinnns 177
Staging of EXECULBDIES ... ... 179
Staging Of WOrKer PaCKBOE ........vueiiie e e 180
Staging of AppliCation CONLAINESS ........iuteet et 181
Staging of Job Checkpoint FIlES .. .. .viii e 183
Supported Transfer ProtOCOIS ... .. .. e 183
AMAZON S3 (S3/]) e 184
DOCKES (AOCKEN:/]) e e e 185
Singularity (KShUD | HBrany>:/1) ... e 185

File / Symlink (filed/] , symlink:ll) ..o 185
GIARTP (GSIED/]) e 185
GridFTP over SSH (SSNFIPI/) eneie e e 185
GOOGIE SEOrAGE (OS] o eneeei et 186
HTTP (Np:/]  DEPSIT) oo 186
HPSS (NDSS) et e 186
TRODS (I1OUSI/]) et e e eanas 187

SCP (SOl ettt 187

OSG Stash / stashiep (SEASNII) v 187
GlODUS ONIINE (QOI) e e 187
CredentialS ManageMENT ...ttt e 187
X509 GFi PrOXIES ...ttt et ettt et et 188




Pegasus 4.9.3 User Guide

AMBZON AWV S S e 188
GO0GIE SEOTAE ...ttt 188
IROAS Password and TICKELS ... ..c.ouiieie e 189

SOH KBy S ittt ettt e 189
HPSS TOKENS ...ttt e e ettt ettt et 189
SEAGING MBDPENS ..ttt ettt et et 190
(O 01001 F="o] o= £ PP 190
Effect of pegasus.dir.Storage.dee ........ovu e e 191

(DLt W O = o o R PP P TP 191
Data Cleanup in Hierarchal WOrkflOWs ..o 191

L= e=To = - PP P TR PRPTN 192
Metadata in the DAX ... 192
WOrKFIOW LeVel MEBHEEIA . ... vueeiee e e 193

TasK LEVE MEIBOAEA ... ...veee e 194

File LeVEl MEAOEIA . ... .veeeei e e 195
Automatically Generated Metadata attribULES ...........oveieiii i 196
Tracing Metadata for an OULPUL File ..o 196
INEEGITLY CRECKING ... ettt et ettt e eaas 196
Integrity Checking SEALISHCS .. ..c..vuieeeiet et 198
Integrity Checking DIalS ... ..uiiiii e 198
Specifying Checksums in ReEPIiCa CatalOg ... ..vuveieiiinii e 198

11. Optimizing Workflows for Efficiency and Scalability ...........ccoovriiiiiiiii e 199
Optimizing Short Jobs / SCheduling DEAYS .........uveii e 199
JOD CIUSLEITNG . ee ettt ettt e et et et et e e 199
OVBIVI B et e 199

How t0 Scale Large WOrKFIOWS ... ..c.uiieiie et e 211
Hierarchical WOPKFIOWS ... .. e e 211
INEFOAUCTION ..ot e et 211
Specifying a DAX Job in the DAX ....e e 212
Specifying @ DAG Job iN the DAX ... 213

File Dependencies ACrOSS DAX JODS ......uiuiriie e 214
Recursion in Hierarchal WOrkflOWS ..........ooiininiiii e 214
EXBMIDIE e 216
OPtiMIZING DAta TraNSFEIS ... ettt et 216
N o oI I (11 [T o T PPN 217
Job Throttling ACross WOrKFIOWS ........ouieii e 219
Increase Memory Requirements fOr REIES ... ..v.ieiii e 220
12, PEOASUS SEIVICE ...ttt ettt ettt et et et 221
SEVICE AAMINISIFALION ... ee ettt 221
SEVICE CONFIGUIBLION ...ttt ettt nenes 221
RUNNING ThE SEIVICE ... e 222
DashDOBIT ...t 222
Running Pegasus Service under ApaChe HTTPD ......ouiiiiiiiiii e 222
ENSEMBIE MANAOEY ... .e et 223
SR @001 1To U = (o o I PP PP 225
Differences between Profiles and Properties .........ovuieiiiiii e 225
PO S e 225
Profile StrUCtUre HEBOING ... . et e 225
SOUICES FOr ProOfilES ..o e e 225
Profiles Conflict RESOIULION ... .....uiie e 228
Details of Profile Handling ..........c.oeinieiii e 228

The EnV Profile NamMESPACE ... et 229

The Globus Profile NamMESPECE ... v 229

The Condor Profile NamMESPACE ... ...vuie e 231

The Dagman Profile NamESPACE ... .. e 233

The Pegasus Profile NamMESPACE ... ... 235

The Hints Profile NamMeSPaCE ........v e 240

L (0] 0= 1= PP PPN 241
LOCAl DiIreCtorieS PrOPEITIES . ...euit ettt ettt e 241

Site DiIreCtOrieS PrOPEITIES ... .ueeitiee et ettt e 242

vi



Pegasus 4.9.3 User Guide

Schema File LOCALION PrOPEItIES ........eeieeiee e 245
Database Drivers For All Relational CatalOogs ... .....cuveeieiiiiiiee e 246
Catalog RelGted PrOPErtiES ... vt 248
Replica SEleCtion PrOPErties ........ve i e 254

Site SElECtiON PrOPEITIES ...t 256

Data Staging Configuration Properties .........c.ouieirieii e 260
Transfer Configuration PrOPErtiES ........v.irii e 262
MONITOITNG PrOPEITIES ... v et e et 266

JOD ClUSLENING PrOPEITIES ...t et 268
LOQUING PrOPEITIES ... ettt 269
ClEBNUD PrOPEITIES ...ttt et et eas 271
AWS BACH PrOPEIMIES .. ettt e e 273
MiSCEIANEOUS PrOPEITIES .. ..eeieiie e e e 274

14. SUDMIt DIr€CLONY DELAIIS ... et e ettt 278
LB OUL ...ttt 278
Condor DAGMAN FLE ... e 279
Sample Condor DAG File ... 279
KICKSIATt XML RECOIT ...ttt ettt e eenes 280
Reading a Kickstart QUIPUL FilE .........vuieii e 281
JODSEALELOG FIlE ..ot 282
Pegasus Workflow Job StateS and DEIGYS .......cuvinieiiitieie e 284
BraindUMP Bl ..o e 284
Pegasus StatiC.oP FlE ... .. 285
15, JUPYLEr NOEEDOOKS . ...ttt e e 287
INEFOAUCTION .o e et ettt 287
REGUITEIMENTS ...ttt e et ettt ettt ettt e 287
The Pegasus DAX and Jupyter PYthon APIS ... e 287
Creating an Abstract WOrKFIOW .........ovnini e 287
Creating the CatalOgs .. ... et e 287
WOTKFIOW EXECULION ...ttt ettt et et een e 288
JUDYEErHUD .o e e 288
AP RE O ONICE ...t 288
Tutorial Example NOEDOOK ... ...t 288
16, APL REFEIENCE .. ettt 290
DAX XML SCNBIMA ...ttt et 290
DAX XML Schema [N DEtail ..........oouiniiieiie e 290

DAX XML SChema EXamMPIE .. ... e e 298

DAX GENEIAOr APl ..o e 299
The Java DAX Generator AP .. ... 299

The Python DAX GENErator APl ... e 302

THE Perl DAX GENEIEION ....eueteiitee et et ettt et enenas 303

The R DAX GENErAIOr APl ... et 305

DAX Generator without a Pegasus DAX AP ... 307
Lo aTh (o 1o o PP PPR 308
RESOUICE DEFINITION ...vecee e e e 308
ENODOINES ..ot 311
(01 1= oY1 o o T PP PP 319

(@] (0= (] oo PP P PPN 320
EXBMPDIES . 321

17. ComMMANG LINE TOOIS .. v ettt ettt ettt e ettt et et e ettt e 326
PEOASUS-ANBIYZEN ...t eee ettt ettt et et 327
PEOASUS-AWS-DEECK ...t 331
PEOASUS-CIUSTEY ...ttt ettt et et ettt et et ettt et et et et e et e 336
PEOASUS-CONTIQ ettt ettt et ettt et et et ettt 340
PEJASUS-CONFIGUIE-GIITE ... .ttt et 342
PEOASUS-TBOMEIN ... ettt ettt ettt ettt et e ettt et et e e 343
PEJASUS-AAX-VAITABLOT ... ..ttt et et et 344
PEJASUS-AD-AOMIN ... e 345
10150 2 U = 1 348
PEOASUS-EXITCOUR ... ettt et ettt et et ettt et ettt 349

vii



Pegasus 4.9.3 User Guide

PEgasUS-GIODUS-ONITNE-INIT ...t e e et a e 351
PEOESUS-GIODUS-ONIINE .. ..o e e 352
PEOASUS-GIaPNVIZ ... e 353
10 F= S UL TT o g T 11 o J 354
PEOASUS-NAIT ... 356
PEOASUS TNIT ..t e ettt et et et 357
PEOASUS INEEOIILY ..t ee ettt ettt ettt et et et 358
PEOASUS TNVOKE ...ttt ettt ettt et e 359
1202 S UL Ko 361
POOBSUS-KICKSIA . ...ttt ettt e e et et aas 364
POOBSUS MELAHGEA . . ... ettt ettt et e e e 372
[01C0 = S U LS 1070 0T (0] (o N 374
PEOBSUS MPI-ClUSEN ...ttt ettt e e ettt e et et e et et et e e e e e e 378
PEOASUS MPI-KEY .. ettt e 389
PEOASUS PIAN ...t 390
PEOASUS PIOLS ..ttt ettt e 397
PEOASUS-TC-CIIEML ...ttt et ettt et 399
[0S0 T2 S = 010y PP 402
0750 = S I 1 404
015 0= S = PP 406
PEOBSUS-SC-CONVEITEY .. ...ttt ettt et ettt ettt et e e e et et et et ettt r e e et r et n e e e e e e e e e e e e e nnens 412
POOBSUS SEIVICE ettt ettt e et e e ettt et ettt 414
[0S0 F= S WSS e o= 415
0120 T2 Sl s L N 417
PEOBSUS-SUBMIT-QA0 ...t e 420
PEOBSUS-SUBMITAIT ... e et 421
01202 S U LS (o 1= 0| PP 423
PEOBSUSC-CONVEITET ...ttt ettt et et ettt ettt ettt e et e e e e e e e e e et e et et et et aeas 427
LS8 F= S UL (= 429
LS8 T2 S UL = o] o PP 431
L8, USEFUL TIPS -t ettt sttt et 433
Migrating From Pegasus 4.5.X t0 Pegasus CUITENt VErSION ...........iueeeeieeneeeeneeenaianananaaaens 433
Database Upgrades From Pegasus 4.5.X to Pegasus CUrrent VErSioN ..........ccovevvevniniiananannnns 433
Migration from Pegasus 4.6 10 4.7 ... ..iuiiie e 433
Migrating From Pegasus <4.5 t0 PegasUS 4.5.X .. ....iuiriiii e 433
Migrating From Pegasus 3.1 10 PEgESUS 4.X ......riiuiiiiiiee et 434
MOVE 1O FHS TAYOUL ...t e e eenas 434
Stampede Schema Upgrade TOOI ........ouieiii e 435
Existing users running in a condor pool with anon shared filesystem setup ...........cccovevviennns 436
Migrating From Pegasus 2.X t0 PEJASUS 3.X ... uuiuitiiiiiiiie et 437
PEGASUS HOME and SEtUP SCIPLS ... veeteiieeet ettt e 437
Changes to Schemas and Catalog FOMEALS .........vuivininiii e 437
Properties and Profiles SImplification ............ooiiiii 438
Transfers SIMPLTICAHON ......e e 439
ClIentS in DIN IFECLOMY .....eeie et 439

Best Practices For Developing POrtable COOE .........ouveiiiiii e 439
SUPPOItEd PlatfOrmMS ... e 440
Packaging Of SOFtWEIE ... ... e 440

IMIPE COUBS .ottt et e 440
Maximum Running Time Of COOES .......c.iuniiiii e 440
Codes cannot specify the directory in which they should berun ..., 440

NO hard-coded PAthS .........one e 440
Wrapping legacy codes with @ Shell WIapper ........veeeii e 441
Propogating back the right eXitCode ....... ..o 41

Static vs. Dynamically Linked Libraries .........coiveiuieiniii e 441
TEMPOTAY FIlES ..o 441
HaNAIiNG OF SEAIO .. .eeeee et 441
CoNfIQUIALION FlES ... ..ot 442

Code Invocation and input data staging by Pegasus ...........c.veiiiiiiiiiieie e 442
Logical File naming iN DAX ... 442

viii



Pegasus 4.9.3 User Guide

Slot Partitioning and CPU Affinity in CONAOr ..........cuiuiiitii e 442

19. Funding, citing, and anonymMOoUS USBgE SEALISHICS ... ..vvuenieeiie e 444
PEOBSUS FUNDING ...ttt ettt ettt e 444
Citing Pegasus in ACAHEMIC WOTKS .......uiiti e 444
USage SEatiStiCS COHBCHION ...ttt ettt e e 444
PU N DOSE .. 444

OVBIVI B et e 444
CONFIGUIBLTION ...ttt e et et et 444

MELHCS COECIEA ...ttt 445

20, GlOSSANY ..ttt 447
AL TUIOMA VM e e e 450
INEFOAUCTION ..o e e et et ettt 450
VIPEUBIBOX ettt e e e et e 450
INSEAIT VITTUBIBOX e ceeeet ettt et ettt e 450

DOWNIOAA VIM TIMBOE ...ttt et ettt e e e enenas 450

Create Virtual MaChing ..........ouiiii e 450
Terminating the VM ..ot 454

AMBZON EC2 ... s 454
LaunChing the VIM ... 454

Logging iNtO tNE VM L.t 461

Shutting dOWN the VM L.t 461




List of Figures

2.1, ProCeSS WOTKFIOW ... ..ttt 4
2.2, PIPElING Of TaSKS .. uiuiiiit ittt et ettt e e e e e e 4
2.3, SRl WWOTKELOW L.ttt e e e e e e 5
2.4, MENGE WOTKEIOW .. ettt 5
2.5, DIiamOond WOIKFIOW ......uenie ittt 5
2.6, SRt WWOTKELOW ettt 6
2.7 SPUE DAG .o 7
2.8. Dashboard HOME Page ... ...viiii i et 8
2.9. Dashboard WOrkflOW Page .........ouiuiiiiiii e e 10
2.10. Dashboard Job DeSCIiPtioN Page ... ....viiiiiii it 12
2.11. Dashboard INVOCEHON PagE ... ...ivitititit i e e e et a s 14
2.12. Dashboard StatiStiCS Page .....ouieiuititit it 15
213, SPHE WOTKIIOW ..ot e e 22
2.14. Information Catalogs USEA DY PEOASUS ..........viiiii e e e e e aas 23
2.15. SAMPIE HPC ClUSIEr SEIUD .+ .\ .vtttee ettt e e e e e e e e e ettt e e et e e e aaaaes 25
4.1, SaMPLE WOTKEIOW ...t e e e e 32
4.2. Schema Image of the IDBCRC. ... ...iiiiiiii i e e e aaaas 36
4.3. Schema Image of the Site Catalog XML4 . ... e 38
4.4. Schema Image of the Site Catalog XML 3 ... .ot 40
5.1. BIack DIi@mOnd DAG ...ttt et e 47
5.2. WOIKFIOW DAt REUSE ... . ceeinit ittt ettt ettt ettt et aens 49
5.3, WOIKFIOW SIt€ SEIECHION ...\ ettt e ettt e e e enenas 52
5.4. Addition of Data Transfer Nodes to the WOrkflow ............ooooiiiiiiiiii e 53
5.5. Addition of Data Registration Nodes to the Workflow ..o 54
5.6. Addition of Directory Creation and File Removal JODS ............oviiiiiiiiiiiccc e 55
5.7. Final EXeCUtable WOrKFIOW ... ..iu e et 56
5.8. Shared File SyStamM SEIUD .. ..uuititititit ettt et e e e et et et e e e e e 58
5.9. NON Shared FIlESyStEM SEIUD ... .vititit ittt e e e e e e e e e ananas 59
5.10. Condor Pool Without a Shared FileSyStem ... .....ouii e aas 60
5.11. Workflow Running in NonShared Filesystem Setup with PegasusL ite launching compute jobs ............... 61
6.1, PEJASUSPIOL INAEX PAOE .. v vttt e e e e e e e e et 81
8.2, DAX GraDN ettt e 81
B.3. DAG Gl ettt 82
L3 7= 0L O 1 7= o P 82
B.5. HOSE OVEX TIME Chart .. ..oeeii e et ea s 83
L3 G T 110 1= o 0 PPt 84
L = T == 2o 01 1 7= o PP 85
6.8. Dashboard HOME Page ... . ..o e 87
6.9. Dashboard WOrkflOW Page .........ouiriiiiii e e e e 89
6.10. Dashboard WOrkflow MEAOEEA ... ... c.viieii e 90
6.11. Dashboard WOrKFIOW FIIES ... ... 90
6.12. Dashboard Job DeSCIiptioN Page ... ...viiiiiii et 92
6.13. Dashboard INVOCEON Page .......ouititititi e e e e et 94
6.14. Dashboard StatiStiCS Page .. ..ouieieititit e 95
6.15. Dashboard Plots - JOb DiStriDULION .........eeiei e 96
6.16. Dashboard PlOtS - Time Chart ........cuiiiiieii e 97
6.17. Dashboard Plots - WOrkflow Gantt Chart .............oouieiiiiiiii e 98
6.18. WOrkflow Database SChEMA ... ....uinieii e e 105
7.1. The distributed resources appear to be part of aHTCondor pool. ..........covvviiiiiiiii s 130
7.2. Cloud SamPle St LayOUL ... ..e.eeiiii it e e e e ettt 133
7.3 AMAZON EC2 ..o 134
T4, PYGIOBIN OVEIVIEIV ...ttt e e e e e e e e e e ettt ettt aaaas 139
7.5. Grid SAMPIE SItE LayOUL .. ...ttt e e e e e et et 142
10.1. Shared File SYSIEM SEIUD . ..uvuveiei it et 172
10.2. NON Shared FIlESYStEM SEIUD ... vvitititit ittt et et e et e e e anans 173
10.3. Condor Pool Without a Shared FileSyStem .........ooiiiii e 174

10.4. BaancedCluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System ... 178




Pegasus 4.9.3 User Guide

10.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System .............. 179
10.6. Pegasus Integrity ChECKING ... . cuiei e e 197
11.1. ClUStEriNg DY ClUSLEIS.SIZE ...t ettt e ens 201
11.2. Clustering By CIUSLEFSINUM ....unei et ettt e e e 202
11.3. ClUSLEring DY FUNLIME ..o et 205
11.4. Label-based CIUSLENTNG . ...ttt ettt et e 206
11.5. RECUISIVE CIUSIEITNG ..ottt et ettt eae s 208
11.6. Planning Of @ DAX JOD ... e 211
11.7. Planning Of @ DAG JOD ...uuiiieiii e 212
11.8. Recursion in Hierarchal WOrKFIOWS ..o 215
11.9. Execution Time-line for Hierarchal WOrkflowS ..o 216
AL VirtualBoX WEICOME SCIEEN ...ttt et ettt 451
A.2. Create New Virtual Machine Wizard ...........couieiiii e 452
A3 VM NAME @GN OS Ty ettt ettt et ettt et et ettt ettt et 452
AL I BIMIOTY oo 453
AL LOGIN SCIEEN ...ttt e ettt 454
A.B. AWS Management CONSOIE ... ...uuenitiet et et 455
A.7. EC2 ManagemMeNnt CONSOIE .. ...ttt ettt et e ettt e 455
A.8. Locating the TULOMEl VIM .. ..o e et eenas 456
A.9. Request INStances WiIzard: SEED L .....ueuiriiiiei e e 457
A.10. Request INStances WiIzard: SEED 2 ......vuieiieii e 457
A.11. Request INStances WiIzard: SEED 3B ... o iiuiiiieiii e 458
A.12. Request INStanCes WiIzard: SEED 4 .....ovnieii e e 458
A.13. Request INStanCes WiIzard: SEED 5 ....vuvniiiie e 459
A.14. Request INStanCesS WiIzard: SEED 6 ......vuieirieiii et e 459
A.15. Request INStanCesS WiIzard: SEED 7 .....ovuiiiieie e 460
AL, RUNNING INSEBNCES ...ttt et et ettt et et ettt et et e e e e e enen 461
ALL7. TEIMINGLE INSLANCE ... ettt et et et et ettt anenanas 462
A8, YES, TEMINGIE INSANCE .. v vttt e e ettt ettt e et ettt e e e e e aneas 462

Xi



List of Tables

5.1. Key Value Pairs that are currently generated for the site selector temporary file that is generated in the

NONJAVACEIOUL. ... ettt ettt et ettt et eea s 50
5.2. Basic Properties that Need t0 e SBt ... 62
5.3. REPIICA Catalog PrOPEItiES . v vttt e e e e e aas 64
5.4, Site CatalOg PrOPertiES . ..v i e 67
5.5. Transformation Catalog PrOPEITIES .......vuiniiiiii e ae 68
5.6. Data Configuration PrOPEITIES .......cuiuiii et aaaas 68
6.1, WOTKFIOW SEBEISHICS ...t eneteeiee ettt et ettt ettt e ettt et e e e enenns 77
5.2, JOD SLALISHICS vttt ettt ettt 78
6.3. TranSfOrMatiON SEALISHICS ... .vuenieiet ettt et et e ettt eneaens 79
6.4. Invocation statistics by host Per day .........vuiniii 80
T L0 (= [ S 1K 1 o PPN 80
6.6. Invoke Element attributes and meaning. ..........cuiririiiiiii i 99
7.1. Mapping of Pegasus Profiles to Job REQUITEMENES .........cc.iuiuiii e 146
8.1. Condor Profiles For Specifying Singularity Container for JobS ..........ccooviiiiiiiiiii e 156
10.1. Property Variations for pegasus.transfer.* .remote.SIteS .........ovvviiiiiiiiii s 175
10.2. Pegasus Profile Keys For the Cluster Transfer REfiNer ..........cccoiiiiiiiiiiiii e 177
10.3. Transformation Mappers SUPPOIEd iN PEJASUS ... ...uvuiuinieiiii e e e e e aaaas 180
10.4. Transfer Clients interfaced to by pegasus-transier ..........ovviiiiiiiii e 183
11.1. Pegasus Profiles that can be associated with jobsinthe DAX for PMC ..o 209
11.2. Options inherited from parent WOrkflow ...........oiiii i 212
11.3. Default Category names associated by PegasUS ...........ouiuiiiiiiii e 216
11.4. Useful dagman Commands that can be specified in the propertiesfile. ..........cocooiiiiiiiiiiinn. 217
11.5. Default Category names associated by PegasUs ...........ouiuiuiniiiii e 218
11.6. Useful HTCondor Job Throttling Configuration Parameters ...........covvviiiiiiiiiiiiiicieiei e 218
11.7. Pegasus Job Types To Condor Concurrency LimitS ......c.ouiuininiiiiii e 220
12.1. Pegasus Service Configuration OPLiONS ...........iuiuiuieiti i aeaanas 221
13.1. Useful ENVIronmMeEnt SEttinNgS .. ..vovitititititi e e e e e e e e 229
13.2. Useful GIODUS RSL INSITUCHIONS ...ttt ettt e e eenas 229
13.3. RSL Instructions that are not permissible ... . ..o 230
13.4. Useful Condor COMIMENGS ... ....ueeeiiet et ettt et ettt e et a et ene e ens 231
13.5. Condor commands prohibited in condor Profiles ..........cccooiiiiiiiiiiii 232
13.6. Useful dagman Commands that can be associated at aper job basis ............cocoviiiiiiiiiin, 233
13.7. Useful dagman Commands that can be specified in the propertiesfile. ..........cocoiiiiiiiiiiiinnnn. 234
13.8. USEfUl PEOASUS ProfilEs. . uue it 235
13.9. Task Resource Requirement Profiles. ..ot 239
13.10. Table mapping trand ation of Pegasus Task Requirements to corresponding execution environment

Y . et e 240
1311, USeful HIintS Profile KEYS . .ouiniiieiiie e eaans 240
13.12. Local Directories RElAEd PrOPEITIES ... ....uiiiiii e e e 241
13.13. Site Directories Related Properties .........oviiiiiiii e 242
13.14. Schema File LOCatiON PrOPartiES ... .. ..ei it e e e e et e e e e aaaas 245
13.15. Datahase DIiVEr PrOPEItiES ... .u ittt e e e e e 246
13.16. Replica Catalog PrOpEItiES .. v vttt e e e e e 248
13.17. Site CatalOg ProPertiEs ... vee et e 253
13.18. Transformation Catalog PrOPEITIES .......vuiiiiii e e aaaaas 253
13.19. Replica SElECHiON PrOPErtiES ...t e e e 254
13.20. Site SElECHON PrOPEITIES ... it 256
13.21. Data Configuration PrOPEITIES .......cuieiiii e e aaas 260
13.22. Transfer Configuration Properties ... ....ooiiniiiie et eaaaas 262
13.23. MONITONNG PrOPEITIES ... e e e e e e 266
13.24. JOb ClUSLENNG PrOPEITiES ... vttt e e e e 268
13,25, LOggiNg PrOPertiES ... ettt 269
13.26. ClEanUD PrOPEItiES . vttt e e e e e et e 271
13.27. MiISCEllaNEOUS PrOPEItiES ... ..t a e 273
13.28. MiSCEIlaNEOUS PrOPEItiES ... ..t e e e 274
14.1. Thejob lifecycle when executed as part of the Workflow ..o 283

Xii



Pegasus 4.9.3 User Guide

14.2. Information Captured in Braindump File ..o 284
16.1. ROOt €lement attriDULES ... ..o 291
16.2. executable element aHtriBULES ... ... 294
16.3. iNVOKe element altriBDULES ... e 296
16.4. invoke/executable environment Variables ..........ouiiiii 296
L6.5. OPLIONS .. vttt ettt et e 311
LB.6. RELUIMS ...ttt ettt e et e e ettt e et e ettt e et ettt ettt aans 311
LB.7. RELUIMS . ...ttt ettt et ettt et e e ettt e et et e et et e et r e ettt ettt aane 312
L6.8. OPLIONS .. vttt et et e 312
O A = 1] 0 L PP PR 312
L8.00. REIUINS ..ottt e et ettt e et ettt ettt eaas 312
L6. 11, OPLIONS ... veeettet ettt et ettt e e et anae 312
B b o= U [ S PP PPRPRPN 313
L6.13. OPLIONS ...ttt ettt ettt ettt ne 313
N A = U [ PPN 313
L6.15. OPLIONS ...ttt ettt et ettt e e ane 313
LB.16. REIUINS ...ttt ettt et e ettt et ettt eaas 313
16,17, OPLIONS ...ttt ettt et e et e 314
LB.18. REIUINS ..ottt ettt et e e et ettt et 314
L8.09. REIUINS ..ottt e et ettt e ettt et ettt eaas 314
16.20. OPLIONS ...ttt ettt ettt et ens 314
L8.20. REIUINS ..ottt ettt et e et ettt et ettt et aas 314
18.22. REIUINS ..ottt ettt ettt e ettt et ettt eeas 315
16.23. OPLIONS ...ttt ettt ettt et 315
L8.24. REIUINS ...ttt ettt et et ettt e et e et et e et et eeas 315
L6.25. OPLIONS ...ttt ettt et 315
18.26. REIUINS ...ttt et ettt ettt et ettt eeas 315
18,27, REIUINS ..ottt e ettt et ettt aas 316
16.28. OPLIONS ... veeetee ettt et et 316
18.29. REIUINS ..ottt e ettt e ettt et eas 316
18.30. REIUINS ...ttt et ettt ettt et 316
L6.3L. OPLIONS ...ttt ettt ettt ettt ens 316
18.32. REIUINS ..ottt ettt et eaas 317
16.33. OPHIONS ...ttt ettt et et et 317
18.34. REIUINS ..ottt e e ettt ettt ettt eaas 317
18.35. REIUINS ..ottt e ettt ettt eaas 317
16.36. OPLIONS ... veeeteee ettt et ettt 318
1837, REIUINS ..ot e ettt et et 318
16.38. OPIONS ...ttt ettt et e 318
18.30. REIUINS ..ottt e e et et ettt 318
LB.40. REIUINS ...ttt et ettt e ettt et et ettt 319
L6.41. OPLIONS ...ttt ettt ettt ettt e e 319
LB.42. REIUINS ..ottt et e ettt ettt et ettt 319
16,43, QUENY PrEfiX .ot 320
18.1. Property Keys removed and their Profile based replacement .............oooiiiiiiiiiiiiiii e 438
18.2. Old and New Names For Job Clustering Profile Keys ..........ovuiiiiiiiiii e 438
18.3. Old and New Names For Transfer Bundling Profile Keys ... 439
18.4. Old Client Names and their NeW NaIMES ... . ..iiiiii e e e 439
19.1. Common Data Sent By Pegasus WIMS CHENES .......uvuiriiiieeicie et 445
19.2. Metrics Data Sent DY PEgASUS-PIAN ... ..vuieeit e 445
19.3. Error Message Sent DY PEgASUS-PIAN ......eueiie e 446

xiii



Chapter 1. Introduction

Overview and Features

Pegasus WM S [ http://pegasus.isi.edu] is aconfigurable system for mapping and executing abstract application work-
flows over awide range of execution environments including a laptop, a campus cluster, a Grid, or a commercial or
academic cloud. Today, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science Grid, the TeraGrid, and
many campus clusters. One workflow can run on asingle system or across a heterogeneous set of resources. Pegasus
can run workflows ranging from just a few computational tasks up to 1 million.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computation-
al resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution environment or the particulars of the low-level spec-
ifications required by the middieware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current
cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description
of the abstract workflow in XML format.

Pegasus allows researchers to translate complex computational tasks into workflows that link and manage ensembles
of dependent tasks and related data files. Pegasus automatically chains dependent tasks together, so that a single
scientist can complete complex computations that once required many different people. New users are encouraged to
explore the tutorial chapter to become familiar with how to operate Pegasus for their own workflows. Users create
and run a sample project to demonstrate Pegasus capabilities. Users can also browse the Useful Tips chapter to aid
them in designing their workflows.

Pegasus has a number of features that contribute to its useability and effectiveness.
« Portability / Reuse

User created workflows can easily be run in different environments without alteration. Pegasus currently runswork-
flows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus, and
many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.

* Performance
The Pegasus mapper can reorder, group, and prioritize tasksin order to increase the overall workflow performance.
 Scalability

Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few computational tasks up to 1 million. The number of resources
involved in executing a workflow can scale as needed without any impediments to performance.

¢ Provenance

By default, all jobsin Pegasus are launched via the kickstart process that captures runtime provenance of the job
and helpsin debugging. The provenance datais collected in adatabase, and the data can be summarised with tools
such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

» Data Management

Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to
aworkflow as auxilliary jobs by the Pegasus planner.

« Reliability

Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer
helps the user to debug the workflow in case of non-recoverable failures.

e Error Recovery



http://pegasus.isi.edu
http://pegasus.isi.edu

Introduction

When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by
providing workflow-level checkpointing, by re-mapping portions of theworkflow, by trying alternative datasources
for staging data, and, when all elsefails, by providing a rescue workflow containing a description of only the work
that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have
enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance)
including the locations of data used and produced, and which software was used with which parameters.

¢ Operating Environments
Pegasus workflows can be deployed across a variety of environments:
* Local Execution

Pegasus can run aworkflow on asingle computer with Internet access. Running in alocal environment is quicker
to deploy as the user does not need to gain access to muliple resources in order to execute a workfow.

¢ Condor Pools and Glideins

Condor is a specialized workload management system for compute-intensive jobs. Condor queues workflows,
schedules, and monitors the execution of each workflow. Condor Pools and Glideins are tools for submitting
and executing the Condor daemons on a Globus resource. As long as the daemons continue to run, the remote
machine running them appears as part of your Condor pool. For a more complete description of Condor, see the
Condor Project Pages [http://www.cs.wisc.edu/condor/description.html]

e Grids

Pegasus WMS is entirely compatible with Grid computing. Grid computing relies on the concept of distributed
computations. Pegasus apportions pieces of aworkflow to run on distributed resources.

¢ Clouds

Cloud computing uses a network as a means to connect a Pegasus end user to distributed resources that are based
in the cloud.

Workflow Gallery

Pegasus is curently being used in a broad range of applications. To review example workflows, see the Example
Workflows chapter. To see additional details about the workflows of the applications see the Gallery of Workflows
[http://pegasus.isi.edu/workflow_gallery/].

Wearealwayslooking for new applicationswilling to leverage our workflow technologies. If you areinterested please
contact us at pegasus at isi dot edu.

About this Document

This document is designed to acquaint new users with the capabilities of the Pegasus Workflow Management System
(WMS) and to demonstrate how WMS can efficiently provide a variety of ways to execute complex workflows on
distributed resources. Readers are encouraged to take the tutorial to acquaint themselves with the components of the
Pegasus System. Readers may al so want to navigate through the chapters to acquaint themsel ves with the components
on a deeper level to understand how to integrate Pegasus with your own data resources to resolve your individual
computational challenges.

Document Formats (Web, PDF)

Themain version of thisdocument isintended to be viewed online at the Pegasus website [ https://pegasus.isi .edu/doc-
umentation/]. For offline viewing, a PDF version [https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf] is
also provided.



http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://pegasus.isi.edu/workflow_gallery/
http://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf
https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf

Chapter 2. Tutorial

Introduction

This tutorial will take you through the steps of running simple workflows using Pegasus Workflow Management
System. Pegasus allows scientists to

1. Automatetheir scientific computational work, as portableworkflows. Pegasus enabl es sci entists to construct work-
flowsin abstract terms without worrying about the details of the underlying execution environment or the particu-
lars of the low-level specificationsrequired by the middleware (Condor, Globus, or Amazon EC2). It automatically
locatesthe necessary input dataand computational resources necessary for workflow execution. It cleans up storage
astheworkflow is executed so that data-intensive workflows have enough space to execute on storage-constrained
resources.

2. Recover fromfailuresat runtime. When errors occur, Pegasus tries to recover when possible by retrying tasks, and
when all elsefails, provides a rescue workflow containing a description of only the work that remains to be done.
It also enables users to move computations from one resource to another. Pegasus keeps track of what has been
done (provenance) including the locations of data used and produced, and which software was used with which
parameters.

3. Debug failures in their computations using a set of system provided debugging tools and an online workflow
monitoring dashboard.

Thistutorial isintended for new users who want to get a quick overview of Pegasus concepts and usage. The accom-
panying tutorial VM comes pre-configured to run the example workflows. The instructions listed here refer mainly
to the simple split workflow example. The tutorial covers

¢ submission of an already generated example workflow with Pegasus.

¢ how to use the Pegasus Workflow Dashboard for monitoring workflows.

 the command line tools for monitoring, debugging and generating statistics.

« recovery from failures

« creation of workflow using system provided AP

« information catal ogs configuration.

More information about the topics covered in this tutorial can be found in later chapters of this user's guide.

All of the steps in this tutorial are performed on the command-line. The convention we will use for command-line
input and output is to put things that you should type in bold, monospace font, and to put the output you should get
in anormal weight, monospace font, like this:

[user @ost dir]$ you type this
you get this

Where [ user @ost dir]$ isthe termina prompt, the text you should typeis “you type this”, and the
output you should get is"you get thi s". The terminal prompt will be abbreviated as $. Because some of the
outputs are long, we don’t always include everything. Where the output is truncated we will add an ellipsis ... to
indicate the omitted output.

If you are having trouble with this tutorial, or anything else related to Pegasus, you can contact the Pegasus

Usersmailing list at <pegasus- user s@ si . edu> to get help. You can also contact us on our support cha-
troom [https://pegasus.isi.edu/support] on HipChat.

Getting Started

Easiest way to start the tutorial isto connect to a hosted service using SSH as shown below.



https://pegasus.isi.edu/support
https://pegasus.isi.edu/support
https://pegasus.isi.edu/support

Tutorial

$ ssh tutorial @egasus-tutorial.isi.edu
tutorial @egasus-tutorial.isi.edu' s password: pegasusl23

Note

The workflow dashboard is not run in the hosted service. To try out the workflow dashboard use the virtual
machines provided below.

OR

We have provided severa virtual machines that contain all of the software required for this tutorial. Virtual machine
imagesare provided for VirtualBox and Amazon EC2. Information about deploying thetutorial VM on these platforms
isin the appendix. If you want to use the tutorial VM, please go to the appendix for the platform you are using and
follow the instructions for starting the VM found there before continuing with this tutorial.

If you have already installed Pegasus and Condor on your own machine, then you don't need to use the VM for the
tutorial. You can use the pegasus-i ni t command to generate the example workflow in any directory on your
machine. Just be aware that you will have to modify the paths referenced in thistutorial to match the directory where
you generated the example workflow.

The remainder of this tutorial will assume that you have aterminal open with Pegasus on your PATH.

What are Scientific Workflows

Scientific workflows allow usersto easily express multi-step computational tasks, for example retrieve data from an
instrument or a database, reformat the data, and run an analysis. A scientific workflow describes the dependencies
between the tasks and in most cases the workflow is described as adirected acyclic graph (DAG), where the nodes are
tasks and the edges denote the task dependencies. A defining property for ascientific workflow isthat it manages data
flow. Thetasksin ascientific workflow can be everything from short serial tasksto very large parallel tasks (MPI for
example) surrounded by alarge number of small, serial tasks used for pre- and post-processing.

Workflows can vary from simple to complex. Below are some examples. In the figures below, the task are designated
by circles/dllipses while the files created by the tasks are indicated by rectangles. Arrows indicate task dependencies.

Process Wor kflow

It consists of asingle task that runsthe | s command and generates alisting of thefilesin the */* directory.

Figure 2.1. Process Workflow

Pipeline of Tasks
The pipeline workflow consists of two tasks linked together in a pipeline. The first job runs the “curl” command to

fetch the Pegasus home page and store it asan HTML file. The result is passed to the ‘wc™ command, which counts
the number of linesin the HTML file.

Figure 2.2. Pipeline of Tasks

Split Workflow

The split workflow downloads the Pegasus home page using the “curl” command, then uses the “split™ command to
divideit into 4 pieces. The result is passed to the “wc™ command to count the number of linesin each piece.




Tutorial

Figure 2.3. Split Workflow

Merge Wor kflow

The merge workflow runsthe "Is" command on several */bin directories and passes the results to the “cat” command,
which mergesthefilesinto asinglelisting. The merge workflow is an example of a parameter sweep over arguments.

Figure 2.4. Merge Workflow

‘‘‘‘‘‘‘‘‘

Diamond Wor kflow

The diamond workflow runs combines the split and merge workflow patterns to create a more complex workflow.

Figure 2.5. Diamond Wor kflow

=

v

=
[

\,/’

e

Complex Workflows

The above examples can be used as building blocks for much complex workflows. Some of these are showcased on
the Pegasus Applications page [https.//pegasus.isi.edu/applications].

Submitting an Example Workflow

All of the exampleworkflows described in the previous section can be generated withthepegasus- i ni t command.
For thistutorial we will be using the split workflow, which can be created like this:

$ cd /hone/tutorial

$ pegasus-init split

Do you want to generate a tutorial workflow? (y/n) [n]: vy
Local Machi ne Condor Pool

USC HPCC d uster

OSG from | SI subnit node

XSEDE, with Bosco

Bl uewaters, with dite

TACC Wangler with Qite

OLCF TITANwith Gite

at environnent is tutorial to be setup for? (1-7) [1]: 1
Process

Pi pel i ne

Split

Mer ge

EPA (requires R)

Popul ati on Mdel ing using Containers

Di anond

V‘hat tutorial workflow do you want? (1-7) [1]: 3

NogswNRsNIRRNE



https://pegasus.isi.edu/applications
https://pegasus.isi.edu/applications

Tutorial

Pegasus Tutorial setup for exanple workflow - split for execution on subnmit-host in directory /home/
tutorial/split

$ cd split
$1s
README. nd sites.xm tc.txt bin daxgen. py
gener at e_dax. sh i nput out put pegasus. properties plan_cluster_dax.sh
pl an_dax. sh rc. txt
Tip

The pegasus-i ni t tool can be used to generate workflow skeletons from templates by asking the user
questions. It is easier to use pegasus-init than to start a new workflow from scratch.

The split workflow looks like this:

Figure 2.6. Split Workflow

The input workflow description for Pegasus is called the DAX. It can be generated by running the gener -
at e_dax. sh script from the split directory, like this:

$ ./generate_dax.sh split.dax
Gener at ed dax split.dax

Thisscript will runasmall Python program (daxgen. py) that generatesafilewith a.dax extension using the Pegasus
Python API. We will cover the details of creating a DAX programmatically later in the tutorial. Pegasus reads the
DAX and generates an executable HT Condor workflow that is run on an execution site.

Thepegasus- pl an command is used to submit the workflow through Pegasus. The pegasus-plan command reads
the input workflow (DAX file specified by --dax option), maps the abstract DAX to one or more execution sites,
and submits the generated executable workflow to HTCondor. Among other things, the options to pegasus-plan tell

Pegasus

« the workflow to run

* where (what site) to run the workflow

« theinput directory where the inputs are placed

« the output directory where the outputs are placed

By default, the workflow is setup to run on the compute sites (i.e sites with handle other than "local") defined in the
sitesxml file. In our example, the workflow will run on a site named "condorpool” in the sites.xml file.

Note

If there are multiple compute sites specified in your sites.xml, and you want to choose a specific site, use
the --sites option to pegasus-plan

To plan the split workflow invoke the pegasus-plan command using the pl an_dax. sh wrapper script as follows:

$ ./plan_dax.sh split.dax

2019. 08. 22 18:51:29.289 UTC

2019. 08. 22 18:51:29.295 UTC

2019. 08. 22 18:51:29.300 UTC File for submitting this DAG to HTCondor
split-0.dag. condor. sub

2019. 08. 22 18:51:29. 305 UTC Log of DAGVan debuggi ng nessages
split-0.dag. dagnan. out

2019. 08. 22 18:51:29.310 UTC Log of HTCondor |ibrary output
split-0.dag.lib.out




Tutorial

2019. 08. 22 18:51:29. 315 UTC Log of HTCondor library error nessages
split-0.dag.lib.err
2019. 08. 22 18:51:29.321 UTC Log of the life of condor_dagman itself
split-0.dag. dagman. | og
2019. 08. 22 18:51:29. 326 UTC:
2019. 08. 22 18:51:29.331 UTC -no_submt given, not submitting DAG to HTCondor. You can do this
wit h:
2019. 08. 22 18:51:29. 341 UTC:
2019. 08. 22 18:51:29.932 UTC Creat ed Pegasus database in: sqglite:////home/tutorial/.pegasus/
wor kf | ow. db
2019. 08. 22 18:51:29.937 UTC Your database is conpatible with Pegasus version: 4.9.2
2019. 08. 22 18:51:29.997 UTC Submitting to condor split-0.dag.condor.sub
2019. 08. 22 18:51:30.021 UTC Submitting job(s)
2019. 08. 22 18:51:30.026 UTC 1 job(s) submitted to cluster 1
2019. 08. 22 18:51: 30. 032 UTC
2019. 08. 22 18:51:30. 037 UTC Your workfl ow has been started and is running in the base directory
2019. 08. 22 18:51:30.042 UTC
2019. 08. 22 18:51:30. 047 UTC /honme/tutorial/split/submt/tutorial/pegasus/split/run0001
2019. 08. 22 18:51: 30. 052 UTC
2019. 08. 22 18:51: 30. 058 UTC *** To nonitor the workflow you can run ***
2019. 08. 22 18:51: 30. 063 UTC
2019. 08. 22 18:51: 30. 068 UTC pegasus-status -1 /home/tutorial/split/submt/tutorial/pegasus/
split/run0001
2019. 08. 22 18:51:30.074 UTC
2019. 08. 22 18:51:30.079 UTC *** To renove your workflow run ***
2019. 08. 22 18:51: 30. 084 UTC
2019. 08.22 18:51:30.089 UTC pegasus-renove /hone/tutorial/split/submt/tutorial/pegasus/split/
run0001
2019. 08. 22 18:51:30.095 UTC
2019. 08. 22 18:51: 30. 658 UTC Time taken to execute is 1.495 seconds

Note

The line in the output that starts with pegasus- st at us, contains the command you can use to monitor
the status of the workflow. The path it contains is the path to the submit directory where all of the files
required to submit and monitor the workflow are stored.

Thisiswhat the split workflow looks like after Pegasus has finished planning the DAX:

Figure2.7. Split DAG

For thisworkflow the only jobs Pegasus needsto add are adirectory creation job, astage-in job (for pegasus.html), and
stage-out jobs (for wc count outputs). The cleanup jobs remove data that is no longer required as workflow executes.

Workflow Dashboard for Monitoring and Debugging

The Pegasus Dashboard is a web interface for monitoring and debugging workflows. We will use the web dashboard
to monitor the status of the split workflow.

If you are doing the tutorial using the tutorial VM, then the dashboard will start when the VM boots. If you are using
your own machine, then you will need to start the dashboard by running:

$ pegasus-service

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

Access the dashboard by navigating your browser to https://localhost:5000. If you are using the EC2 VM you will
need to replace 'localhost’ with the IP address of your EC2 instance.

When the webpage loads up, it will ask you for a username and a password. If you are using the tutorial VM, then
log in as user "tutorial" with password "pegasus’. If you are running the dashboard on your own machine, then use
your UNIX username and password to log in.




Tutorial

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows the
status of each workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level workflows
(Pegasus supports hierarchical workflowsi.e. workflows within aworkflow). The rowsin the table are color coded

¢ Green: indicates workflow finished successfully.
* Red: indicates workflow finished with afailure.
« Blue: indicates aworkflow is currently running.

¢ Gray: indicates a workflow that was archived.

Figure 2.8. Dashboard Home Page

pegasus-dashhoard @
A
Workflow Listing

»

/
Successful: 8 ~

I Running Ml Failed I Successful

Show results for  all s
(10 3

w:;:ﬂ;w s Submit Host & Submit Directory s State Submitted On -
split workflow.isi.edu /nfs/ccg3/ccg/home/examples/split/split/run0006 Running Fri, 23 Oct 2015 16:04:00
split workflow.isi.edu /nfs/ccgd/ccg/home/examples/split/split/run0004 Failed Fri, 23 Oct 2015 15:56:01
diamond workflow.isi.edu /nfs/ccg3/ccg/home/examples/diamond/diamond/run0002  Successful  Fri, 23 Oct 2015 15:50:17
split workflow.isi.edu  /nfs/ccg3/ccg/home/examples/split/split/run0003 Failed Fri, 23 Oct 2015 15:41:15
split workflow.isi.edu  /nfs/ccgd/ccg/home/examples/split/split/run0002 Successful  Fri, 23 Oct 2015 15:04:44
process workflow.isi.edu /nfs/ccgd/ccg/home/examples/process/process/run0001 Successful  Fri, 23 Oct 2015 15:00:38
pipeline workflow.isi.edu  /nfs/ccg3/ccg/home/examples/pipeline/pipeline/run0001 Successful  Fri, 23 Oct 2015 15:00:28
merge workflow.isi.edu  /nfs/ccg3/ccg/home/examples/merge/merge/run0001 Successful  Fri, 23 Oct 2015 15:00:15
diamond workflow.isi.edu  /nfs/ccg3/ccg/home/examples/diamond/diamond/run0001  Successful ~ Fri, 23 Oct 2015 15:00:08
split workflow.isi.edu  /nfs/ccgd/ccg/home/examples/split/split/run0001 Successful  Fri, 23 Oct 2015 14:59:50

RIS S

STAMPEDE

]

.Y,

Copyright €) 2015 University of Southern California

4 pegasus-users@isi.edu




Tutorial

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page also displays pie charts showing the distribution of jobs based on status.

In addition, the details page displays atab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

The information displayed for ajob depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.




Workflow Details 1145e2d5-ad2f-45d6-a3ce-4bds8499d8af[ M

Summary = Files{)  Metadata @

Label diamond
Type root-wf
Progress Successful
Submit Host cartman
User bamboo
Submit Directory B3 [ Afs1/software/bamboo/data/xmi-data/build-dir/ PEGASUS-WT-T39A/test/core/039-bl. ..
DAGMan Out File & diamond-0.dag.dagman.out
Wall Time 5 mins 9 secs
Cumulative Wall Time 5 mins 52 secs
Job Status (Entire Workflow) Job Status (Per Workflow)

Unsubmitted: 0

Failed: 0

Jobs: 0
Workflows: 0
Total: 0

lobs: 26
Successful: 26 Workflows: 0
Total: 26
Il Unsubmitted Il Failed Il Successful M Running Ml Failed I Successful

Charts Statistics

=

I Sub Workflows

Job Name - Time Taken ¢
analyze_|DO000004 1 min
clean_up_local_level_3_0 5 secs
clean_up_local_level_4_0 5 secs
clean_up_local_level_4_1 3 secs
clean_up_local_level 5 0 7 secs
clean_up_local_level_6_0 3 secs
cleanup_diamond_0_local 3 secs
create_dir_diamond_0_local 2 secs
findrange_ID0000002 1 min 1 sec
findrange_|D0000003 1 min

2 3 Next Last

STAMPEDE

i

[ ¥,

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

10




Tutorial

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

The job instance section of the job details page lists all attempts made to run the job i.e. if ajob failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

Thejob details page a so showstab'sfor failed, and successful task invocations (Pegasus allows usersto group multiple
smaller task'sinto asingle jobi.e. ajob may consist of one or more tasks)

11



pegasus-dashhoard

Y/ Workflow / Job

Job Details
Label Is_1DO000001
Type Compute
Exit Code 0
Working Directory /private/var/condor/execute/dir_12968

Application Stdour/Stderr
Kickstart Output

Condor Stderr/Pegasus Lite Log

Preview
< 00/00/ls_IDO0O00001 .out.000

<’ 00/00/s_IDOO00001 .er.000

Condor Submit File ¢ Is_ID0000001.sub
Site condorpool
Host 128.9.72.154 > isls.isi.edu
Job States
Submit Thu Mar 23, 2017 01:25:53 PM (0 secs )
Execute Thu Mar 23, 2017 01:26:08 PM ( 15 secs )
Image Size Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Job Terminated Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Job Success Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Post Script Started Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Post Script Terminated Thu Mar 23, 2017 01:26:13 PM ( 5 secs )
Post Script Success Thu Mar 23, 2017 01:26:13 PM ( 0 secs )

Job Instances

<>
<&

Try = Job Instance ID < Exitcode s Stdout

1 2 0 Preview Preview

Job Invocations

No failed invocations.

STAMPEDE

Copyright ©) 2015 University of Southern California

pegasus-users@isi.edu

12




Tutorial

Thetask invocation detail s page providestask specific information like task name, exit code, duration etc. Task details
differ from job details, asthey are more granular in nature.

13



Tutorial

Figure 2.11. Dashboard I nvocation Page

pegasus-dashboard

N/ Workflow / Job

Task Details

Task Label
Transformation
Working Directory
Executable
Arguments
Exit Code
Start Time
Remote Duration

Remote CPU Time
Task Metadata
size

time

transformation

STAMPEDE

Task Details

1D0000004

diamend::analyze:4.0

Nvar/lib/condor/execute/dir_784086

[ /var/lib/condor/execute/dir_784086/diamond-analyze-4.0
[} -a analyze -T80 -i f.c1 f.c2 -0 f.d

0

Tue, 26 Jan 2016 09:54:16

1 min

59 secs

2048
60

analyze

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

N

e,

14



Tutorial

The dashboard & so has web pages for workflow statistics and workflow charts, which graphically rendersinformation

provided by the pegasus-statistics and pegasus-plots command respectively.
The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

Figure 2.12. Dashboard Statistics Page

pegasus-dashboard

yﬁ\ Workflow / Statistics
Statistics
Workflow Wall Time null
Workflow Cumulative Job Wall Time 2 mins 8 secs
Cumulative Job Walltime as seen from Submit Side 2 mins 26 secs
Workflow Cumulative Badput Time 0 secs
Cumulative Job Badput Walltime as seen from Submit Side 0 secs
Workflow Retries 0
| Workflow Statistics

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 4
Jobs 7 0 1 8 7
Sub Workflows 0 0 0 0 0
Entire Workflow
Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 o] 0 4 4
Jobs 7 0 1 8 7
Sub Workflows 0 0 0 0 0
¢ Job Breakdown Statistics
+ Job Statistics
¢ Integrity Statistics
PR INFORMATION [
W%‘ [WEIEY - USC
T A Feglovs INSTITUTE

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu




Tutorial

Command line tools for Monitoring and Debugging

Pegasus also comes with a series of command line tools that users can use to monitor and debug their workflows.
¢ pegasus-status : monitor the status of the workflow
¢ pegasus-analyzer : debug afailed workflow

¢ pegasus-statistics : generate statistics from aworkflow run.

pegasus-status - monitoring the workflow

After the workflow has been submitted you can monitor it using the pegasus- st at us command:

$ pegasus-status -l submit/tutorial/pegasus/split/run0001

STAT | N_STATE JOB

Run 00:39 split-0 ( /home/tutorial/split/submt/tutorial/pegasus/split/run0001 )
Idle 00: 03  #i#split_| DOOO000O1

Summary: 2 Condor jobs total (1:1 R 1)

UNRDY READY PRE IN Q POST DONE FAIL %DONE STATE  DAGNAME
14 0 0 1 0 2 0 11.8 Running *split-0.dag

This command shows the workflow (split-0) and the running jobs (in the above output it shows the two findrange
jobs). It also gives statistics on the number of jobs in each state and the percentage of the jobs in the workflow that
have finished successfully.

Usethewat ch option to continuously monitor the workflow:

$ pegasus-status -w submit/tutorial/pegasus/split/run0001

Y ou should see all of the jobsin the workflow run one after the other. After afew minutes you will see:
(no matching jobs found in Condor Q

UNRDY READY PRE IN Q POST DONE FAIL %DONE STATE  DAGNAME
0 0 0 0 0 15 0 100.0 Success *split-0.dag

That means the workflow is finished successfully.

If the workflow finished successfully you should see the output count filesin the out put directory.

$ |'s output/
count.txt.a count.txt.b count.txt.c count.txt.d

pegasus-analyzer - debug a failed workflow

In the case that one or more jobs fails, then the output of the pegasus- st at us command above will have a non-
zero value in the FAI LURE column.

Y ou can debug thefailureusing thepegasus- anal yzer command. Thiscommand will identify the jobsthat failed
and show their output. Because the workflow succeeded, pegasus- anal yzer will only show some basic statistics
about the number of successful jobs:

$ pegasus-anal yzer submit/tutorial/pegasus/split/run0001/

************************************Sun‘mary*************************************

Submit Directory : submit/tutorial/pegasus/split/run0001/
Total jobs : 10 (100. 009

# j obs succeeded : 10 (100. 00%

# jobs failed : 0 (0.00%

# jobs held : 0 (0.00%

# jobs unsubmitted : 0 (0.00%

If the workflow had failed you would see something like this:

16



Tutorial

$ pegasus-anal yzer submit/tutorial/pegasus/split/run0002

************************************Sum-rary*************************************

Subnit Directory : submit/tutorial/pegasus/split/run0002
Total jobs : 15 (100. 009

# j obs succeeded : 1 (5.88%

# jobs failed : 1 (5.88%

# jobs unsubmitted : 15 (88.24%

KKKk KKK KK KRR KKK KR KKK K KXk k Xk Kk **x Fqj | ed ] ODS' detaj| S*¥*¥***kkkkkkhkkkkhhkkkkkkkkkkkkx

tage_in_|l ocal _PegasusVM 0_0

| ast state: POST_SCRI PT_FAI LED
site: local
submit file: stage_in_|local _PegasusVM 0_0. sub
output file: stage_in_|local _PegasusVM 0_0. out. 001
error file: stage_in_|local _PegasusVM 0_0. err. 001

------------------------------- Task #1 - SUMMAIY----------------mom oo

site . local

host nanme :unknown

executabl e : /usr/bin/pegasus-transfer
argunent s : --threads 2

exitcode 1

working dir : /home/tutorial/split/submt/tutorial/pegasus/split/run0002

------------------ Task #1 - pegasus::transfer - None - stdout-------------------

2015-10-22 21:13:50, 970 INFO Reading URL pairs fromstdin

2015-10-22 21:13:50,970 INFO.  PATH=/usr/bin:/bin

2015-10-22 21:13:50,970 I NFO.  LD_LI BRARY_PATH=

2015-10-22 21:13:50,972 INFO 1 transfers | oaded

2015-10-22 21:13:50,972 INFO  Sorting the tranfers based on transfer type and source/destination
2015-10-22 21:13:50,972 | NFO.

2015-10-22 21:13:50,972 INFO Starting transfers - attenpt 1

2015-10-22 21:13:50, 972 INFO Using 1 threads for this round of transfers

2015-10-22 21:13:53, 845 ERROR:  Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
0 User KnownHost sFil e=/dev/null -o StrictHost KeyChecki ng=no -i /hone/tutorial/.ssh/id_rsa -P 22 '/
home/ t ut ori al / exanpl es/ split/input/pegasus. htm' 'tutorial @27.0.0.1:/honme/tutorial/work/tutoriall/
pegasus/ split/run0002/ pegasus. htm '

2015-10-22 21:15:55,911 I NFO.
2015-10-22 21:15:55,912 INFO Starting transfers - attenpt 2
2015-10- 22 21:15:55,912 INFO Using 1 threads for this round of transfers

2015-10- 22 21:15:58, 446 ERROR:  Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
0 User KnownHost sFil e=/dev/null -o StrictHost KeyChecking=no -i /hone/tutorial/.ssh/id_rsa -P 22 "'/
home/ t ut ori al / exanpl es/ split/input/pegasus. htm' 'tutorial @27.0.0.1:/honme/tutorial/work/tutoriall/
pegasus/ split/run0002/ pegasus. htm '

2015-10-22 21:16: 40, 468 | NFO.
2015-10-22 21:16: 40, 469 INFO Starting transfers - attenpt 3
2015-10- 22 21:16: 40, 469 INFO Using 1 threads for this round of transfers

2015-10-22 21:16: 43, 168 ERROR:  Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
0 User KnownHost sFil e=/dev/null -o StrictHost KeyChecki ng=no -i /hone/tutorial/.ssh/id_rsa -P 22 "'/
home/ t ut ori al / exanpl es/ split/input/pegasus. htm' 'tutorial @27.0.0.1:/honme/tutorial/work/tutoriall/
pegasus/ split/run0002/ pegasus. htm '

2015-10-22 21:16:43,173 I NFO.

2015-10-22 21:16: 43,173 INFO  Stats: no local files in the transfer set
2015-10-22 21:16:43,173 CRITICAL: Sone transfers failed! See above, and possibly stderr.
------------- Task #1 - pegasus::transfer - None - Kickstart stderr--------------

Warni ng: Pernmanently added '127.0.0.1" (RSA) to the list of known hosts.
/home/tutorial/split/input/pegasus.htm: No such file or directory

/home/tutorial/split/input/pegasus.htm: No such file or directory

In this example, we removed one of the input files. We will cover thisin more detail in the recovery section. The
output of pegasus- anal yzer indicates that pegasus.html file could not be found.

17



Tutorial

pegasus-statistics - collect statistics about a workflow run

The pegasus- st ati sti cs command can be used to gather statistics about the runtime of the workflow and its
jobs. The-s al | argument tells the program to generate all statistics it knows how to calculate:

$ pegasus-statistics —s all subnmit/tutorial/pegasus/split/run0001
Pegasus Wor kfl ow Managenent System - http://pegasus.isi.edu

Wor kf | ow summary:
Summary of the workflow execution. It shows total
t asks/j obs/sub workflows run, how nany succeeded/failed etc.
I'n case of hierarchical workflow the cal culation shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not subnmitted, submitted but not conpleted etc. This
is calculated as difference between "total' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total +Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wall time fromthe start of the workflow execution to the end as
reported by the DAGVAN. I n case of rescue dag the value is the
cunul ative of all retries.
Currul ative job wall tine:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workflow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tine value includes jobs fromthe sub workflows as well.
Curul ative job wall time as seen fromsubmt side:
The sum of the wall time of all jobs as reported by DAGVan.
This is simlar to the regular curmulative job wall tinme, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
fromthe sub workflows as well.
Curnul ative job badput wall tinme:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workflow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tine value includes jobs fromthe sub workflows as well.
Curul ative job badput wall time as seen fromsubmt side:
The sumof the wall time of all failed jobs as reported by DAGVan.
This is simlar to the regular cumul ative job badput wall time, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
fromthe sub workflows as well.

B R IR R S S R T TR I I T S S S S R R TR T S S S S S R R T S

Type Succeeded Failed |Inconplete Total Retries Total +Retries
Tasks 5 0 0 5 0 5

Jobs 10 0 0 10 0 10

Sub- Wor kflows 0 0 0 0 0 0
Workfl ow wall tine : 1 mn, 39 secs
Currul ative job wall tinme : 10. 522 secs

Cunul ative job wall time as seen fromsubmt side : 14.0 secs

Curul ative job badput wall tine : 0.0 secs

Curul ative job badput wall time as seen fromsubnit side : 0.0 secs

# Integrity Metrics

# Nunber of files for which checksuns were conpared/conputed along with total tine spent doing it.
9 files checksums conpared with total duration of 0.358 secs

9 files checksums generated with total duration of 0.192 secs

Integrity Errors
Tot al :

H* H*

18



Tutorial

# Tot al
a wor kf | ow.
# Failures:

# Nunber of failed jobs where the last job instance had integrity errors.
Failures: 0 job failures had integrity errors

nunber of integrity errors encountered across all job executions(including retries) of

Sumary :
Wor kf | ow execution statistics :
Job instance statistics :
Transfornmation statistics
Integrity statistics

Tinme statistics

submit/tutorial/pegasus/split/run0001/statistics/summary.txt
submit/tutorial/pegasus/split/run0001/statistics/workflow. txt
submit/tutorial/pegasus/split/run0001/statistics/jobs.txt
submi t/tutorial/pegasus/split/run0001/statistics/breakdown. txt
submit/tutorial/pegasus/split/run0001/statistics/integrity.txt
submit/tutorial/pegasus/split/run0001/statistics/tine.txt

The output of pegasus-stati sti cs contains many definitions to help users understand what al of the values
reported mean. Among these are the total wall time of the workflow, which is the time from when the workflow was
submitted until it finished, and the total cumulative job wall time, which is the sum of the runtimes of all the jobs.

The pegasus-stati sti cs command also writes out severa reportsin the st ati sti cs subdirectory of the
workflow submit directory:

$ |'s subnmit/tutorial/pegasus/split/run0001/statistics/

j obs. t xt summary. t xt tine.txt br eakdown. t xt wor Kf | ow. t xt

Thefilebr eakdown. t xt , for example, has min, max, and mean runtimes for each transformation:

$ nore submit/tutorial/pegasus/split/run0001/statistics/breakdown.txt

# | egends

# Transformation - name of the transformation.

# Count - the nunber of times the invocations corresponding to
# the transformati on was executed.

# Succeeded - the count of the succeeded invocations correspondi ng
# to the transfornmation.

# Fail ed - the count of the failed invocations corresponding to
# the transformation.

# M n(sec) - the mnimuminvocation runtinme value corresponding to
# the transformation.

# Max(sec) - the maxi muminvocation runtinme val ue corresponding to
# the transformation.

# Mean(sec) - the nmean of the invocation runtime corresponding to
# the transformation.

# Tot al (sec) - the cunmul ative of invocation runtime corresponding to
# the transformation.

# 773d8f a3- 8bf f - 4f 75- 8e2b- 38e2c904f 803 (split)

Transformati on Count Succeeded Failed Mn Max Mean Tot al
dagnan: : post 15 15 0 5.0 6.0 5.412 92.0
pegasus: : cl eanup 6 6 0 1.474 3.178 2.001 12. 008
pegasus: : di r manager 1 1 0 2.405 2.405 2.405 2.405
pegasus::rc-client 2 2 0 2.382 7.406 4.894 9.788
pegasus: : transfer 3 3 0 3.951 5.21 4.786 14. 358
split 1 1 0 0. 009 0. 009 0. 009 0. 009
we 4 4 0 0. 005 0. 029 0.012 0. 047

# Al (Al)

Transformati on Count Succeeded Failed Mn Max Mean Tot al
dagnan: : post 15 15 0 5.0 6.0 5.412 92.0
pegasus: : cl eanup 6 6 0 1.474 3.178 2.001 12.008
pegasus: : di r manager 1 1 0 2.405 2.405 2.405 2.405
pegasus::rc-client 2 2 0 2.382 7.406 4.894 9.788
pegasus: : transfer 3 3 0 3.951 5.21 4.786 14. 358
split 1 1 0 0. 009 0. 009 0. 009 0. 009
we 4 4 0 0. 005 0. 029 0.012 0. 047

In this case, because the example transformation sleeps for 30 seconds, the min, mean, and max runtimes for each of
the analyze, findrange, and preprocess transformations are all close to 30.

Recovery from Failures

Executing workflows in a distributed environment can lead to failures. Often, they are a result of the underlying
infrastructure being temporarily unavailable, or errors in workflow setup such as incorrect executables specified, or
input files being unavailable.

19



Tutorial

In case of transient infrastructure failures such as a node being temporarily down in a cluster, Pegasus will automati-
caly retry jobsin case of failure. After a set number of retries (usually once), a hard failure occurs, because of which
workflow will eventualy fail.

In most of the cases, these errors are correctabl e (either the resource comes back online or application errors are fixed).
Oncetheerrors arefixed, you may not want to start anew workflow but instead start from the point of failure. In order
to do this, you can submit the rescue workflows automatically created in case of failures. A rescue workflow contains
only a description of only the work that remains to be done.

Submitting Rescue Workflows

In this example, we will take our previously run workflow and introduce errors such that workflow we just executed
failsat runtime.

First we will "hide" the input file to cause a failure by renaming it:

$ nmv input/pegasus. htm input/pegasus. htnl . bak

Now submit the workflow again:

$ ./plan_dax.sh split.dax

2015. 10. 22 20: 20: 08. 299 PDT:

2015. 10. 22 20: 20: 08. 307 PDT:

2015. 10. 22 20: 20: 08. 312 PDT: File for submitting this DAG to Condor
split-0.dag. condor. sub

2015. 10. 22 20: 20: 08. 323 PDT: Log of DAGVan debuggi ng nessages
split-0.dag. dagnan. out

2015. 10. 22 20: 20: 08. 330 PDT: Log of Condor |ibrary output
split-0.dag.|ib.out

2015. 10. 22 20: 20: 08. 339 PDT: Log of Condor l|ibrary error nmessages
split-0.dag.lib.err

2015. 10. 22 20: 20: 08. 346 PDT: Log of the life of condor_dagnan itself
split-0.dag. dagnan. | og

2015. 10. 22 20: 20: 08. 352 PDT:

2015. 10. 22 20: 20: 08. 368 PDT:

2015. 10. 22 20: 20: 12. 331 PDT: Your database is conpatible with Pegasus version: 4.5.3

2015. 10. 22 20: 20: 13. 326 PDT: Submitting to condor split-0.dag.condor.sub

2015. 10. 22 20: 20: 14. 224 PDT: Submitting job(s).

2015. 10. 22 20: 20: 14. 254 PDT: 1 job(s) submitted to cluster 168.

2015. 10. 22 20: 20: 14. 297 PDT: Your workfl ow has been started and is running in the base directory:
2015. 10. 22 20: 20: 14. 309 PDT: /'hone/tutorial/split/submt/tutorial/pegasus/split/run0002
2015. 10. 22 20: 20: 14. 321 PDT: *** To nonitor the workflow you can run ***

2015. 10. 22 20: 20: 14. 332 PDT: pegasus-status -l /honme/tutorial/split/submit/tutorial/pegasus/
split/run0002

2015. 10. 22 20: 20: 14. 351 PDT:

2015. 10. 22 20: 20: 14. 369 PDT: *** To renpve your workflow run ***

2015. 10. 22 20: 20: 14. 376 PDT:

2015. 10. 22 20: 20: 14. 388 PDT: pegasus-renove /home/tutorial/split/submt/tutorial/pegasus/split/
run0002

2015. 10. 22 20: 20: 14. 397 PDT:

2015. 10. 22 20: 20: 16. 146 PDT: Tinme taken to execute is 10.292 seconds

We will now monitor the workflow using the pegasus-status command till it fails. We will add -w option to pega-
sus-status to watch automatically till the workflow finishes:

$ pegasus-status -w submit/tutorial/pegasus/split/run0002

(no matching jobs found in Condor Q

UNREADY  READY PRE QUEUED POST SUCCESS FAI LURE %DONE
8 0 0 0 0 2 1 18.2

Summary: 1 DAG total (Failure:1)

Now we can use the pegasus-analyzer command to determine what went wrong:

$ pegasus-anal yzer submit/tutorial/pegasus/split/run0002

20



Tutorial

************************************Sum-rary*************************************

Subnit Directory : submit/tutorial/pegasus/split/run0002
Total jobs : 11 (100.00%

# j obs succeeded : 2 (18.18%

# jobs failed : 1 (9.09%

# jobs unsubmitted : 8 (72.73%

KKKk KK KKK KRR KKK KKK KKK KKk kkk**x Fqj | ed ] ODS' detaj| S*¥*¥***kkkkkkhkkkkhkkkkkkkkkkkkk x

tage_in_renote_local _0_0

| ast state: POST_SCRI PT_FAI LED
site: |ocal
submit file: stage_in_renote_|l ocal _0_0.sub
output file: stage_in_renote_|l ocal _0_0.out.001
error file: stage_in_renmote_|l ocal _0_0.err.001

------------------------------- Task #1 - SUMMAIY----------------mo oo

site : local

host nane : unknown

executable : /usr/local/bin/pegasus-transfer
argunent s : --threads 2

exitcode 1

working dir : /honme/tutorial/split/submt/tutorial/pegasus/split/run0002

------------------ Task #1 - pegasus::transfer - None - stdout-------------------

2016- 02-18 11:52:58, 189 INFO Reading URL pairs fromstdin

2016-02-18 11:52:58, 189 I NFO.  PATH=/ usr/ |l ocal / bi n:/usr/bin:/bin

2016- 02-18 11:52:58, 189 I NFO.  LD_LI BRARY_PATH=

2016-02-18 11:52:58, 189 INFO 1 transfers | oaded

2016- 02-18 11:52:58, 189 INFO  Sorting the tranfers based on transfer type and source/destination
2016- 02-18 11:52:58, 190 I NFO.

2016- 02-18 11:52:58,190 INFO Starting transfers - attenpt 1

2016-02-18 11:52:58, 190 INFO Using 1 threads for this round of transfers

2016- 02- 18 11:53: 00, 205 ERROR:  Command exited with non-zero exit code (1): /bin/cp -f -R -L
"/home/tutorial/split/input/pegasus.htm' '/home/tutorial/split/scratch/tutorial/pegasus/split/
run0002/ pegasus. htm '

2016- 02-18 11:54: 46, 205 | NFO.
2016- 02-18 11:54: 46, 205 INFO Starting transfers - attenpt 2
2016- 02- 18 11: 54: 46, 205 INFO Using 1 threads for this round of transfers

2016-02- 18 11: 54: 48, 220 ERROR:  Command exited with non-zero exit code (1): /bin/cp -f -R -L
"/home/tutorial/split/input/pegasus.htm' '/home/tutorial/split/scratch/tutorial/pegasus/split/
run0002/ pegasus. htm '

2016- 02-18 11:55: 24,224 I NFO.
2016- 02-18 11:55: 24,224 INFO Starting transfers - attenpt 3
2016-02- 18 11: 55: 24, 224 INFO Using 1 threads for this round of transfers

2016- 02-18 11:55: 26, 240 ERROR. Conmand exited with non-zero exit code (1): /bin/cp -f -R-L
"/home/tutorial/split/input/pegasus.htm' '/home/tutorial/split/scratch/tutorial/pegasus/split/

run0002/ pegasus. htm '

2016- 02- 18 11:55: 26, 240 | NFO.

2016- 02- 18 11: 55: 26, 240 INFO Stats: no local files in the transfer set

2016-02-18 11:55:26,240 CRITICAL: Sone transfers failed! See above, and possibly stderr.
------------- Task #1 - pegasus::transfer - None - Kickstart stderr--------------

cp: /home/tutorial/split/input/pegasus.htm: No such file or directory

cp: /home/tutorial/split/input/pegasus.htm: No such file or directory
cp: /home/tutorial/split/input/pegasus.htm: No such file or directory

Theabovelisting indicatesthat it could not transfer pegasus.html. Let's correct that error by restoring the pegasus.html
file:

$ nv input/pegasus. htnl.bak input/pegasus. htm

Now in order to start the workflow from whereweleft off, instead of executing pegasus-plan we will use the command
pegasus-run on the directory from our previous failed workflow run:

21



Tutorial

$ pegasus-run submit/tutorial/pegasus/split/run0002/
Rescued /home/tutorial/split/submt/tutorial/pegasus/split/run0002/split-0.10g as /hone/tutorial/
split/submt/tutorial/pegasus/split/run0002/split-0.log.000
Subnmitting to condor split-0.dag.condor.sub
Subnitting job(s).
1 job(s) submitted to cluster 181.
Your wor kfl ow has been started and is running in the base directory:
submi t/tutorial/pegasus/split/run0002/
*** To monitor the workflow you can run ***
pegasus-status -1 submit/tutorial/pegasus/split/run0002/

*** To renmove your workflow run ***

pegasus-renove submit/tutorial/pegasus/split/run0002/

The workflow will now run to completion and succeed.

$ pegasus-status -1 submit/tutorial/pegasus/split/run0002/

(no matching jobs found in Condor Q

UNRDY READY PRE IN_Q POST DONE FAIL “DONE STATE  DAGNAME

0 0 0 0 0 11 0 100.0 Success *split-0.dag
Summary: 1 DAG total (Success:1)

Generating the Workflow

The example that you ran earlier already had the workflow description (split.dax) generated. Pegasus reads workflow
descriptions from DAX files. The term "DAX" is short for "Directed Acyclic Graph in XML". DAX isan XML file
format that has syntax for expressing jobs, arguments, files, and dependencies. We now will be creating the split
workflow that we just ran using the Pegasus provided DAX API:

Figure 2.13. Split Workflow

In this diagram, the ovals represent computational jobs, the dog-eared squares are files, and the arrows are dependen-
cies.

In order to create aDAX it isnecessary to write codefor aDAX generator. Pegasus comes with Perl, Java, and Python
libraries for writing DAX generators. In this tutorial we will show how to use the Python library.

The DAX generator for the split workflow isin thefiledaxgen. py. Look at thefile by typing:

$ nore daxgen. py
Tip
We will be using the nor e command to inspect severa filesin this tutorial. nmor e is a pager application,
meaning that it splits text files into pages and displays the pages one at atime. Y ou can view the next page
of afile by pressing the spacebar. Type 'h' to get help on using nor e. When you are done, you can type
'q'to close thefile.

The code has 3 main sections:

1. A new ADAG object is created. Thisisthe main object to which jobs and dependencies are added.

22



Tutorial

# Create a abstract dag
dax = ADAG "split")

2. Jobsandfilesare added. The5jobsinthediagram above are added and 9filesarereferenced. Argumentsaredefined
using strings and File objects. The input and output files are defined for each job. Thisis an important step, as it
allows Pegasusto track thefiles, and stage the dataiif necessary. Workflow outputs are tagged with "transfer=true".

# the split job that splits the webpage into snaller chunks
webpage = Fil e("pegasus. htm ")

split = Job("split")
split.addArguments("-1","100","-a","1", webpage, "part.")

split.uses(webpage, |ink=Link.|NPUT)
dax. addJob(split)

3. Dependencies are added. These are shown as arrows in the diagram above. They define the parent/child relation-
ships between the jobs. When the workflow is executing, the order in which the jobs will be run is determined by
the dependenci es between them.

# Add control -fl ow dependenci es
dax. depends(wc, split)

Generate aDAX filenamed spl i t . dax by typing:

$ ./generate_dax.sh split.dax
Cenerated dax split.dax

Thespl it. dax file should contain an XML representation of the split workflow. Y ou can inspect it by typing:

$ nmore split.dax

Information Catalogs

The workflow description (DAX) that you specify to Pegasusis portable, and usually does not contain any locationsto
physical input files, executables or cluster end points where jobs are executed. Pegasus uses three information catalogs
during the planning process.

Figure 2.14. Information Catalogs used by Pegasus

The Site Catalog

The site catalog describes the sites where the workflow jobs are to be executed. In this tutorial we assume that you
have a Personal Condor pool running on localhost. If you are using one of thetutorial VMsthis has already been setup
for you. The site catalog for the tutorial examplesisinsi t es. xm :

$ nore sites. xn
<l-- The local site contains information about the submt host -->
<l-- The arch and os keywords are used to match binaries in the transformation catalog -->

<site handl e="local " arch="x86_64" os="LI NUX">

<l-- These are the paths on the submt host were Pegasus stores data -->

23



Tutorial

<l-- Scratch is where tenporary files go -->
<directory type="shared-scratch" path="/honme/tutorial/scratch">
<file-server operation="all" url="file:///hone/tutorial/scratch"/>

</directory>

<l-- Storage is where pegasus stores output files -->
<directory type="l ocal -storage" path="/hone/tutorial/output">
<file-server operation="all" url="file:///hone/tutorial/output"/>
</directory>
</site>
Note

By default (unless specified in properties), Pegasus picks ups the site catalog from a XML file named
sites.xml in the current working directory from where pegasus-plan is invoked.

There are two sites defined in the site catalog: "local" and "condorpool”. The "loca" siteis used by Pegasusto learn

about the submit host where the workflow management system runs. The "condorpool” site is the Condor pool con-

figured on your submit machine. In the case of the tutorial VM, thelocal site and the condorpool site refer to the same

machine, but they are logically separate as far as Pegasus is concerned.

1. Thelocal siteis configured with a"storage" file system that is mounted on the submit host (indicated by thefile://
URL). Thisfile system is where the output data from the workflow will be stored. When the workflow is planned
we will tell Pegasus that the output siteis"local".

2. Thecondor pool siteisalso configured with a"scratch” file system. Thisfile system iswhere the working directory
will be created. When we plan the workflow we will tell Pegasus that the execution siteis "condorpool".

Pegasus supports many different filetransfer protocols. In this case the Pegasus configuration is set up so that input and
output files are transferred to/from the condorpool site by Condor. Thisis done by setting pegasus. dat a. con-
figuration = condori ointhe propertiesfile. In anorma Condor pool, thiswill cause job input/output files
to be transferred from/to the submit host to/from the worker node. In the case of the tutorial VM, this configuration is
just afancy way to copy files from the workflow scratch directory to the job scratch directory.

Finaly, the condorpool site is configured with two profiles that tell Pegasus that it is a plain Condor pool. Pegasus
supports many ways of submitting tasks to aremote cluster. In this configuration it will submit vanilla Condor jobs.

HPC Clusters

Typicaly the sitesin the site catalog describe remote clusters, such as PBS clusters or Condor pools.

Usually, atypical deployment of an HPC cluster isillustrated below. The site catalog, captures for each cluster (site)
« directories that can be used for executing jobs

« whether ashared file system is available

« file serversto use for staging input data and staging out output data

« headnode of the cluster to which jobs can be submitted.

24



Tutorial

Figure 2.15. Sample HPC Cluster Setup

~
( HPC Cluster
. Worker Node 1

Head Node

Worker Node N

Below is asample site catalog entry for HPC cluster at SDSC that is part of XSEDE

<site handl e="sdsc-gordon" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="gordon-I|n4.sdsc. xsede. org: 2119/ j obmanager - f or k" schedul er =" For k"
j obtype="auxillary"/>
<grid type="gt5" contact="gordon-I|n4.sdsc. xsede. org: 2119/ j obmanager - pbs"
schedul er ="unknown" j obt ype="conpute"/>

<!-- the base directory where workflow jobs will execute for the site -->
<directory type="shared-scratch" path="/oasis/scratch/ux454281/tenp_project">
<file-server operation="all" url="gsiftp://oasis-dm sdsc.xsede. org: 2811/ oasi s/ scratch/

ux454281/ t enp_proj ect"/ >
</directory>

<profil e namespace="gl obus" key="project">TG STA110014S</ profil e>
<profil e namespace="env" key="PEGASUS HOME" >/ horme/ ux454281/ sof t war e/ pegasus/ pegasus- 4. 5. 0</
profile>
</site>

The Transformation Catalog

The transformation catalog describes all of the executables (called "transformations') used by the workflow. This
description includes the site(s) where they are located, the architecture and operating system they are compiled for,
and any other information required to properly transfer them to the execution site and run them.

For thistutorial, the transformation catalog isin thefilet c. t xt :

$ nore tc.txt
tr we {
site condorpool {
pfn "/usr/bin/wc"
arch "x86_64"
os "linux"
type "I NSTALLED"

Note

By default (unless specified in properties), Pegasus picks up the transformation catalog from a text file
named tc.txt in the current working directory from where pegasus-plan isinvoked.

25



Tutorial

Thet c. t xt file containsinformation about two transformations: wc, and split. These two transformations are refer-
enced inthe split DAX. Thetransformation catal og indicates that both transformations are installed on the condorpool
site, and are compiled for x86_64 Linux.

The Replica Catalog

Note: Replica Catalog configuration is not required for the tutorial setup. It is only required if you want to refer to
input files on external servers.

The example that you ran, was configured with the inputs already present on the submit host (where Pegasus is in-
stalled) in adirectory. If you have inputs at external servers, then you can specify the URLs to the input filesin the
Replica Catalog. This catalog tells Pegasus where to find each of the input files for the workflow.

All files in a Pegasus workflow are referred to in the DAX using their Logical File Name (LFN). These LFNs are
mapped to Physical File Names (PFNs) when Pegasus plans the workflow. This level of indirection enables Pegasus
to map abstract DAXes to different execution sites and plan out the required file transfers automatically.

The Replica Catalog for the diamond workflow isinther c. t xt file:

$ nore rc.txt

# This is the replica catalog. It lists information about each of the

# input files used by the workflow. You can use this to specify locations to input files present on
external servers.

# The format is:

# LFN PFN pool =" SI TE"

#

# For exanpl e:

#data.txt file:///tnp/data.txt site="l ocal "

#data.txt http://exanple.org/data.txt site="exanple"
pegasus. htm file:///home/tutorial/split/input/pegasus.htn site="l ocal "

Note

By default (unless specified in properties), Pegasus picks ups the transformation catalog from a text file
named tc.txt in the current working directory from where pegasus-plan isinvoked. In our tutorial, input files
are on the submit host and we used the --input dir option to pegasus-plan to specify where they are located.

This replica catalog contains only one entry for the split workflow’s only input file. This entry has an LFN of "pega-
sus.html" with a PFN of "file:///home/tutorial/split/input/pegasus.html” and the file is stored on the local site, which
impliesthat it will need to be transferred to the condorpool site when the workflow runs.

Configuring Pegasus

In addition to the information catalogs, Pegasus takes a configuration file that specifies settings that control how it
plans the workflow.

For the diamond workflow, the Pegasus configuration fileisrelatively simple. It only contains settingsto help Pegasus
find the information catalogs. These settings arein the pegasus. properti es file

$ nore pegasus. properties
# This tells Pegasus where to find the Site Catal og
pegasus. catal og.site.file=sites.xm

# This tells Pegasus where to find the Replica Catal og
pegasus. catal og.replica=File
pegasus. catal og.replica.file=rc.txt

# This tells Pegasus where to find the Transfornmati on Catal og
pegasus. cat al og. t ransf or mat i on=Text
pegasus. catal og. transformation.file=tc.txt

# Use condor to transfer workflow data
pegasus. dat a. confi gurati on=condori o

# This is the nane of the application for analytics
pegasus. netrics. app=pegasus-tutori al

26



Tutorial

Conclusion

Congratulations! Y ou have completed the tutorial.

If you used Amazon EC2 for thistutorial make sureto terminate your VM. Refer to the appendix for more information
about how to do this.

Refer to the other chaptersin this guide for more information about creating, planning, and executing workflows with

Pegasus.

Please contact the Pegasus Users Mailing list at <pegasus- user s@ si . edu> if you need help.

27



Chapter 3. Installation

The preferred way to install Pegasusiswith native (RPM/DEB) packages. It isrecommended that you also install HT-
Condor (formerly Condor) (yum [http://research.cs.wisc.edu/htcondor/yum/], debian [http://research.cs.wisc.edu/ht-
condor/debian/]) from native packages.

Prerequisites

Pegasus has a few dependencies:

« Java 1.8 or higher. Check with:

# java -version
java version "1.8.0"

¢ Python 2.6 or higher. Check with:

# python -v
Python 2.6.2

Non-standard Python installation: Pegasus will use the system Python by default. If you want to override this
behavior, please set the PEGASUS PYTHON environment variable during the build. This environment variable
isonly for build time configuration. Once built, Pegasuswill continue to use the build time specified Python install.

¢ HTCondor (formerly Condor) 8.6 or higher. See http://www.cs.wisc.edu/htcondor/ for more information. Y ou
should be ableto run condor _q and condor _st at us.

Optional Software

¢ Globus5.0 or higher. Globusisonly needed if you want to run against grid sites or use GridFTP for datatransfers.
See http://www.globus.org/ for more information.

¢ psycopg2. Python module for PostgreSQL access. Only needed if you want to store the runtime database in Post-
greSQL (default is SQL.ite)

¢ python-amgplib. Python modulefor sending workflow eventsto RabbitM Q. Thisisoptional, and hasto be enabled
in the Pegasus workflow configuration.

Environment

To use Pegasus, you need to have the pegasus-* toolsin your PATH. If you have installed Pegasus from RPM/DEB
packages. the tools will be in the default PATH, in /usr/bin. If you have installed Pegasus from binary tarballs or
source, add the bin/ directory to your PATH.

Example for bourne shells:

$ export PATH=/sone/install/pegasus- 4. 8/ bi n: $PATH

Note

Pegasus 4.x is different from previous versions of Pegasusin that it does not require PEGASUS HOME to
be set or sourcing of any environment setup scripts.

If you want to use the DAX APIs, you might also need to set your PY THONPATH, PERLS5LIB, or CLASSPATH.
The right setting can be found by using pegasus-config:

$ export PYTHONPATH=" pegasus-config --python’
$ export PERL5LIB="pegasus-config --perl"”
$ export CLASSPATH="pegasus-config --classpath’

28


http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://www.cs.wisc.edu/htcondor/
http://www.globus.org/

Installation

RHEL / CentOS / Scientific Linux

Binary packages provided for: RHEL 6 x86_64, RHEL 7 x86_64 (and OSes derived from RHEL: CentOS, SL)

Add the Pegasus repository to yum downloading the Pegasus repos file and adding it to / et ¢/ yum r epos. d/ .
For RHEL 7 based systemes:

# wget -O /etc/yumrepos. d/ pegasus. repo https://downl oad. pegasus. i si . edu/ pegasus/rhel / 7/ pegasus. r epo

For RHEL 6 based systems:

# wget -O /etc/yumrepos. d/ pegasus.repo https://downl oad. pegasus. i si . edu/ pegasus/rhel / 6/ pegasus. r epo

Search for, and install Pegasus:

# yum search pegasus

pegasus. x86_64 : Workfl ow managenent system for Condor, grids, and clouds
# yuminstall pegasus

Runni ng Transaction

Installing . pegasus

Install ed
pegasus

Conpl et e

Ubuntu

Binary packages provided for: 17.04 (Zesty Zapus) x86_64, 16.04 (Xenia Xerus) x86_64
For 17.04 (Zesty Zapus) based systems:

To be ableto install and upgrade from the Pegasus apt repository, you will have to trust the repository key. Y ou only
need to add the repository key once:

# wget -O - https://downl oad. pegasus. i si . edu/ pegasus/ gpg.txt | apt-key add -

Create repository file, update and install Pegasus:
# echo 'deb https://downl oad. pegasus. i si.edu/ pegasus/ ubuntu zesty main' >/etc/apt/sources.|list.d/
pegasus. | i st

# apt-get update
# apt-get install pegasus

For 16.04 (Xenial Xerus) based systems:

To be able to install and upgrade from the Pegasus apt repository, you will have to trust the repository key. Y ou only
need to add the repository key once:

# wget -O - https://downl oad. pegasus. i si . edu/ pegasus/ gpg.txt | apt-key add -

Create repository file, update and install Pegasus:

# echo 'deb https://downl oad. pegasus. i si . edu/ pegasus/ ubuntu xeni al main' >/etc/apt/sources.|list.d/
pegasus. | i st

# apt-get update
# apt-get install pegasus

Debian

Binary packages provided for: 9 (Stretch) x86_64, 10 (Buster) x86_64

To be ableto install and upgrade from the Pegasus apt repository, you will have to trust the repository key. Y ou only
need to add the repository key once:

# wget -O - https://downl oad. pegasus. i si.edu/ pegasus/ gpg.txt | apt-key add -

29



Installation

Create repository file, update and install Pegasus (currently available releases are stretch (9) and buster (10) - replace
the strecth part):

# echo 'deb https://downl oad. pegasus. i si.edu/ pegasus/ debi an stretch main' >/etc/apt/sources.|ist.d/
pegasus. | i st

# apt-get update

# apt-get install pegasus

Mac OS X

The easiest way to install Pegasus on Mac OS is to use Homebrew. Y ou will need to install X Code and the X Code
command-line toals, aswell as Homebrew. Then you just need to tap the Pegasus tools repository and install Pegasus
and HTCondor like this:

$ brew tap pegasus-isi/tools
$ brew install pegasus htcondor

Once the installation is complete, you need to start the HTCondor service. The easiest way to do that is to use the
Homebrew services tap:

$ brew tap honmebrew services
$ brew services |ist
$ brew services start htcondor

Y ou can also stop HTCondor like this:
$ brew services stop htcondor
And you can uninstall Pegasus and HTCondor using br ew rm like this:

$ brew rm pegasus ht condor

Note

It is also possible to install the latest development versions of Pegasus using the - - devel and - - HEAD
argumentstobrew i nstal |, likethiss$ brew i nstall --devel pegasus

Pegasus from Tarballs

The Pegasus prebuild tarballs can be downloaded from the Pegasus Download Page [https://pegasus.isi.edu/down-
loads].

Use these tarballs if you already have HTCondor installed or prefer to keep the HTCondor installation separate from
the Pegasus installation.

¢ Untar the tarball
# tar zxf pegasus-*.tar.gz
« include the Pegasus bin directory in your PATH

# export PATH=/ pat h/ to/ pegasus-install/bin: $PATH

30


https://pegasus.isi.edu/downloads
https://pegasus.isi.edu/downloads
https://pegasus.isi.edu/downloads

Chapter 4. Creating Workflows
Abstract Workflows (DAX)

The DAX isadescription of an abstract workflow in XML format that is used as the primary input into Pegasus. The
DAX schema is described in dax-3.4.xsd [schemas/dax-3.4/dax-3.4.xsd] The documentation of the schema and its
elements can be found in dax-3.4.html [schemas/dax-3.4/dax-3.4.html].

A DAX can be created by al users with the DAX generating API in Java, Perl, or Python format

Note

We highly recommend using the DAX API. The Perl DAX API is deprecated starting 4.9.0 Release and
will be removed in the 5.0 Release.

Advanced users who can read XML schema definitions can generate a DAX directly from a script
The sample workflow below incorporates some of the elementary graph structures used in all abstract workflows.
« fan-out, scatter, and diverge all describe the fact that multiple siblings are dependent on fewer parents.
The example shows how the Job 2 and 3 nodes depend on Job 1 node.
« fan-in, gather, join, and conver ge describe how multiple siblings are merged into fewer dependent child nodes.
The example shows how the Job 4 node depends on both Job 2 and Job 3 nodes.
« serial execution implies that nodes are dependent on one another, like pearls on a string.

« parallel execution implies that nodes can be executed in parallel

31


schemas/dax-3.4/dax-3.4.xsd
schemas/dax-3.4/dax-3.4.xsd
schemas/dax-3.4/dax-3.4.html
schemas/dax-3.4/dax-3.4.html

Creating Workflows

Figure 4.1. Sample Workflow

Required
Input
£

Job 2

findrange findrange

The example diamond workflow consists of four nodes representing jobs, and are linked by six files.

* Required input files must be registered with the Replica catalog in order for Pegasusto find it and integrate it into
the workflow.

» Leaf filesareaproduct or output of aworkflow. Output files can be collected at alocation.

¢ The remaining files all have lines leading to them and originating from them. These files are products of some
job steps (lines leading to them), and consumed by other job steps (lines leading out of them). Often, these files
represent intermediary results that can be cleaned.

There are two main ways of generating DAX's
1. Using aDAX generating API in Java, Perl or Python.
Note: We recommend this option.
2. Generating XML directly from your script.
Note: This option should only be considered by advanced users who can also read XML schema definitions.

One example for aDAX representing the example workflow can look like the following:

<?xm version="1.0" encodi ng="UTF-8"?>

32



Creating Workflows

<l-- generated on: 2016-01-21T10: 36: 39-08: 00 -->

<!-- generated by: vahi [ ??2 ] -->

<adag xm ns="http://pegasus.isi.edu/ schema/ DAX" xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schema-

i nstance" xsi:schemaLocation="http://pegasus.isi.edu/schema/ DAX http://pegasus.isi.edu/ schema/
dax- 3. 6. xsd" version="3.6" name="di anond" index="0" count="1">

<l-- Section 1: Metadata attributes for the workflow (can be enpty) -->

<nmet adat a key="nane" >di anond</ net adat a>
<nmet adat a key="creat edBy" >Kar an Vahi </ net adat a>

<l-- Section 2: Invokes - Adds notifications for a workfl ow (can be enmpty) -->
<i nvoke when="start">/ pegasus/|ibexec/notification/emil -t notify@xanple.conk/invoke>
<i nvoke when="at _end">/ pegasus/|ibexec/notification/email -t notify@xanple.conx/invoke>

<l-- Section 3: Files - Acts as a Replica Catalog (can be enpty) -->

<file name="f.a">

<met adat a key="si ze" >1024</ et adat a>

<pfn url="file:///Vol umes/ Work/|fsl/work/pegasus-features/PM902/f.a" site="local"/>
</file>

<l-- Section 4: Executables - Acts as a Transformaton Catal og (can be enmpty) -->

<execut abl e nanespace="pegasus" nane="preprocess" version="4.0" installed="true" arch="x86"
os="linux">
<met adat a key="si ze" >2048</ net adat a>
<pfn url="file:///usr/bin/keg" site="Testd uster"/>
</ execut abl e>
<execut abl e nanespace="pegasus" nane="findrange" version="4.0" installed="true" arch="x86"
os="1inux">
<pfn url="file:///usr/bin/keg" site="Testd uster"/>
</ execut abl e>
<execut abl e nanespace="pegasus" nane="anal yze" version="4.0" installed="true" arch="x86"
os="1inux">
<pfn url="file:///usr/bin/keg" site="Testd uster"/>
</ execut abl e>

<l-- Section 5: Transformations - Aggregates executables and Files (can be enpty) -->

<l-- Section 6: Job's, DAX's or Dag's - Defines a JOB or DAX or DAG (Atleast 1 required) -->

<job id="j1" nanmespace="pegasus" nane="preprocess" version="4.0">
<met adat a key="ti me" >60</ net adat a>

<argument >-a preprocess -T 60 -i <file name="f.a"/> -0 <file name="f.bl"/> <file
nane="f.b2"/ ></ ar gunent >
<uses nane="f.a" |ink="input">
<nmet adat a key="si ze" >1024</ net adat a>
</ uses>
<uses name="f.bl" |ink="output" transfer="true" register="true"/>
<uses name="f.b2" |ink="output" transfer="true" register="true"/>
<i nvoke when="start">/ pegasus/|ibexec/notification/enmail -t notify@xanple.conx/invoke>
<i nvoke when="at _end">/ pegasus/|ibexec/notification/emil -t notify@xanple.conk/invoke>
</j ob>

<job id="j2" nanmespace="pegasus" nane="findrange" version="4.0">
<met adat a key="ti me" >60</ et adat a>

<argurment>-a findrange -T 60 -i <file name="f.b1"/> -0 <file name="f.cl1"/></argunent>

<uses nane="f.bl" |ink="input"/>

<uses name="f.cl" link="output" transfer="true" register="true"/>

<i nvoke when="start">/ pegasus/|ibexec/notification/email -t notify@xanple.conx/invoke>

<i nvoke when="at _end">/ pegasus/|ibexec/notification/emil -t notify@xanple.conk/invoke>
</j ob>

<job id="j3" nanmespace="pegasus" nanme="findrange" version="4.0">
<met adat a key="ti me" >60</ met adat a>

<argurment>-a findrange -T 60 -i <file name="f.b2"/> -0 <file name="f.c2"/></argunent>

<uses nane="f.b2" |ink="input"/>

<uses name="f.c2" link="output" transfer="true" register="true"/>

<i nvoke when="start">/ pegasus/|ibexec/notification/email -t notify@xanple.conx/invoke>

<i nvoke when="at _end">/ pegasus/|ibexec/notification/emil -t notify@xanple.conk/invoke>
</ j ob>

<job id="j4" nanmespace="pegasus" nane="anal yze" version="4.0">
<met adat a key="ti me" >60</ met adat a>

<argument>-a analyze -T 60 -i <file nane="f.cl"/> <file name="f.c2"/> -0 <file name="f.

></ ar gunent >
<uses name="f.cl" |ink="input"/>

a"/

33



Creating Workflows

<uses nane="f.c2" |ink="input"/>

<uses name="f.d" |ink="output" transfer="true" register="true"/>

<i nvoke when="start">/ pegasus/|ibexec/notification/email -t notify@xanple.conx/invoke>

<i nvoke when="at _end">/ pegasus/|ibexec/notification/emil -t notify@xanple.conk/invoke>
</j ob>

<l-- Section 7: Dependencies - Parent Child relationships (can be enmpty) -->

<child ref="j2">
<parent ref="j1"/>

</ chi | d>

<child ref="j3">
<parent ref="j1"/>

</ chi | d>

<child ref="j4">
<parent ref="j2"/>
<parent ref="j3"/>

</ chi | d>

</ adag>

The example workflow representation in form of a DAX requires external catalogs, such as transformation catalog
(TC) to resolve the logical job names (such as diamond::preprocess:2.0), and a replica catalog (RC) to resolve the
input filef . a. The above workflow defines the four jobsjust like the example picture, and the files that flow between
the jobs. The intermediary files are neither registered nor staged out, and can be considered transient. Only the final
result filef . d is staged out.

Data Discovery (Replica Catalog)

File

The Replica Catal og keeps mappings of logical file ids/names (LFN's) to physical file ids/names (PFN's). A single
LFN can map to several PFN's. A PFN consists of aURL with protocol, host and port information and a path to afile.
Along with the PFN one can also store additional key/value attributes to be associated with a PFN.

Pegasus supports the following implementations of the Replica Catal og.

1. File(Default)

2. Regex

3. Directory

4. Databasevia JDBC

5. MRC

In this mode, Pegasus queries afile based replica catalog. Thefileformat isasimple multicolumn format. It is neither
transactionally safe, nor advised to usefor production purposesin any way. Multiple concurrent instanceswill conflict
with each other. The site attribute should be specified whenever possible. The attribute key for the site attribute is
"dte".

LFN PFN

LFN PFN a=b [..]

LFN PFN a="b" [..]

"LEN W LWS" "PFN w LWS" [..]

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equal sign, it must be
quoted and escaped. The same conditions apply for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be quoted. The LFN sentiments about quoting apply.

The file mode is the Default mode. In order to use the File mode you have to set the following properties
1. pegasus.catalog.replica=File

2. pegasus.catalog.replicafile=<path to the replica catalog file>




Creating Workflows

Regex

In thismode, Pegasus queries afile based replica catalog. Thefile format isasimple multicolumn format. It is neither
transactionally safe purposesin any way. Multiple concurrent instances will conflict with each other. The site attribute
should be specified whenever possible. The attribute key for the site attribute is " site” .

In addition users can specifiy regular expression based LFN's. A regular expression based entry should be quaified
with an attribute named 'regex'. The attribute regex when set to true identifies the catalog entry asaregular expression
based entry. Regular expressions should follow Java regular expression syntax.

For example, consider areplica catalog as shown below.

Entry 1 refers to an entry which does not use a regular expressions. This entry would only match afile named 'f.d,
and nothing else.

Entry 2 referes to an entry which uses a regular expression. In this entry f.a referes to files having name as f<any-
character>ai.e. fag, f.a, fOa, etc.

#1

f.a file:///Volunes/datal/input/f.a site="local"

#2

f.a file:///Volunes/data/input/f.a site="local" regex="true"

Regular expression based entries al so support substitutions. For example, consider the regular expression based entry
shown below.

Entry 3 will match files with name a pha.csv, apha.txt, alphaxml. In addition, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being looked up is apha.csv, the PFN for the file would be generated as file:///Vol-
umes/data/input/csv/apha.csv. Similary if the file being lookedup was alpha.csv, the PFN for the file would be gen-
erated as file:///V olumes/datalinput/xml/alpha.xml i.e. The section [0], [1] will be replaced. Section [O] refersto the
entire string i.e. apha.csv. Section [1] refers to a partial match in the input i.e. csv, or txt, or xml. Users can utilize
as many sections as they wish.

#3
al pha\. (csv|txt|xm) file:///Volunes/data/input/[1]/[0] site="local" regex="true"

In case of a LFN name matching multiple entries in the file, the implementation picks up the first matching regex as
it appearsin thefile. If you want to specify adefault location for all LFN'sthat don't match any regex expression, you
can have this entry asthe last entry in your file.

#4 all unmatched LFN s reside in the same input directory.

L file:///Volumes/datal/input/[0] site="local" regex="true"

Directory

In thismode, Pegasus does a directory listing on an input directory to create the LFN to PFN mappings. The directory
listing is performed recursively, resulting in deep L FN mappings. For example, if aninput directory $input is specified
with the following structure

$i nput

$input/f.1

$input/f.2

$i nput/ D1
$input/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D1/f.3 site="local"

Users can optionally specify additional properties to configure the behavior of thisimplementation.

1. pegasus.catalog.replica.directory to specify the path to the directory where the files exist.

35



Creating Workflows

2. pegasus.catalog.replica.directory.site to specify a site attribute other than local to associate with the mappings.

3. pegasus.catalog.replica.directory.flat.Ifn to specify whether you want deep LFN's to be constructed or not. If not
specified, value defaults to falsei.e. deep Ifn's are constructed for the mappings.

4. pegasus.catalog.replica.directory.url.prefix to associate a URL prefix for the PFN's constructed. If not specified,
the URL defaultsto file://

Tip

pegasus-plan has --input-dir option that can be used to specify an input directory on the command line.
This allows you to specify a separate replica catal og to catalog the locations of output files.

JDBCRC

MRC

In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. To create the schema for
JDBCRC use the pegasus-db-admin command line tool.

Note

A siteattribute was added to the SQL schemaasauniquekey for 4.4. To update an existing database schema,
use pegasus-db-admin tool.

Figure 4.2. Schema I mage of the JDBCRC.

| rc_meta v
| re_ln v fin_id BIGINT(20)
fn_id BIGINT(20) 1<l © key VARCHAR(245)
fn VARCHA R(245) P value VARCHAR(245)
> _] re_ptn v >

pfn_id BIGINT(20)

& Iin_id BIGINT{20)
pfn WARCHAR(245)
site VARCHAR(245)
>

To use IDBCRC, the user additionally needs to set the following properties
1. pegasus.catalog.replica JDBCRC
2. pegasus.catalog.replica.db.driver mysgl | postgres |sglite

3. pegasus.catalog.replica.db.url=<j dbc url to the database> e.g jdbc:nysql://data-
base- host . i si . edu/ dat abase-name | jdbc:sqglite:/shared/jdbcrc.db

4. pegasus.catalog.replica.db.user=<dat abase user>
5. pegasus.catalog.replica.db.password=<dat abase passwor d>

Users can use the command line client pegasus-rc-client to interface to query, insert and remove entries from the
JDBCRC backend. Starting 4.5 release, there is also support for sglite databases. Specify the jdbc url to refer to a
sglite database.

In this mode, Pegasus queries multiple replica catal ogs to discover the file locations on the grid.
Touseit set

1. pegasus.catalog.replica=MRC

36



Creating Workflows

Each associated replica catalog can be configured via properties as follows.

The user associates avariable namereferred to as [value] for each of the catalogs, where [value] isany legal identifier
(concretely [A-Za-Z][_A-Za-z0-9]*) For each associated replica catal ogs the user specifies the following properties

* pegasus.catalog.replica.mrc.[value] - specifies the type of replica catalog.

« pegasus.catalog.replica.mrc.[value].key - specifies a property name key for a particular catalog
For example, to query aFile catalog and JDBCRC at the same time specify the following:

¢ pegasus.catalog.replica=MRC

¢ pegasus.catalog.replica.mrc.jdbcrc=JDBCRC

¢ pegasus.catalog.replicamrc.jdbercurl=<j dbc url >

* pegasus.catalog.replicamrc.filel=File

* pegasus.catalog.replica.mrc.filel.url=<path to file based replica catalog>

In the above example, jdbcrc and filel are any valid identifier names and url is the property key that needed to be
specified.

Another example is to use MRC with multiple input directories. Sample properties for that configuration are listed
below

¢ pegasus.catalog.replica=MRC

* pegasus.catalog.replicamrc.directoryl=Directory

* pegasus.catalog.replica.mrc.directoryl.dir ectory=/path/to/dir 1
« pegasus.catalog.replica.mrc.directoryl.directory.site=obelix

* pegasus.catalog.replica.mrc.directory2=Directory

« pegasus.catalog.replica.mrc.directory2.dir ectory=/path/to/dir 2

¢ pegasus.catalog.replica.mrc.directory2.directory.site=corbusier

Replica Catalog Client pegasus-rc-client

The client used to interact with the Replica Catal ogs is pegasus-rc-client. The implementation that the client talks to
is configured using Pegasus properties.
L ets assume we create afile f.ain your home directory as shown below.

$ date > $HOWVE/f. a

We now need to register thisfilein the File replica catalog located in $HOM E/r ¢ using the pegasus-rc-client. Replace
the gsiftp://url with the appropriate parameters for your grid site.

$ pegasus-rc-client -Dpegasus.catal og.replica=File -Dpegasus.catalog.replica.file=$HOVE/rc insert \
f.a gsiftp://sonehost:port/path/to/file/f.a site=local

You may first want to verify that the file registeration is in the replica catalog. Since we are using a File catalog we
can look at the file SHOME/rc to view entries.

$ cat $HOVE/rc

# file-based replica catal og: 2010-11-10T17:52: 53. 405- 07: 00
f.a gsiftp://somehost:port/path/to/file/f.a site=local

The above line shows that entry for file f.a was made correctly.

Y ou can also use the pegasus-r c-client to look for entries.

37



Creating Workflows

$ pegasus-rc-client -Dpegasus.catal og.replica=File -Dpegasus.catal og.replica.file=$HOVE/ rc | ookup
LFN f. a

f.a gsiftp://somehost:port/path/to/file/f.a site=local

Resource Discovery (Site Catalog)

XML4

The Site Catalog describes the compute resources (which are often clusters) that we intend to run the workflow up-
on. A site is a homogeneous part of a cluster that has at least a single GRAM gatekeeper with a jobmanager-fork
andjobmanager-<scheduler> interface and at least one gridftp server along with a shared file system. The GRAM
gatekeeper can be either WS GRAM or Pre-WS GRAM . A site can also be a condor pool or glidein pool with a shared
file system.

The Site Catalog can be described as an XML . Pegasus currently supports two schemas for the Site Catal og:
1. XML 4(Default) Corresponds to the schema described here [schemas/sc-4.0/sc-4.0.html].

2. XML 3(Deprecated) Corresponds to the schema described here [ schemas/sc-3.0/sc-3.0.html]

This is the default format for Pegasus 4.2. This format allows defining filesystem of shared as well aslocal type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.3. Schema Image of the Site Catalog XML 4

0.0
Each site suppoMs varous
(usually twea] jobrianagers,

.’"E directory

site CB : 0.

Describes a single site E___E replica-catalog
E 0.
v Each site may report to
v multiple LRC=,
t-+profile ',
'''''''''''' 'w'.‘:,. —]
0.

Adriinistrative profile
defaults associated with a
site,

Below is an example of the XML4 site catalog

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

38


schemas/sc-4.0/sc-4.0.html
schemas/sc-4.0/sc-4.0.html
schemas/sc-3.0/sc-3.0.html
schemas/sc-3.0/sc-3.0.html

Creating Workflows

<site handle="local" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/tnp/workflows/scratch">
<file-server operation="all" url="file:///tnmp/workflows/scratch"/>
</directory>
<directory type="l ocal -storage" path="/tnp/workfl ows/ out puts">
<file-server operation="all" url="file:///tnp/workfl ows/outputs"/>
</directory>
</site>

<site handl e="condor_pool" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" schedul er="PBS"

j obtype="auxillary"/>

<grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" schedul er="PBS" jobtype="conpute"/>
<directory type="shared-scratch" path="/lustre">
<file-server operation="all" url="gsiftp://smarty.isi.edu/lustre"/>
</directory>
<replica-catal og type="LRC' url="rlsn://smarty.isi.edu"/>
</site>

<site handl e="staging_site" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/data">
<file-server operation="put" url="scp://obelix.isi.edu/data"/>
<file-server operation="get" url="http://obelix.isi.edu/data"/>
</directory>
</site>

</ sitecatal og>

Described below are some of the entriesin the site catalog.

1

2.

site- A siteidentifier.

Directory - Info about filesystems Pegasus can use for storing temporary and long-term files. There are severd
configurations:

« shared-scratch - Thisdescribesthe scratch file systems. Pegasuswill use thisto store intermediate data between
jobs and other temporary files.

« local-storage- Thisdescribesthe storage file systems (long term). Thisisthe directory Pegasuswill stage output
filesto.

« local-scratch - This describes the scratch file systems available locally on a compute node. This parameter is
not commonly used and can be left unset in most cases.

For each of the directories, you can specify access methods. Allowed methods are put, get, and all which means
both put and get. For each mehod, specify a URL including the protocol. For example, if you want share datavia
http using the /var/www/staging directory, you can use scp://hostname/var/www for the put element and http://
hostname/staging for the get element.

. arch,os,0srelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,

OSVERSION and GLIBC are optional
ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, Al X, PPC.

OS can have one of thefollowing valuesLINUX,SUNOS,MACOSX. Thedefault valuefor sysinfoif none specified
isX86::LINUX

. replica-catalog - URL for alocal replicacatalog (LRC) to register your filesin. Only used for RLSimplementation

of the RC. Thisis optional and support for RLS has been dropped in Pegasus 4.5.0 release.

. Profiles - One or many profiles can be attached to a site.

One example is the environments to be set on aremote site.

To use this site catal og the follow properties need to be set:

1. pegasus.catalog.sitefile=<path to the site catalog fil e>

39



Creating Workflows

XML3
Warning

Thisformat is now deprecated in favor of the XML4 format. If you are still using the File format you should
convert it to XML4 format using the client pegasus-sc-converter

Thisis the default format for Pegasus 3.0. This format allows defining filesystem of shared as well aslocal type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.4. Schema I mage of the Site Catalog XML 3

1
1
1 o."

| Eath site suppaits various

v f(usually twa) jobmanagers,
1

1

head-fs !

site -! worker-fs

Describes a single site 0000 ) mm e e e e - - - - -

1
1
I o."
| Each site may report to
. multiple LRCs,
1
1 _ ===
- 1
L -, profile |
= _Ii o

Administrative profile
defaults associated with a
site,

Below is an example of the XML 3 site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"
xm ns: xsi ="http://ww. wa. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og
http://pegasus.isi.edu/ schema/sc-3.0.xsd" version="3.0">

<site handle="isi" arch="x86" os="LINUX" osrel ease="" osversion="" glibc="">
<grid type="gt2" contact="snarty.isi.edu/jobnanager-pbs" schedul er="PBS" jobtype="auxillary"/

>
<grid type="gt2" contact="snarty.isi.edu/jobnanager-pbs" schedul er="PBS" jobtype="conpute"/>
<head- f s>
<scrat ch>
<shar ed>
<file-server protocol ="gsiftp" url="gsiftp://skynet-data.isi.edu"
nmount - poi nt ="/ nf s/ scrat ch01" />
<i nt ernal - mount - poi nt nount - poi nt ="/ nfs/scratch0l1"/>
</ shar ed>
</ scratch>
<storage>
<shar ed>
<file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
nount - poi nt ="/ exports/storage0l"/>
<i nternal - rount - poi nt nount - poi nt ="/ export s/ st orage01"/ >
</ shar ed>

40



Creating Workflows

</ st or age>
</ head- f s>
<replica-catalog type="LRC' url="rlsn://smarty.isi.edu"/>
<profil e namespace="env" key="PEGASUS HOVE" >/nfs/vdt/pegasus</profile>
<profil e namespace="env" key="CGLOBUS_LOCATI ON' >/vdt/ gl obus</profile>
</site>
</ sitecatal og>

Described below are some of the entriesin the site catalog.
1. site- A siteidentifier.

2. replica-catalog - URL for alocal replicacatalog (LRC) toregister your filesin. Only used for RLSimplementation
of the RC. Thisis optional and support for RLS has been dropped in Pegasus 4.5.0.

3. File Systems - Info about filesystems mounted on the remote clusters head node or worker nodes. It has severd
configurations

¢ head-fs/scratch - This describe the scratch file systems (temporary for execution) available on the head node
« head-fs/storage - This describes the storage file systems (long term) available on the head node

« worker-fs/scratch - This describe the scratch file systems (temporary for execution) available on the worker
node

« worker-fs/storage - This describes the storage file systems (long term) available on the worker node
Each scratch and storage entry can contain two sub entries,

* SHARED for shared file systems like NFS, LUSTRE etc.

¢ LOCAL for local file systems (local to the node/machine)

Each of the filesystems are defined by used a file-server element. Protocol defines the protocol uses to access the
files, URL defines the url prefix to obtain the files from and mount-point is the mount point exposed by the file
server.

Along with this an internal-mount-point needs to defined to access the files directly from the machine without any
file servers.

4. arch,os,0srelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AlX, PPC.

OS can have one of thefollowing values LINUX,SUNOS,MACOSX. Thedefault valuefor sysinfoif none specified
isX86::LINUX

5. Profiles- One or many profiles can be attached to a pool.
One example is the environments to be set on aremote pool.
To use this site catal og the follow properties need to be set:

1. pegasus.catalog.sitefilee<path to the site catalog file>

Site Catalog Converter pegasus-sc-converter

Pegasus 4.2 by default now parses Site Catalog format conforming to the SC schema 4.0 (XML4) available here
[schemas/sc-4.0/sc-4.0.xsd] and is explained in detail in the Catalog Properties section of Running Workflows.

Pegasus 4.2 comes with a pegasus-sc-converter that will convert users old site catalog (XML 3) to the XML4 format.
Sample usageis given below.

$ pegasus-sc-converter -i sanple.sites.xm -1 XM.3 -0 sanple.sites.xm 4 -O XM.4

41


schemas/sc-4.0/sc-4.0.xsd
schemas/sc-4.0/sc-4.0.xsd

Creating Workflows

2010.11.22 12:55:14.169 PST: Witten out the converted file to sanple.sites.xnl 4
To use the converted site catal og, in the properties do the following:
1. unset pegasus.catalog.site or set pegasus.catalog.site to XML

2. point pegasus.catal og.sitefile to the converted site catalog

Executable Discovery (Transformation CataloqQ)

The Transformation Catalog maps logical transformations to physical executables on the system. It also provides
additional information about the transformation asto what system they are compiled for, what profiles or environment
variables need to be set when the transformation isinvoked etc.

Pegasus currently supports a Text formatted Transformation Catalog
1. Text: A multi line text based Transformation Catalog (DEFAULT)

In this guide we will look at the format of the Multiline Text based TC.

MultiLine Text based TC (Text)

The multileline text based TC isthe new default TC in Pegasus. Thisformat allows you to define the transformations

The file is read and cached in memory. Any modifications, as adding or deleting, causes an update of the memory
and hence to the file underneath. All queries are done against the memory representation. The file sample.tc.text in
the etc directory contains an example

tr exanple::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

profile env "APP_HOME" "/tnp/ nyscratch”
profile env "JAVA HOME" "/opt/javall.6"

site isi {
profile env "HELLo0" "WORLD"
profile condor "FOO' "bar"
profile env "JAVA HOME" "/bin/java.1.6"
pfn "/path/tol/ keg"
arch "x86"
os "linux"
osrel ease "fc"
osversion "4"
type "I NSTALLED"

si

te wind {
profile env "CPATH' "/usr/cpath"
profile condor "universe" "condor"
pfn "file:///path/tol keg"
arch "x86"
os "linux"
osrel ease "fc"
osversion "4"
type " STAGEABLE"
}
}

The entriesin this catalog have the following meaning

1. tr tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are op-
tional.)

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally aurl (file:/// or http:// or gridftp://) if of type STAGEABLE

42



Creating Workflows

. site- The site identifier for the site where the transformation is available

. type - The type of transformation. Whether it is installed ("INSTALLED") on the remote site or is availabe to

stage ("STAGEABLE").

. arch, os, osrelease, osver sion - The arch/og/osrel ease/osversion of the transformation. osrel ease and osversion are

optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
isx86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

. Profiles- Oneor many profiles can be attached to atransformation for all sites or to atransformation on a particular

Site.

To usethisformat of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transfor mation=T ext

2. pegasus.catalog.transformation.filee<path to the transformati on catalog fil e>

Containerized Applications in the Transformation Catalog

Users can specify what container they want to use for running their application in the Transformation Catalog using
the multi line text based format described in this section. Users can specify an optional attribute named container that
refers to the container to be used for the application.

tr exanple::keg:1.0 {

}

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

profile env "APP_HOVE" "/tnp/nyscratch"
profile env "JAVA HOVE" "/opt/javal/l.6"

site isi {
# environnent to be set when the job is run in the container
# overrides env profiles specified in the container
profile env "HELLO" "WORLD'
profile env "JAVA HOVE" "/bin/java.l.6"

profile condor "FOO' "bar"

pfn "/path/tol keg
arch "x86"

os "linux"

osrel ease "fc"
osversion "4"

# | NSTALLED neans pfn refers to path in the container.
# STAGEABLE neans the executable can be staged into the container
type "I NSTALLED"

#optional attribute to specify the container to use
cont ai ner "centos-pegasus”

}

cont centos- pegasus{

# can be either docker or singularity or shifter
type "docker"

# URL to image in a docker|singularity hublshitfer repo url OR
# URL to an existing docker inage exported as a tar file or singularity inage
i mage "docker:///rynge/ nontage:| atest"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
image_site "optional site"

43



Creating Workflows

# mount information to nount host directories into container
# format src-dir:dest-dir[:options]
mount "/ Vol unmes/ Work/ | fsl:/shared-data/:ro"

# environnent to be set when the job is run in the container
# only env profiles are supported
profile env "JAVA HOVE' "/opt/javal/l.6"

}

The container itself is defined using the cont entry. Multiple transformations can refer to the same container.
1. cont cont - A container identifier.

2. image - URL to image in a docker|singularity hub| singularity library | shifter repo URL or URL to an existing
docker image exported as a tar file or singularity image. An example docker hub URL is docker:///rynge/mon-
tage:latest. An example Singularity hub URL isshub://singularity-hub.org/pegasus-isi/fedora-montage. Singularity
library URLs are prefixed with "library” rather than "shub". Shifter images can only be referred to by shifter URL
scheme that indicates that the image is available in the local shifter repository on the compute site. For example
shifter:///papajim/namd_image:latest .

3. image_site - The site identifier for the site where the container is available

4. mount - mount information to mount host directories into container of format src-dir:dest-dir[:options] . Consult
Docker and Singularity documentation for options supported for -v and -B options respectively.

5. Profiles- One or many profiles can be attached to atransformation for all sitesor to atransformation on a particular
site. For containers, only env profiles are supported.

Note

Containerized Applications can only be specified in the transformation catalog, not viathe DAX API.

TC Client pegasus-tc-client

We need to map our declared transformations (preprocess, findrange, and analyze) from the example DAX above to
a simple "mock application" name "keg" ("canonical example for the grid") which reads input files designated by
arguments, writes them back onto output files, and produces on STDOUT a summary of where and when it was run.
Keg ships with Pegasusin the bin directory. Run keg on the command line to see how it works.

$ keg -0 /dev/fd/1

Ti mest anp Today: 20040624T054607-05: 00 (1088073967.418; 0. 022)
Applicationnane: keg @10.10.0.11 (VPN

Current Workdir: /home/uni que-name

Systemenvironm : i686-Linux 2.4.18-3

Processor Info.: 1 x Pentiumlll (Coppermine) @797.425

Qut put Filename: /dev/fd/1

Now we need to map all 3 transformations onto the "keg" executable. We place these mappingsin our File transfor-
mation catalog for site clusl.

Note

In earlier version of Pegasus users had to define entries for Pegasus executables such as transfer, replica
client, dirmanager, etc on each site as well as site "local". Thisis no longer required. Pegasus versions 2.0
and later automatically pick up the pathsfor these binaries from the environment profile PEGASUS HOME
set in the site catalog for each site.

A single entry needs to be on one line. The above exampleisjust formatted for convenience.

Alternatively you can also use the pegasus-tc-client to add entriesto any implementation of the transformation catal og.
The following example shows the addiition the last entry in the File based transformation catalog.

$ pegasus-tc-client -Dpegasus.catal og.transfornmati on=Text \
- Dpegasus. catal og.transformation.fil e=$HOVE/tc -a -r clusl -1 black::analyze:1.0 \




Creating Workflows

-p gsiftp://clusl.com opt/nfs/vdt/pegasus/bin/keg -t STAGEABLE -s | NTEL32::LINUX \
-e ENV:: KEY3="VALUE3"

2007.07.11 16:12:03.712 PDT: [INFQ Added tc entry sucessfully
To verify if the entry was correctly added to the transformation catalog you can use the pegasus-tc-client to query.

$ pegasus-tc-client -Dpegasus.catalog.transformation=File \
- Dpegasus. catal og.transformation.fil e=$HOVE/ tc -q -P -1 bl ack::analyze:1.0

#RESI D LTX PFN TYPE SYSI NFO

clusl bl ack: : anal yze: 1.0 gsiftp://clusl. com opt/nfs/vdt/pegasus/bin/keg
STAGEABLE | NTEL32: : LI NUX

Note

pegasus-tc-client is no longer actively developed and is deprecated.

TC Converter Client pegasus-tc-converter

Pegasus 3.0 by default now parses afile based multi line textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog ( File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sanple.tc.data -1 File -o sanple.tc.text -O Text

2010. 11. 22 12:53:16. 661 PST: Successfully converted Transfornmation Catalog fromFile to Text
2010. 11. 22 12:53: 16. 666 PST: The output transformation catalog is in file sanple.tc.text

To use the converted transformation catal og, in the properties do the following:
1. unset pegasus.catal og.transformation or set pegasus.catal og.transformation to Text

2. point pegasus.catal og.transformation.file to the converted transformation catalog

Variable Expansion

Pegasus Planner supports notion of variable expansionsin the DAX and the catalog files along the same lines as bash
variable expansion works. This s often useful, when you want paths in your catalogs or profile valuesin the DAX to
be picked up from the environment. An error isthrown if a variable cannot be expanded.

To specify a variable that needs to be expanded, the syntax is ${ VARIABLE_NAME} , similar to BASH variable
expansion. An important thing to note is that the variable names need to be enclosed in curly braces. For example

${FOO - will be expanded by Pegasus
$FOO - will NOT be expanded by Pegasus.

Also variable names are case sensitive.
Some examples of variable expansion areillustrated below:
* DAX

A jobinthe DAX file needsto have a globus profile key project associated and the value has to be picked up (per
user) from user environment.

<profile namespace="gl obus" key="proj ect">${ PROOECT} </ profil e>
« Site Catalog

In the site catalog, the site catalog entries are templated, where paths are resolved on the basis of values of envi-
ronment variables. For example, below is a templated entry for alocal site where $PWD is the working directory
from where pegasus-plan isinvoked.

45



Creating Workflows

<site handle="local" arch="x86_64" os="LINUX" osrel ease= osversi on= glibc="">
<directory path="${PWD}/LOCAL/ shared-scratch" type="shared-scratch" free-size="" total-
size="">
<file-server operation="all" url="file:///${PWD}/LOCAL/ shared-scratch">
</file-server>
</directory>
<directory path="${PWD}/LOCAL/ shared-storage" type="shared-storage" free-size=
size="">

total -

<file-server operation="all" url="file:///${PWD}/LOCAL/ shared-storage">
</file-server>
</directory>
<profil e namespace="env" key="PEGASUS HOVE"'>/ usr</profil e>
<profil e namespace="pegasus" key="clusters. nun' >1</profile>
</site>

Replica Catalog

Theinput file locations in the Replica Catal og can be resolved based on values of environment variables.

# File Based Replica Catal og
production_200. conf file://$PWY production_200.conf site="|ocal"

Note

Variable expansionisonly supported for Filebased ReplicaCatal og, not Regex or other file based formats.
Transformation Catalog

Similarly paths in the transformation catalog or profile values can be picked up from the environment i.e environ-
ment variables OS, ARCH and PROJECT are defined in user environment when launching pegasus-plan.

# Snippet froma Text Based Transformation Catal og
tr pegasus:: keg{
site obelix {
profile globus "project" "${PRQIECT}"
pfn "/usr/bin/pegasus-keg"
arch "${ARCH "
os "${CsH"
type "I NSTALLED'

46



Chapter 5. Running Workflows
Executable Workflows (DAG)

The DAG is an executable (concrete) workflow that can be executed over avariety of resources. When the workflow
tasks are mapped to multiple resources that do not share a file system, explicit nodes are added to the workflow for
orchestrating data. transfer between the tasks.

When you take the DAX workflow created in Creating Workflows, and plan it for asingle remote grid execution, here
asite with handle hpcc, and plan the workflow without clean-up nodes, the following concrete workflow is built:

Figure5.1. Black Diamond DAG

create_dir_diamond_0_hpee

l \
stage_in_local_hpcc_0 |

/

preprocess_|D000001

LN

findrange_ID000002 findrange_ID0O0O0003

\ l

analyze_|D0OD0004

l

stage_out_local_hpec_2_0

Planning augments the original abstract workflow with ancillary tasks to facilitate the proper execution of the work-
flow. These tasksinclude:

« the creation of remote working directories. These directories typically have name that seeks to avoid conflicts with
other simultaneously running similar workflows. Such tasks use ajob prefix of creat e_di r .

« thestage-in of input files before any task which requires these files. Any file consumed by atask needsto be staged
to the task, if it does not already exist on that site. Such tasks use ajob prefix of st age_i n.If multiplefilesfrom
various sources need to be transferred, multiple stage-in jobs will be created. Additional advanced options permit
to control the size and number of these jobs, and whether multiple compute tasks can share stage-in jobs.

« theoriginal DAX job is concretized into a compute task in the DAG. Compute jobs are a concatination of the job's
name and id attribute from the DAX file.

« the stage-out of data products to a collecting site. Data products with their transfer flag set to f al se will not be
staged to the output site. However, they may still be digible for staging to other, dependent tasks. Stage-out tasks
use ajob prefix of st age_out .

47



Running Workflows

 If computejobsrun at different sites, an intermediary staging task with prefix st age_i nt er isinserted between
the compute jobs in the workflow, ensuring that the data products of the parent are available to the child job.

« theregistration of data products in areplica catalog. Data products with their register flag set to f al se will not
be registered.

« the clean-up of transient files and working directories. These steps can be omitted with the --no-cleanup option
to the planner.

The Data Management chapter details more about when and how staging nodes are inserted into the workflow.

The DAG will befound in filedi anond- 0. dag, constructed from the name and index attributes found in the root
element of the DAX file.

# PEGASUS WVB GENERATED DAG FI LE
# DAG di anond
# Index = 0, Count =1

JOB create_dir_dianond_0O_hpcc create_dir_di anond_0_hpcc. sub
SCRI PT POST create_dir_di anond_0_hpcc /opt/ pegasus/ def aul t/bi n/ pegasus-exitcode
create_dir_di anond_0_hpcc. out

JOB stage_in_|local _hpcc_0 stage_in_| ocal _hpcc_0. sub
SCRI PT POST stage_i n_| ocal _hpcc_0 /opt/pegasus/ def aul t/bi n/ pegasus- exi t code
stage_i n_| ocal _hpcc_0. out

JOB preprocess_| DO0O0001 preprocess_| DO00001. sub
SCRI PT POST preprocess_| DO00001 /opt/ pegasus/ def aul t/ bi n/ pegasus-exitcode preprocess_| DO00001. out

JOB findrange_| D0O00002 fi ndrange_| DO00002. sub
SCRI PT POST fi ndrange_| DO00002 /opt/ pegasus/ def aul t/ bi n/ pegasus-exi tcode findrange_I DO00002. out

JOB findrange_| D0O0O0003 fi ndrange_| DO00003. sub
SCRI PT POST fi ndrange_| DO0O0003 / opt/ pegasus/ def aul t/ bi n/ pegasus-exi tcode fi ndrange_I DO00003. out

JOB anal yze_| D000004 anal yze_| DO00004. sub
SCRI PT POST anal yze_| D0O00004 / opt/ pegasus/ def aul t/ bi n/ pegasus- exi t code anal yze_| D0O00004. out

JOB stage_out_| ocal _hpcc_2_0 stage_out_| ocal _hpcc_2_0. sub
SCRI PT POST stage_out _| ocal _hpcc_2_0 /opt/ pegasus/ defaul t/bi n/ pegasus-exi t code
stage_out _| ocal _hpcc_2_0. out

PARENT fi ndrange_| D0O00002 CHI LD anal yze_| D0O00004

PARENT fi ndrange_| D0O00003 CHI LD anal yze_| D0O00004

PARENT pr eprocess_| D0O00001 CHI LD fi ndrange_| DO00002

PARENT pr eprocess_| D0O00001 CHI LD fi ndrange_| DO0O0003

PARENT anal yze_| DO00004 CHI LD stage_out _| ocal _hpcc_2_0
PARENT stage_i n_|l ocal _hpcc_0 CHI LD preprocess_| DO00001
PARENT create_dir_di anond_0_hpcc CHI LD fi ndrange_| DO00002
PARENT create_dir_di anond_0_hpcc CHI LD fi ndrange_| DO0O0003
PARENT creat e_dir_di anond_0_hpcc CHI LD preprocess_| DO00001
PARENT create_dir_di anmond_0_hpcc CHI LD anal yze_| D0O00004
PARENT create_dir_di amond_0_hpcc CHI LD stage_i n_| ocal _hpcc_0

# End of DAG

The DAG file declares al jobs and links them to a Condor submit file that describes the planned, concrete job. In the
same directory as the DAG file are al Condor submit files for the jobs from the picture plus a number of additional
helper files.

The various instructions that can be put into a DAG file are described in Condor's DAGMAN documentation [http://
www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html].The constituents of the submit directory
are described in the "Submit Directory Details'chapter

Mapping Refinement Steps

During the mapping process, the abstract workflow undergoes a series of refinement steps that convertsit to an exe-
cutable form.

48


http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html

Running Workflows

Data Reuse

The abstract workflow after parsing is optionally handed over to the Data Reuse Module. The Data Reuse Algorithm
in Pegasus attempts to prune al the nodes in the abstract workflow for which the output files exist in the Replica
Catalog. It also attempts to cascade the deletion to the parents of the deleted node for e.g if the output files for the
leaf nodes are specified, Pegasus will prune out al the workflow as the output files in which a user is interested in
already exist in the Replica Catal og.

The Data Reuse Algorithm works in two passes

First Pass - Determine al the jobs whose output files exist in the Replica Catalog. An output file with the transfer
flag set to false is treated equivalent to the file existing in the Replica Catalog , if the output file is not an input to
any of the children of the job X.

Second Pass - The agorithm removes the job whose output files exist in the Replica Catalog and tries to cascade the
deletion upwards to the parent jobs. We start the breadth first traversal of the workflow bottom up.

(It is already marked for deletion in Pass 1

R
( ALL of it's children have been marked for deletion
AND
( Node's output files have transfer flags set to false
R
Node's output files with transfer flag as true have | ocations recorded in the Replica
Cat al og
)
)
)
Tip

The Data Reuse Algorithm can be disabled by passing the --for ce option to pegasus-plan.

Figure5.2. Workflow Data Reuse

fa ia

] | T
¢
S e 5 —

-

ot

A;

f.out foout f.out

File f.d exists somewhere.
Abstract Workflow Reuse it.

Mark Jobs D and B to delete Delete Job D and Job B

49



Running Workflows

Site Selection

The abstract workflow is then handed over to the Site Selector modul e where the abstract jobsin the pruned workflow
are mapped to the various sites passed by auser. Thetarget sitesfor planning are specified on the command line using
the --sites option to pegasus-plan. If not specified, then Pegasus picks up al the sites in the Site Catalog as candidate
sites. Pegasus will map a compute job to asite only if Pegasus can

« find an INSTALLED executable on the site
¢ OR find a STAGEABLE executable that can be staged to the site as part of the workflow execution.
Pegasus supports variety of site selectors with Random being the default
* Random
The jobswill be randomly distributed among the sites that can execute them.
* RoundRobin

Thejobswill be assigned in around robin manner amongst the sites that can execute them. Since each site cannot
execute every type of job, the round robin scheduling is done per level on asorted list. The sorting ison the basis
of the number of jobs a particular site has been assigned in that level so far. If ajob cannot be run on the first
sitein the queue (due to no matching entry in the transformation catal og for the transformation referred to by the
job), it goes to the next one and so on. This implementation defaults to classic round robin in the case where all
the jobs in the workflow can run on all the sites.

e Group

Group of jobs will be assigned to the same site that can execute them. The use of the PEGASUS profile key
group in the DAX, associates ajob with a particular group. The jobs that do not have the profile key associated
with them, will be put in the default group. The jobs in the default group are handed over to the "Random" Site
Selector for scheduling.

o Heft

A version of the HEFT processor scheduling algorithm is used to schedule jobs in the workflow to multiple grid
sites. Theimplementation assumes default data communication costs when jobs are not scheduled on to the same
site. Later on this may be made more configurable.

Theruntimefor thejobsis specified in the transformation catal og by associating the pegasuspr ofilekey runtime
with the entries.

The number of processorsin asiteis picked up from the attribute idle-nodes associated with the vanillajobman-
ager of the sitein the site catalog.

* NonJavaCallout

Pegasus will callout to an external site selector.In this mode a temporary file is prepared containing the job
information that is passed to the site selector as an argument while invoking it. The path to the site selector is
specified by setting the property pegasus.site.selector.path. The environment variables that need to be set to run
the site selector can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary file
contains information about the job that needs to be scheduled. It contains key value pairs with each key value
pair being on anew line and separated by a=.

The following pairs are currently generated for the site selector temporary file that is generated in the NonJava
Cadlout.

Table5.1. Key Value Pairsthat are currently generated for the site selector temporary
filethat isgenerated in the NonJavaCallout.

!pr !Valup |
oU




Running Workflows

version

isthe version of the site selector api,currently 2.0.

transformation

isthe fully-qualified definition identifier for the trans-
formation (TR) namespace::name:version.

derivation isthefully qualified definition identifier for the deriva-
tion (DV), namespace::name:version.

job.level isthe job's depth in the tree of the workflow DAG.

job.id isthejob's D, as used in the DAX file.

resource.id isapool handle, followed by whitespace, followed by a
gridftp server. Typically, each gridftp server isenumer-
ated once, so you may have multiple occurances of the
same site. There can be multiple occurances of thiskey.

input.Ifn is an input LFN, optionally followed by a whitespace
and file size. There can be multiple occurances of this
key,one for each input LFN required by the job.

wf.name label of the dax, as found in the DAX's root element.
wf.index isthe DA X index, that isincremented for each
partition in case of deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being used .e.g
condor

vo.name is the name of the virtual organization that is running
thisworkflow. It is currently set to NONE

Vo.group unused at present and is set to NONE.

Tip

The site selector to use for site selection can be specified by setting the property pegasus.selector .site

51




Running Workflows

Figure5.3. Workflow Site Selection

fip f.ip
f.a fa
f.d fe fd fe
Legend
Unmapped Job
f.out f.out PP
.oh Mapped to Site A
Reduced Workflow Workflow after Site .oh Mapped to Site B
Selection
O Stage-in Job

Job Clustering

After site selection, the workflow is optionally handed for to the job clustering module, which clusters jobs that are
scheduled to the same site. Clustering is usualy done on short running jobs in order to reduce the remote execution
overheads associated with ajob. Clustering is described in detail in the optimization chapter.

Tip
The job clustering is turned on by passing the --cluster option to pegasus-plan.

Addition of Data Transfer and Registration Nodes

After job clustering, the workflow is handed to the Data Transfer module that adds data stage-in , inter site and stage-
out nodes to the workflow. Data Stage-in Nodes transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the staging site associated with the job. The staging sitefor ajob is
the execution siteif running in a sharedfs mode, elseit is the one specified by --staging-site option to the planner. In
case, multiplelocations are specified for the same input file, the location from where to stage the dataiis sel ected using
aReplica Selector . Replica Selection is described in detail in the Replica Selection section of the Data Management
chapter. More details about staging site can be found in the data staging configuration chapter.

The process of adding the data stage-in and data stage-out nodes is handled by Transfer Refiners. All data transfer
jobs in Pegasus are executed using pegasus-transfer . The pegasus-transfer client is a python based wrapper around
varioustransfer clientslike globus-url-copy, s3cmd, irods-transfer, scp, wget, cp, In . It looks at source and destination

52



Running Workflows

url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the PEGASUS
and can be found in the bin subdirectory . Pegasus Transfer Refiners are are described in the detail in the Transfers
section of the Data Management chapter. The default transfer refiner that is used in Pegasus is the BalancedCluster
Transfer Refiner, that clusters data stage-in nodes and data stage-out nodes per level of the workflow, on the basis of
certain pegasus profile keys associated with the workflow.

Figure5.4. Addition of Data Transfer Nodesto the Workflow

o

s

® =
; ®

fd
Legend
O Unmapped Job
.lnb Mapped to Site A

..loh Mapped to Site B
O Stage-in Job

Workflow after Site
Selection Workflow with Data Transfer . Stage-Out Job
Nodes Inter-Site Transfer
Job

Data Registration Nodes may also be added to the final executable workflow to register the location of the output files
on the final output site back in the Replica Catalog . An output file is registered in the Replica Catalog if the register
flag for the fileis set to true in the DAX.




Running Workflows

Figure5.5. Addition of Data Registration Nodesto the Workflow

(&)

fd

==
@)
@i

fd

Legend
O Unmapped Job
..lnb Mapped to Site A

..loh Mapped to Site B|

. O Stage-in Job
. Stage-Out Job
. Inter-Site Transfer
Job

Workflow with Data Stage out Workflow with Registration @ Registration Job

Job that registers the
Jobs to final output site generated data

The data staged-in and staged-out from adirectory that is created on the head node by a create dir job in the workflow.
In the vanilla case, the directory is visible to al the worker nodes and compute jobs are launched in this directory
on the shared filesystem. In the case where there is no shared filesystem, users can turn on worker node execution,
where the data is staged from the head node directory to a directory on the worker node filesystem. This feature will
be refined further for Pegasus 3.1. To use it with Pegasus 3.0 send email to pegasus-support at isi.edu.

Tip

The replica selector to use for replica selection can be specified by setting the property pegasus.selec-
tor.replica

Addition of Create Dir and Cleanup Jobs

After the datatransfer nodes have been added to the workflow, Pegasus adds a create dir jobsto the workflow. Pegasus
usually , creates one workflow specific directory per compute site, that is on the staging site associated with the job.
In the case of shared shared filesystem setup, it is a directory on the shared filesystem of the compute site. In case
of shared filesystem setup, this directory is visible to al the worker nodes and that is where the data is staged-in by
the data stage-in jobs.

The staging sitefor ajob isthe execution siteif running in asharedfs mode, elseit isthe one specified by --staging-site
option to the planner. More details about staging site can be found in the data staging configuration chapter.

After addition of the create dir jobs, the workflow is optionally handed to the cleanup module. The cleanup module
adds cleanup nodes to the workflow that remove data from the directory on the shared filesystem when it is no longer
required by the workflow. Thisis useful in reducing the peak storage requirements of the workflow.




Running Workflows

Tip
The addition of the cleanup nodes to the workflow can be disabled by passing the --nocleanup option to
pegasus-plan.

Figure 5.6. Addition of Directory Creation and File Removal Jobs

®—®

B e
(::>
E

©) ©)

f.d

Legend
O Unmapped Job
. Job Mapped to Site A

fd fe
\,/ @ Job Mapped to site B

e B

. Stage-Out Job
Workflow with Directory

(O inter-site Transfer Job
Creation Jobs and Cleanup . Remove Files Job
Nodes

. Regstration Job
O Make Dir Job

Workflow with Registration
Job that registers the
generated data

Tip

Users can specify the maximum number of cleanup jobs added per level by specifying the property pega-
sus.file.cleanup.clusters.num in the properties.

Code Generation

The last step of refinement process, is the code generation where Pegasus writes out the executable workflow in a
form understandable by the underlying workflow executor. At present Pegasus supports the following code generators

1. Condor

Thisisthedefault code generator for Pegasus . This generator generates the executable workflow asa Condor DAG
file and associated job submit files. The Condor DAG fileis passed asinput to Condor DAGMan for job execution.

2. Shell

This Code Generator generates the executable workflow as a shell script that can be executed on the submit host.
While using this code generator, all the jobs should be mapped to sitelocal i.e specify --siteslocal to pegasus-plan.

55



Running Workflows

Tip
To use the Shell code Generator set the property pegasus.code.generator Shell

3. PMC

This Code Generator generates the executabl e workflow asaPM C task workflow. Thisisuseful to run on platforms
whereit not feasible to run Condor such as the new X SEDE machines such as Blue Waters. In this mode, Pegasus
will generate the executable workflow as a PMC task workflow and a sample PBS submit script that submits this
workflow. Note that the generated PBS file needs to be manually updated before it can be submitted.

Tip

To use the Shell code Generator set the property pegasus.code.generator PMC

Figure5.7. Final Executable Wor kflow

®@—®

fip

fip

-

l

e

b

1

Legend
O Unmapped Job

f.d .
= @ Job Mapped to site A
. Job Mapped to Site B
O Stage-in Job
f.out . Stage-Out Job
O Inter-Site Transfer Job
Abstract Workflow

. Reglstration Job
(O MakeDirJob

Final Executable Workflow O Remove Files Job

Data Staging Configuration

Pegasus can be broadly setup to run workflows in the following configurations

» Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in adirectory on the shared filesystem.

* NonShared FileSystem

56



Running Workflows

This setup appliesto where the head node and the worker nodes of a cluster don't share afilesystem. Compute jobs
in the workflow run in alocal directory on the worker node

¢ Condor Pool Without a shared filesystem
This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. Al
data |0 is achieved using Condor File |O. Thisisaspecial case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File 10 is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . Thisiswhere Pegasus and Condor DAGMan areinstalled. This
isreferred to asthe " local" sitein the sitecatalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site
A siteto which the separate transfer jobsin the executable workflow (jobswith stage in, stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site
The output site is the fina storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

Thisisthedirectory created by the create dir jobsin the executable workflow on the Staging Site. Thisisadirectory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

Thisisthe directory created on the worker nodes per job usually by the job wrapper that launches the job.
Y ou can specifiy the data configuration to use either in
1. properties - Specify the global property pegasus.data.configuration .

2. site catalog - Starting 4.5.0 release, you can specify pegasus profile key named data.configuration and associate
that with your compute sitesin the site catalog.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

57



Running Workflows

Figure5.8. Shared File System Setup

- - ™
COMPUTE SITE

'l\ STAGING SITE
- \ ________ 2_-= wN
- 1 i HEAD NODE -
- T3
= Can Execute on Submit I
Hast or Head Node
ﬂﬂﬂﬂ 1 - WN
iy
-
.‘: e Sta.gi_ng Job Trensfer
.~ Can Exscute on Submit usmga;p:gfzsus-
Host or Heed Mode Compute Job Posix
-= o
-

-
-~
-
-
-
-~

WN | warker Node

Stegein Job

DATA FLOW TO GOMPUTE JOBS ON THE WORKER NODES RELYING ON A
SHARED FILESYSTEM . Compute Job

COMPUTE AND STAGING SITE ARE SAME

The dataflow is asfollowsin this case

1. Stagein Job executes ( either on Submit Host or Head Node ) to stage in input data from Input Sites ( 1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on aworker node in the workflow execution directory. Accesses the input data using Posix 10

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
10

4. Stageout Job executes ( either on Submit Host or Head Node ) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

Tip
Set pegasus.data.configuration to sharedfsto run in this configuration.
Non Shared Filesystem
In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be afile server on the head node of a cluster or can be on a separate machine.
Setup
« compute and staging site are the different

« head node and worker nodes of compute site don't share a filesystem

58



Running Workflows

 Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

Figure5.9. Non Shared Filesystem Setup

r !

CBHPUTE‘
4

- - s 4w
p STAGIMG SITE
b < FILE Sarver 2
iﬂan Execute on Submit - __—_—_"_-_'_____"_'

Host or Head Node

= ] = - WH

L A

Staging Job Trensfer
- using pegasus-transter

-~ © Can Execute on Submit Compute Job Posix |0

- Hest or Head Mode - =
-7 Compute Job Staging
- - using pegasus-transfer
-
F 3

WN | \worker Nods

Stagein Job

. Stageout Job

DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES AMD NO

SHARED FILESYSTEM
COMPUTE AND STAGING SITE ARE DIFFERENT . Compute Job

The dataflow is asfollowsin this case

1. Stagein Job executes ( either on Submit Host or on staging site) to stage in input data from Input Sites ( 1---n) to
aworkflow specific execution directory on the staging site.

2. Compute Job starts on aworker node in alocal execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to alocal directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10
5. Output Datais pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes ( either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonshar edfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

59



Running Workflows

Condor Pool Without a Shared Filesystem

This setup appliesto acondor pool where the worker nodes making up acondor pool don't share afilesystem. All data
10 isachieved using Condor File IO. Thisis aspecial case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File 1O is used.

Setup

¢ Submit Host and staging site are same

» head node and worker nodes of compute site don't share a filesystem
¢ Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

Figure 5.10. Condor Pool Without a Shared Filesystem

- =
CONDOR POOL OF
NODES
4
[l
3 ¥ WH
==
! !
#| wn
S L Lkl J
Staging Job Transfer
=== using pegasus-transter
% .
B Cen Execute on Submit
\\. Host or Head Moda _—— Compute Job Posix 10
—— Condor Fila 10
WN Worker Node
Stagein Job
. Stageout Job
DATA FLOW TO COMPUTE JOBS ON A CONDOR POOL WITH NO SHARED
FILESYSTEM AND USING CONDOR 10
SUBMIT HOST AND STAGING SITE ARE SAME . Compute Job

The dataflow is asfollowsin this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites ( 1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on aworker nodein alocal execution directory. Before the compute job starts, Condor transfers
theinput datafor the job from the workflow execution directory on the submit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.




Running Workflows

6. Stageout Job executes ( either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup ashared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

PegasusLite

Starting Pegasus 4.0, al compute jobs ( single or clustered jobs) that are executed in a non shared filesystem setup,
are executed using lightweight job wrapper called PegasusL ite.

Figure5.11. Workflow Running in NonShared Filesystem Setup with PegasusL itelaunching
computejobs

Abiabract ﬁ E
Warkiaw
) 'l
A___ an Execute on Submit

fsﬁx\, Host or Head Mode

" Staging Site |
\ Jobs o - ging
— -
Can Execule on Submit -
Haost or Head Node ==
-
-
- ="
Submit Host
e — = — =
T
Pogasus Lng
Inglance
v @
Sldab () T
L Pegasus Lite Job st
Y ' v
wEF-----" »@ ’
Computy
Rigoairci!
4 i -_— Warkier Hode ! LEGEND
Condor Quish

‘ O Subimil Hodl - O

¥
S50 Job Plannod
. Executabie
+ Worsliow
WORKFLOW LAUNCHED ON REMOTE NODES VIA PEGASUS LITE, AND C} Direciony Cleanup Jot
COMMUNICATING WITH A STAGING SITE

When PegasusL ite starts on a remote worker node to run a compute job , it performs the following actions:

1. Discoversthe best run-time directory based on space requirements and create the directory on the local filesystem
of the worker node to execute the job.

2. Prepare the node for executing the unit of work. This involves discovering whether the pegasus worker tools are
dready installed on the node or need to be brought in.

3. Usepegasus-transfer to stagein theinput datato the runtime directory (created in step 1) on the remote worker node.

4. Launch the compute job.

61



Running Workflows

5. Use pegasus-transfer to stage out the output data to the data coordination site.

6. Remove the directory created in Step 1.

Pegasus-Plan

pegasus-plan isthe main executable that takesin the abstract workflow ( DAX ) and generates an executable workflow
(‘usually a Condor DAG ) by querying various catalogs and performing severa refinement steps. Before users can
run pegasus plan the following needs to be done:

1. Populate the various catalogs

a Replica Catalog

The Replica Catal og needs to be catal ogued with the locations of the input filesrequired by the workflows. This
can be done by using pegasus-rc-client (See the Replica section of Creating Workflows).

b. Transformation Catalog

The Transformation Catalog needs to be catalogued with the locations of the executables that the workflows
will use. This can be done by using pegasus-tc-client (See the Transformation section of Creating Workflows).

c. SiteCatalog

The Site Catalog needs to be catal ogued with the site layout of the various sites that the workflows can execute
on. A site catalog can be generated for OSG by using the client pegasus-sc-client (See the Site section of the
Creating Workflows).

. Configure Properties

After the catalogs have been configured, the user properties file need to be updated with the types and locations
of the catalogs to use. These properties are described in the basic.propertiesfilesin the etc sub directory (see the
Properties section of the Configuration chapter.

The basic properties that need to be set usually are listed below:

Table5.2. Basic Propertiesthat need to be set

pegasus.catal og.replica

pegasus.catal og.replicafile | pegasus.catalog.replica.url

pegasus.catal og.transformation

pegasus.catal og.transformation.file

pegasus.catalog.site.file

To execute pegasus-plan user usually requires to specify the following options:

1
2.
3.
4.

5.

--dax the path to the DAX file that needs to be mapped.

--dir the base directory where the executable workflow is generated
--sites comma separated list of execution sites.

--output the output site where to transfer the materialized output files.

--submit boolean value whether to submit the planned workflow for execution after planning is done.

Basic Properties

Properties are primarily used to configure the behavior of the Pegasus Workflow Planner at a global level. The prop-
ertiesfileis actually ajava propertiesfile and follows the same conventions as that to specify the properties.

62



Running Workflows

Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some propertiesrely with their default on the value of other properties. Asanotation, the curly bracesrefer to thevalue
of the named property. For instance, ${ pegasus.home} meansthat the val ue depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is amutually exclusive list ( highest priority first ) of property file locations.

1. --conf option to the tools. Almost al of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory ( i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the pe-
gasus.Xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each

commandline property isintroduced by a-D argument. Note that these arguments are parsed by the shell wrapper, and

thusthe -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the propertiesfile

¢ pegasus.properties
¢ pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus. cat al og. replica File

pegasus.catal og.replica.file ${ pegasus. hone}/etc/ sanpl e.rc. data
pegasus. cat al og. t ransf or mati on Text

pegasus. catal og. transformation.file ${pegasus.hone}/etc/sanple.tc.text
pegasus.catal og.site.file ${ pegasus. hone}/ et c/ sanpl e. si tes. xni

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in afile with the suffix properties.

pegasus.home

Systems: al
Type: directory location string
Defaullt: "$PEGASUS HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clientsinternally by determining the installation directory of pegasus. Knowledge about this property isimportant for
devel opers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Catalog Related Properties

63



Running Workflows

Table5.3. Replica Catalog Properties

Key Attributes

Description

Property Key: pegasus.catalog.replica
Profile Key: N/A

Scope  : Properties

Since :20

Default : File

Pegasus queries a Replica Catalog to discover the physi-
cal filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Cata-
logs. This property specifies which type of Replica Cata-
log to use during the planning process.

JDBCRC In this mode, Pegasus queries a SQL
based replica catalog that is accessed via
JDBC. The sgl schema's for this catalog
can be found at $PEGASUS HOME/sql
directory. To use JDBCRC, the user addi-
tionally needs to set the following prop-
erties

1. pegasus.catalog.replica.db.driver =
mysql

2. pegasus.catalog.replicadb.url = jdbc
url to database e.g jdbc:mysql://data-
base-host.isi.edu/database-name

3. pegasus.catal og.replica.db.user =
database-user

4. pegasus.catal og.replica.db.password
= database-password

File In this mode, Pegasus queries afile based
replica catalog. It is neither transaction-
ally safe, nor advised to use for produc-
tion purposes in any way. Multiple con-
current instances will clobber each oth-
er!. The site attribute should be specified
whenever possible. The attribute key for
the site attribute is "site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]

LFN PFN a="b" [..]

"LEN W LWS" "PFN W LV8" [..]

To useFile, the user additionally needsto
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Regex In this mode, Pegasus queries afile based
replicacatalog. It is neither transactional-
ly safe, nor advised to use for production




Running Workflows

purposesin any way. Multiple concurrent
access to the File will end up clobbering
the contents of the file. The site attribute
should be specified whenever possible.
The attribute key for the site attribute is
"site”.

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

In addition users can specifiy regular ex-
pression based LFN's. A regular expres-
sion based entry should be quaified with
an attribute named 'regex'. The attribute
regex when set to true identifies the cat-
alog entry as a regular expression based
entry. Regular expressions should follow
Javaregular expression syntax.

For example, consider areplicacatalog as
shown below.

Entry 1 refers to an entry which does
not use a resular expressions. This entry
would only match afile named 'f.a, and
nothing else. Entry 2 referes to an entry
which uses a regular expression. In this
entry f.a referes to files having name as
flany-character]ai.e. faa, f.a, fOa, etc.

f.a file:///Vol/input/f.a
site="l ocal "

f.a file:///Vol/input/f.a
site="local " regex="true"

Regular expression based entries aso
support substitutions. For example, con-
sider the regular expression based entry
shown below.

Entry 3 will match files with name a-
pha.csv, aphatxt, alphaxml. In addition,
values matched in the expression can be
used to generate a PFN.

For the entry below if the file being
looked up is aphacsv, the PFN for
the file would be generated as file:///
Volumes/data/input/csv/a pha.csv. Simi-
lary if the file being lookedup was a-
phacsv, the PFN for the file would
be generated as file:!///Volumes/datalin-
put/xml/alphaxml i.e. Thesection[0], [1]
will be replaced. Section [Q] refersto the
entire string i.e. aphacsv. Section [1]

65




Running Workflows

Directory

refers to a partial match in the input i.e.
csv, or txt, or xml. Users can utilize as
many sections as they wish.

al pha\. (csv|txt|xm) file:///
Vol /input/[1]/[0] site="local"
regex="true"

To useFile, the user additionally needsto
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

In this mode, Pegasus does a directory
listing on an input directory to create the
LFN to PFN mappings. Thedirectory list-
ing is performed recursively, resulting in
deep LFN mappings. For example, if an
input directory $input is specified with
the following structure

$i nput
$input/f.1
$input/f.2

$i nput / D1

$i nput/D1/f.3

Pegasus will create the mappings the fol-
lowing LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D2/f.3

site="l ocal "

If you don't want the deep Ifn's to be
created then, you can set pegasus.cata-
log.replicadirectory flat.IfntotrueIn that
case, for the previous example, Pegasus
will create the following LFN PFN map-
pingsinternaly.

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
f.3 file://$input/D2/f.3

i

site="l ocal "

pegasus-plan has --input-dir option that
can be used to specify an input directory.

Users can optionally specify additional
properties to configure the behvavior of
this implementation.

pegasus.catal og.replica.directory.site to
specify a site attribute other than local to
associate with the mappings.

pegasus.catal og.replica.directory.url.pre-
fix to associate a URL prefix for the
PFN's constructed. If not specified, the
URL defaultsto file://

66




Running Workflows

MRC In this mode, Pegasus queries multiple
replica catalogs to discover the file loca-

tionson the grid. To useit set

pegasus. catal og.replica MRC

Each associated replica catalog can be
configured via properties as follows.

The user associates a variable name re-
ferred to as [value] for each of the cata-
logs, where [value] isany legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For
each associated replica catalogs the user
specifies the following properties.

pegasus. cat al og. replica. nrc. [val ue]
specifies the type of \

replica catal og.
pegasus. catal og.replica.nrc.
[ val ue] . key specifies a property
name\

key for a particular catal og

pegasus. catal og.replica.nrc.director
LRC

pegasus. catal og.replica.nrc.director

input/dirl

pegasus. catal og.replica.nrc.director
LRC

pegasus. catal og.replica.nrc.director

input/dir2

In the above example, directoryl, direc-
tory2 are any valid identifier names and
url is the property key that needed to be
specified.

Property Key: pegasus.catalog.replica.url
Profile Key: N/A

Scope  : Properties
Since :20
Default : (no default)

When using the modern RLS replica catalog, the URI to
the Replicacatalog must be provided to Pegasusto enable
it to look up filenames. Thereis no default.

Table5.4. Site Catalog Properties

Key Attributes

Description

Property Key: pegasus.catalog.site
Profile Key: N/A

Scope  : Properties
Since :20
Default : XML

Pegasus supports two different types of site catalogs in
XML format conforming to sc-3.0.xsd and sc-4.0.xsd. Pe-
gasus is able to auto-detect what schema a user site cata-
log refers to. Hence, this property may no longer be set.

Property Key: pegasus.catalog.site.file
Profile Key : N/A

Scope  : Properties
Since :20
Default  : ${ pegasus.home.sysconfdir} /sites.xml

The path to the site catal og fil e, that describes the various
sites and their layouts to Pegasus.

67

yl
yl.url /
y2

y2.url /



Running Workflows

Table5.5. Transformation Catalog Properties

Key Attributes

Description

Property Key: pegasus.catal og.transformation
Profile Key: N/A

Scope  : Properties

Since :20

Default : Text

The only recommended and supported version of Trans-
formation Catalog for Pegasus is Text. For the old File
based formats, users should use pegasus-tc-converter to
convert File format to Text Format.

Text  Inthismode, amultiline file based format is un-
derstood. Thefileisread and cached in memory.
Any modifications, as adding or deleting, causes
an update of the memory and henceto thefileun-
derneath. All queries are done against the mem-
ory representation.

The file sample.tc.text in the etc directory con-
tains an example

Here is a sample textual format for transfoma-
tion catalog containing one transformation on
two sites

tr exanple::keg:1.0 {

#specify profiles that apply for all the
sites for the transfornation

#in each site entry the profile can be
overriden

profile env "APP_HOME"' "/t np/karan"
profile env "JAVA HOMVE' "/bin/app"

site isi {

profile env "nme" "with"

profile condor "nore" "test"

profile env "JAVA HOME' "/bin/java.1.6"
pfn "/path/tol/ keg"

arch "x86"

os "1i nux"

osrel ease "fc"

osversion "4"

type "I NSTALLED'

site wind {

profile env "nme" "with"

profile condor "nore" "test"

pfn "/path/tol/ keg"

arch "x86"

os "1i nux"

osrel ease "fc"

osversion "4"

type "STAGEABLE'

Property Key: pegasus.catal og.transformation
ProfileKey : N/A

Scope  : Properties

Since :20

Default  : ${ pegasus.home.sysconfdir} /tc.text

The path to the transformation catalog file, that describes
the locations of the executables.

Data Staging Configuration Properties

Table5.6. Data Configuration Properties

Key Attributes

Description

Property Key: pegasus.data.configuration
Profile Key: N/A

Scope  : Properties

Since  :4.00

Values : sharedfsinonsharedfsicondorio

This property sets up Pegasus to run in different environ-
ments.

sharedfs If thisis set, Pegasus will be setup to
execute jobs on the shared filesystem

68




Running Workflows

Default
See Also

: sharedfs
: pegasus.transfer.bypass.input.staging

condorio

nonsharedfs

on the execution site. This assumes,
that the head node of a cluster and the
worker nodes share a filesystem. The
staging site in this case is the same
as the execution site. Pegasus adds a
create dir job to the executable work-
flow that creates a workflow specif-
ic directory on the shared filesystem .
Thedatatransfer jobsin the executable
workflow ( stage_in_, stage inter_,
stage_out_) transfer the datato thisdi-
rectory.The compute jobs in the exe-
cutable workflow are launched in the
directory on the shared filesystem. In-
ternally, if this is set the following
properties are set.

pegasus. execute. *. fil esystem | oca
fal se

If thisis set, Pegasus will be setup to
runjobsin apure condor pool, with the
nodes not sharing afilesystem. Datais
staged to the compute nodes from the
submit host using Condor File1O. The
planner is automatically setup to use
the submit host ( sitelocal ) asthe stag-
ing site. All theauxillary jobs added by
the planner to the executabl e workflow
(createdir, data stagein and stage-out,
cleanup ) jobs refer to the workflow
specific directory onthelocal site. The
data transfer jobs in the executable
workflow ( stage in_, stage inter_,
stage _out_) transfer the datato thisdi-
rectory. When the compute jobs start,
the input data for each job is shipped
from the workflow specific directory
on the submit host to compute/worker
node using Condor file 10. The output
data for each job is similarly shipped
back to the submit host from the com-
pute/worker node. This setup is par-
ticularly helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.transfer.lite.*.inp
Condor
pegasus. execute. *. fil esystem | oca|
true

pegasus. gridstart

PegasusLite

pegasus. transf er. wor ker. package
true

If thisis set, Pegasus will be setup to
execute jobs on an execution site with-

69



Running Workflows

out relying on a shared filesystem be-
tween the head node and the work-
er nodes. Y ou can specify staging site
( using --staging-site option to pega-
sus-plan) to indicate the site to use as
a central storage location for a work-
flow. The staging site is independant
of the execution sites on which awork-
flow executes. All the auxillary jobs
added by the planner to the executable
workflow ( create dir, data stagein
and stage-out, cleanup ) jobs refer to
the workflow specific directory on the
staging site. The data transfer jobs in
the executable workflow ( stage_in_,
stage_inter_ , stage out_ ) transfer
the data to this directory. When the
compute jobs start, the input data for
each job is shipped from the workflow
specific directory on the submit host
to compute/worker node using pega-
sus-transfer. The output data for each
job is similarly shipped back to the
submit host from the compute/work-
er node. The protocols supported are
a this time SRM, GridFTP, iRods,
S3. This setup is particularly help-
ful when running workflows on OSG
where most of the execution sitesdon't
have enough data storage. Only a few
sites have large amounts of data stor-
age exposed that can be used to place
data during a workflow run. This set-
up is aso helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus. execute. *. fil esystem | oca
true
pegasus. gridstart
PegasusLite
pegasus. transfer. worker. package
true

70




Chapter 6. Monitoring, Debugging and
Statistics

Pegasus comes bundled with useful tools that help users debug workflows and generate useful statistics and plots
about their workflow runs. Most of the tools query a runtime workflow database ( usually a sqllite in the workflow
submit directory ) populated at runtime by pegasus-monitord. With the exception of pegasus-monitord (see below),
all tools take in the submit directory as an argument. Users can invoke the tools listed in this chapter as follows:

$ pegasus-[tool nane] <path to the submt directory>

Workflow Status

Asthe number of jobs and tasksin workflows increase, the ability to track the progress and quickly debug aworkflow
becomes more and more important. Pegasus comes with a series of utilities that can be used to monitor and debug
workflows both in real-time as well as after execution is already completed.

pegasus-status

To monitor the execution of the workflow run the pegasus-status command as suggested by the output of the pega-
sus-run command. pegasus-status shows the current status of the Condor Q as pertaining to the master workflow
from the workflow directory you are pointing it to. In a second section, it will show asummary of the state of all jobs
in the workflow and all of its sub-workflows.

The details of pegasus-status are described in its respective manual page. There are many options to help you gather
the most out of this tool, including a watch-mode to repeatedly draw information, various modes to add more infor-
mation, and legendsif you are new to it, or need to present it.

$ pegasus-status /Workfl ow dags/ directory
STAT | N_STATE JOB

Run 05:08 level-3-0

Run 04: 32 | - sl eep_I| DOO0005

Run 04: 27 \ _subdax_I evel - 2_1 D0O00004

Run 03: 51 | - sl eep_I DOO0003

Run 03: 46 \ _subdax_I| evel - 1_1 D000002

Run 03: 10 \ _sl eep_I DO0O0001

Summary: 6 Condor jobs total (R 6)

UNREADY  READY PRE QUEUED POST SUCCESS FAI LURE %DONE
0 0 0 6 0 3 0 33.3

Summary: 3 DAGs total (Running:3)

Withoutthe- | option, theonly asummary of theworkflow statisticsisshown under the current queue status. However,
withthe- | option, it will show each sub-workflow separately:

$ pegasus-status -1 /Wrkfl ow dags/directory
STAT | N_STATE JOB

Run 07:01 level-3-0

Run 06:25 | -sl eep_I DOO0005

Run 06: 20 \_subdax_| evel - 2_1 DO00004
Run 05: 44 | - sl eep_I DOO0003

Run 05: 39 \ _subdax_I evel - 1_| DO00002
Run 05: 03 \ _sl eep_I DOO0O001

Summary: 6 Condor jobs total (R 6)

UNRDY READY PRE IN_Q POST DONE FAIL “ONE STATE  DAGNAME
1

0 0 0 0 1 0 50.0 Running level-2_1D000004/| evel -1_I DO00002/
| evel -1- 0. dag

0 0 0 2 0 1 0 33.3 Running |evel-2_1D000004/I evel - 2-0. dag

0 0 0 3 0 1 0 25.0 Running *level -3-0.dag

0 0 0 6 0 3 0 33.3 TOTALS (9 jobs)

Summary: 3 DAGs total (Running:3)

The following output shows a successful workflow of workflow summary after it has finished.

$ pegasus-status work/ 2011080514

71



Monitoring, Debugging and Statistics

(no matching jobs found in Condor Q

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %DONE
0 0 0 0 0o 7,137 0 100.0

Summary: 44 DAGs total (Success: 44)

Warning

For large workflowswith many jobs, please note that pegasus-statuswill take timeto compile state from all
workflow files. Thistypically affectstheinitial run, and sub-sequent runs are faster due to the file system's
buffer cache. However, on alow-RAM machine, thrashing is a possibility.
The following output show a failed workflow after no more jobs from it exist. Please note how no active jobs are
shown, and the failure status of the total workflow.

$ pegasus-status work/submit

(no matching jobs found in Condor Q

UNREADY  READY PRE QUEUED POST SUCCESS FAI LURE %ONE
20 0 0 0 0 0 2 0.0

Summary: 1 DAG total (Failure:1)

pegasus-analyzer

Pegasus-analyzer isacommand-line utility for parsing several filesin the workflow directory and summarizing useful
information to the user. It should be used after the workflow has already finished execution. pegasus-analyzer quickly
goes through the jobstate.log file, and isolates jobs that did not complete successfully. It then parses their submit,
and kickstart output files, printing to the user detailed information for helping the user debug what happened to his/
her workflow.

The simplest way to invoke pegasus-analyzer isto simply giveit aworkflow run directory, like in the example below:

$ pegasus-anal yzer /hone/ user/run0004
pegasus-anal yzer: initializing...

************************************Sum-rary*************************************

Total jobs : 26 (100.00%
# j obs succeeded : 25 (96.15%
# jobs failed : 1 (3.84%
# jobs held : 1 (3.84%
# jobs unsubmitted : 0 (0.00%

KKKk kKK KKKk KKKk kK Kk kkkkkkkkx % Ha| jObS' det aj | S¥***rxkkkkhkkkkkhkkkkkkkkkkkkx %%

| eep_| D0000001

submt file : sl eep_| DO0O00001. sub
| ast_job_instance_id 7
reason : Error fromslotl@orbusier.isi.edu:

STARTER at 128.9.64.188 failed to
send file(s) to
<128. 9. 64.188: 62639>: error reading from
/ opt/condor/8. 4.8/ ocal . corbusi er/execute/dir_76205/f. out:
(errno 2) No such file or directory;
SHADOW failed to receive file(s) from<128.9.64.188: 62653>

KkKKK KKK KKK KKK KKK KKKk K KXk k Xk Kk **x Fqj | ed ] ODS' detaj| S*¥*¥***kkkkkhhkkkkhhkkkkhkkkkkkk x

egister_viz_glidein_7_0

| ast state: POST_SCRI PT_FAI LURE
site: |ocal
submit file: /honme/user/run0004/register_viz_glidein_7_0.sub
output file: /hone/user/run0004/register_viz_glidein_7_0.out.002
error file: /hone/user/run0004/register_viz_glidein_7_0.err.002

------------------------------- Task #1 - SUMMAIY---------------mm oo

site : local

executable : /Ifsl/software/install/pegasus/default/bin/rc-client

argunent s . -Dpegasus. user.properties=/|fsl/ work/pegasus/run0004/ pegasus. 15181. properties \
- Dpegasus. catal og.replica.url=rlsn://smarty.isi.edu --insert register_viz_glidein_7_0.in

exi tcode 1

working dir : /1fsl/work/pegasus/run0004

72



Monitoring, Debugging and Statistics

--------- Task #1 - pegasus::rc-client - pegasus::rc-client:1.0 - stdout---------

2009- 02- 20 16: 25:13. 467 ERROR [root] You need to specify the pegasus.catal og.replica property
2009- 02-20 16:25:13.468 WARN [root] non-zero exit-code 1

Inthe case above, pegasus-analyzer's output containsabrief summary section, showing how many jobs have succeeded
and how many have failed. If there are any held jobs, pegasus-analyzer will report the name of the job that was held,
and thereason why , asdetermined from the dagman.out filefor theworkflow. Thelast_job_instance_idisthe database
id for the job in the job instance table of the monitoring database. After that, pegasus-analyzer will print information
about each job that failed, showing its last known state, along with the location of its submit, output, and error files.
pegasus-analyzer will also display any stdout and stderr from the job, asrecorded in itskickstart record. Please consult
pegasus-analyzer's man page for more examples and a detailed description of its various command-line options.

Note

Starting with 4.0 release, by default pegasus analyzer queries the database to debug the workflow. If you
want it to use files in the submit directory , use the --files option.

pegasus-remove

If you want to abort your workflow for any reason you can use the pegasus-remove command listed in the output of
pegasus-run invocation or by specifying the Dag directory for the workflow you want to terminate.

$ pegasus-renove / PATH To/ WORKFLOW DI RECTORY

Resubmitting failed workflows

Pegasus will remove the DAGMan and all the jobs related to the DAGMan from the condor queue. A rescue DAG
will be generated in case you want to resubmit the same workflow and continue execution from where it last stopped.
A rescue DAG only skips jobs that have completely finished. It does not continue a partially running job unless the
executabl e supports checkpointing.

To resubmit an aborted or failed workflow with the same submit files and rescue Dag just rerun the pegasus-run
command

$ pegasus-run / Path/ To/ Wor kf | ow Di rectory

Plotting and Statistics

Pegasus plotting and statistics tools queries the Stampede database created by pegasus-monitord for generating the
output.The stampede scheme can be found here.

The statistics and plotting tools use the following terminology for defining tasks, jobs etc. Pegasus takes in a DAX
which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that consists of Jobs. In
case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable workflow. When
DAGMan executesajob, ajob instance is populated . Job instances capture information as seen by DAGMan. In case
DAGMan retiresajob on detecting afailure, anew job instanceis populated. When DAGMan finds ajob instance has
finished , an invocation is associated with job instance. In case of clustered job, multipleinvocationswill be associated
with asinglejob instance. If aPre script or Post Script is associated with ajob instance, then invocations are popul ated
in the database for the corresponding job instance.

pegasus-statistics

Pegasus statistics can compute statistics over one or more than one workflow run.

Command to generate statistics over asingle runis as shown below.
$ pegasus-statistics /scratch/grid-setup/run0001/ -s all
#

# Pegasus Wor kfl ow Managerment System - http://pegasus.isi.edu
#

73



Monitoring, Debugging and Statistics

Wor kf | ow sunmary:
Summary of the workflow execution. It shows total
t asks/j obs/sub workflows run, how many succeeded/failed etc.
I'n case of hierarchical workflow the cal cul ation shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not conpleted etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total +Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cunulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wall time fromthe start of the workfl ow execution to the end as
reported by the DAGVAN. I n case of rescue dag the value is the
curmul ative of all retries.
Currul ative job wall tine:
The sumof the wall tine of all jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tinme value includes jobs fromthe sub workflows as well.
Curul ative job wall time as seen fromsubmt side:
The sumof the wall tine of all jobs as reported by DAGVAN.
This is simlar to the regular curmulative job wall time, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workfl ow
jobs (i.e SUBDAG and SUBDAX jobs), the wall tinme value includes jobs
fromthe sub workflows as well.
Cunul ative job badput wall tinme:
The sumof the wall tine of all failed jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tinme value includes jobs fromthe sub workflows as well.
Currul ative job badput wall time as seen fromsubnit side:
The sumof the wall tine of all failed jobs as reported by DAGVaN.
This is simlar to the regular cumul ative job badput wall time, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workfl ow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
fromthe sub workflows as well.

R R I T T S I T T R TR S I R R S SR T S

Type Succeeded Failed |Inconplete Total Retries Total +Retries
Tasks 4 0 0 4 0 4

Jobs 20 0 0 20 0 20

Sub- Workflows 0 0 0 0 0 0

Wor kflow wal I tine 6 mins, 55 secs
Cunul ative job wall tine : 4 mins, 58 secs
Cunul ative job wall tine as seen fromsubmt side : 5 mns, 11 secs
Cunul ative job badput wall tine : 0.0 secs
Cunul ative job badput wall time as seen fromsubmt side : 0.0 secs

Integrity Metrics
5 files checksums conpared with total duration of 0.439 secs
8 files checksums generated with total duration of 1.031 secs

Sunmmary : ./statistics/sumary.txt
Wor kf | ow execution statistics : ./statistics/workflow txt
Job instance statistics : ./statistics/jobs.txt
Transformation statistics : ./statistics/breakdown. t xt
Integrity statistics : ./statistics/integrity.txt
Tinme statistics : ./statistics/tine.txt

By default the output gets generated to a statistics folder inside the submit directory. The output that is generated
by pegasus-statistics is based on the value set for command line option 's(statistics level). In the sample run the
command line option 's is set to 'al’ to generate all the statistics information for the workflow run. Please consult the
pegasus-statistics man page to find a detailed description of various command line options.

74



Monitoring, Debugging and Statistics

Note

In case of hierarchal workflows, the metricsthat are displayed on stdout take into account all the jobs/tasks/

sub workflows that make up the workflow by recursively iterating through each sub workflow.

Command to generate statistics over all workflow runs populated in a single database is as shown below.

$ pegasus-statistics -Dpegasus. nonitord. output="nysql://s_user:s_user123@27.0.0. 1: 3306/ st anpede'

o /scratch/workflow 1_2/statistics -s all --nmultiple-w

Pegasus Wor kfl ow Managenent System - http://pegasus.isi.edu

Wor kf | ow sunmary:
Summary of the workflow execution. It shows total
t asks/j obs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the cal cul ation shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not conpleted etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total +Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cunulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wall time fromthe start of the workfl ow execution to the end as
reported by the DAGVAN. I n case of rescue dag the value is the
curmul ative of all retries.
Wor kf | ow cumul ative job wall tine:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tinme value includes jobs fromthe sub workflows as well.
Curul ative job wall time as seen fromsubmt side:
The sumof the wall tine of all jobs as reported by DAGVAN.
This is simlar to the regular curmulative job wall time, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workfl ow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
fromthe sub workflows as well.
Wor kf | ow cumul ative job badput wall tine:
The sumof the wall tine of all failed jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the wall tinme value includes jobs fromthe sub workflows as well.
Currul ative job badput wall time as seen fromsubnit side:
The sumof the wall tine of all failed jobs as reported by DAGVaN.
This is simlar to the regular cumul ative job badput wall time, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workfl ow
jobs (i.e SUBDAG and SUBDAX jobs), the wall tinme value includes jobs
fromthe sub workflows as well.

B R T T T I T T R R IR T T S S R R R S S R 3 T TR S S S S S

Type Succeeded Failed |Inconplete Total Retries Total +Retries
Tasks 8 0 0 8 0 8

Jobs 34 0 0 34 0 34

Sub- Workflows 0 0 0 0 0 0

Wor kfl ow cunul ative job wall tine : 8 mins, 5 secs
Cunul ative job wall tine as seen fromsubmt side : 8 mins, 35 secs

Wor kf | ow cumul ative job badput wall tine .0

Cunul ative job badput wall time as seen fromsubmt side : 0

75



Monitoring, Debugging and Statistics

Note

When computing statistics over multiple workflows, please note,

1. All workflow run information should be populated in asingle STAMPEDE database.
2. The --output argument must be specified.

3. Job statistics information is not computed.

4. Workflow wall time information is not computed.

Pegasus statistics can also compute statistics over afew specified workflow runs, by specifying the either the submit
directories, or the workflow UUIDs.

pegasus-statistics -Dpegasus. nonitord. output="<DB URL> -0 <OUTPUT_DIR> <SUBM T_DIR 1>

<SUBMT_DIR 2> .. <SUBM T_DI R n>

R

pegasus-statistics -Dpegasus. nonitord. output='"<DB URL> -0 <OQUTPUT_DIR> --isuuid <UU D 1>

<Uu D 2> .. <UU D_n>

pegasus-statistics generates the following statistics files based on the command line options set.

Summary Statistics File [summary.txt]

The summary statistics are listed on the stdout by default, and can be written out to afile by providing the -s summary
option.

Workflow summary - Summary of theworkflow execution. In case of hierarchical workflow the calculation shows
the statistics across al the sub workflows.It shows the following statistics about tasks, jobs and sub workflows.

» Succeeded - total count of succeeded tasks/jobs/sub workflows.
« Failed - total count of failed tasks/jobs/sub workflows.

» Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. Thisincludes all
the jobs that are not submitted, submitted but not completed etc. Thisis calculated as difference between 'total’
count and sum of 'succeeded' and 'failed' count.

» Total - total count of tasks/jobs/sub workflows.
* Retries- total retry count of tasks/jobs/sub workflows.

e Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of
total retries, succeeded and failed count.

Workflow wall time - The wall time from the start of the workflow execution to the end as reported by the DAG-
MAN.In case of rescue dag the value is the cumulative of all retries.

Workflow cummulate job wall time - The sum of the wall time of al jobs as reported by kickstart. In case of
job retries the value is the cumulative of al retries. For workflows having sub workflow jobs (i.e SUBDAG and
SUBDAX jobs), the wall time value includes jobs from the sub workflows as well. This value is multiplied by the
multiplier_factor in the job instance table.

Cumulativejob wall timeasseen from submit side- The sum of thewall time of al jobsasreported by DAGMan.
Thisis similar to the regular cumulative job wall time, but includes job management overhead and delays. In case
of job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG
and SUBDAX jobs), the wall time value includes jobs from the sub workflows. This value is multiplied by the
multiplier_factor in the job instance table.

Integrity Metrics

76



Monitoring, Debugging and Statistics

* Number of files for which the checksum was compared against a previously computed or provided checksum
and total duration in seconds spent in doing it.

« Number of filesfor which the checksum was generated during workflow execution and total duration in seconds
spent in doing it.

Workflow statistics file per workflow [workflow.txt]

Workflow statistics file per workflow contains the following information about each workflow run. In case of hierar-
chal workflows, the file contains a table for each sub workflow. The file also contains a 'Tota' table at the bottom
which isthe cumulative of all the individual statistics details.

A sample table is shown below. It shows the following statistics about tasks, jobs and sub workflows.

Workflow retries - number of times aworkflow was retried.
Succeeded - total count of succeeded tasks/jobs/sub workflows.
Failed - total count of failed tasks/jobs/sub workflows.

Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. Thisincludes al the
jobs that are not submitted, submitted but not completed etc. Thisis calculated as difference between 'total' count
and sum of 'succeeded' and 'failed' count.

Total - total count of tasks/jobs/sub workflows.
Retries - total retry count of tasks/jobs/sub workflows.

Total Run - total count of tasks/jobs/sub workflows executed during workflow run. Thisis the cumulative of total
retries, succeeded and failed count.

Table 6.1. Workflow Statistics

# Type |Succeeded| Failed Incom- Total Retries | Total Run | Workflow
plete Retries
2a6d- 0
f11b-9972-4ba0-b4ba-4fd39c357af 4

Tasks 4 0 0 4 0 4
Jobs 13 0 0 13 0 13

Sub Work- 0 0 0 0 0 0
flows

Job statistics file per workflow [jobs.txt]

Job statistics file per workflow contains the following details about the job instances in each workflow. A sample
fileis shown below.

.

Job - the name of the job instance

Try - the number representing the job instance run count.

Site - the site where the job instance ran.

Kickstart(sec.) - the actual duration of the job instance in seconds on the remote compute node.

Mult - multiplier factor from the job instance table for the job.

Kickstart_Mult - value of the Kickstart column multiplied by Mult.

CPU-Time - remote CPU time computed as the stime + utime (when Kickstart is not used, thisis empty).

Post(sec.) - the postscript time as reported by DAGMan.

7



Monitoring, Debugging and Statistics

¢ CondorQTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It isan estimate
of the time spent in the condor g on the submit node .

* Resource(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job instance spent in the remote queue .

¢ Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . |s always >=kickstart .
« Segexec(sec.) - the time taken for the completion of a clustered job instance .

* Segexec-Delay(sec.) - the time difference between the time for the completion of a clustered job instance and sum
of al theindividual tasks kickstart time.

Table 6.2. Job statistics

Job Try Site | Kick- | Mult | Kick- | CPU- | Post | Con- | Re- | Run- Se- | Segex-
start sart_Mujt Time dorQ- | source| time | gexec | ec-De-
Time lay
ana- 1 local | 60.002 1 60.002 | 59.843 | 5.0 0.0 - 62.0 - -
lyze 1D000Q0O04
cre- 1 loca | 0.027 1 0.027 | 0.003 | 5.0 5.0 - 0.0 - -
ate dir_di-
a
mond_0_lo-
ca
find- 1 loca | 60.001| 10 |600.01|59921| 5.0 0.0 - 60.0 - -
range_|D0O00P0O02
find- 1 loca |60.002| 10 |600.02|59912| 5.0 10.0 - 61.0 - -
range_|D0O0OP0O03
pre- 1 local | 60.002 1 60.002 | 59.898 | 5.0 5.0 - 60.0 - -
process_|DO0(QO00L
regis- 1 loca | 0.459 1 0459 | 0432 | 6.0 5.0 - 0.0 - -
ter_lo-
ca_10
regis- 1 loca | 0.338 1 0338 | 0.331 | 5.0 5.0 - 0.0 - -
ter_lo-
ca_11
regis 1 loca | 0.348 1 0.348 | 0.342 | 5.0 5.0 - 0.0 - -
ter_lo-
ca_20
stage in_lo- 1 loca | 0.39 1 039 | 0032 | 50 5.0 - 0.0 - -
cal_lo-
ca 0
stage out_lo- 1 local | 0.165 1 0.165 | 0.108 | 5.0 10.0 - 0.0 - -
ca_lo-
ca_00
stage out_lo- 1 local | 0.147 1 0.147 | 0.098 | 7.0 5.0 - 0.0 - -
ca_lo-
ca_10
stage out lo- 1 loca | 0.139 1 0.139 | 0.089 | 5.0 6.0 - 0.0 - -
ca_lo-
ca_11
stage out_lo- 1 loca | 0.145 1 0.145 | 0.101 | 5.0 5.0 - 0.0 - -
cal_lo-
ca_20

78



Monitoring, Debugging and Statistics

Transformation statistics file per workflow [breakdown.txt]

Transformation statistics file per workflow contains information about the invocations in each workflow grouped by

t

ransformation name. A sample file is shown below.
Transformation - name of the transformation.
Count - the number of times invocations with a given transformation name was executed.
Succeeded - the count of succeeded invocations with a given logical transformation name .
Failed - the count of failed invocations with a given logical transformation name .

Min (sec.) - the minimum runtime value of invocations with a given logical transformation name times the multi-
pler_factor.

Max (sec.) - the minimum runtime value of invocations with a given logical transformation name times the mul-
tiplier_factor.

Mean (sec.) - the mean of the invocation runtimes with a given logical transformation name times the multipli-
er_factor.

Total (sec.) - the cumulative of runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Table 6.3. Transformation Statistics

Transfor- Count Succeeded Failed Min Mean Total

mation

13 13 5.0 7.0 5231 68.0

dag-
man::post

diamond::an-

60.002 60.002 60.002 60.002

ayze

dia- 600.01 600.02 600.02 1200.03

mond::find-
range

dia- 60.002 60.002 60.002 60.002

mond::pre-
process

0.027 0.027 0.027 0.027

pega-
sus::dirman-

ager

0.139 0.39 0.197 0.986

pega
sus::pega-

sus-transfer

0.338 0.459 0.382 1.145

pega-
sus::rc-client

Time statistics file [time.txt]

Time statistics file contains job instance and invocation statistics information grouped by time and host. The time
grouping can be on day/hour. The file contains the following tables Job instance statistics per day/hour, Invocation
statistics per day/hour, Job instance statistics by host per day/hour and Invocation by host per day/hour. A sample

nvocation statistics by host per day table is shown below.
Job instance statistics per day/hour - the number of job instances run, total runtime sorted by day/hour.

Invocation statistics per day/hour - the number of invocations, total runtime sorted by day/hour.

79



Monitoring, Debugging and Statistics

¢ Job instance statistics by host per day/hour - the number of job instances run, total runtime on each host sorted
by day/hour.

¢ Invocation statistics by host per day/hour - the number of invocations , total runtime on each host sorted by
day/hour.

Table 6.4. Invocation statistics by host per day

Date[YYYY-MM-DD] Host Count Runtime (Sec.)
2011-07-15 butterfly.isi.edu 54 625.094

Integrity statistics file per workflow [integrity.txt]

Integrity statistics file contains integrity metrics grouped by file type (input or output) and integrity type (check or
compute). A sample table is shown below. It shows the following statistics about integrity checks.

* Type- thetype of integrity metric. Check means checksum was compared for afile, and compute means achecksum
was generated for afile.

* Filetype - the type of file: input or output from ajob perspective.
« Count - the number of timestype, file type integrity check was performed.

e Total duration - sum of duration in seconds for the 'count' humber of records matching the particular type, file-
type combo.

Table 6.5. Integrity Statistics

# Type File Type Count Total Duration
455%392d-1b37-407c-98d3160f -
b86ch9d57
check input 5 0.164
check output 5 1.456
compute input 5 0.693
compute output 5 0.758

pegasus-plots

Pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ pegasus-plots -p all /scratch/grid-setup/run0001/

KKK KKK KKK IR KKk KKk kA kk kR KKk kkhkxkkk Kk GUNMMARY ¥ H***rkkkk ki kkkkkkkk ok kA kkk ok kkkk ok hkkkk ok kk kK kk x

Graphs and charts generated by pegasus-plots can be viewed by opening the generated htm file in the
web browser
/ scratch/ grid-setup/run0001/ pl ot s/i ndex. ht m

ko kkkk kR kk ok k ok kkkkk ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok k k%

By default the output gets generated to plots folder inside the submit directory. The output that is generated by pega-
sus-plots is based on the value set for command line option 'p'(plotting_level).In the sample run the command line
option 'p'isset to 'dl' to generate al the charts and graphs for the workflow run. Please consult the pegasus-plots man
page to find a detail ed description of various command line options. pegasus-plots generates an index.html file which
provides linksto all the generated charts and plots. A sample index.html page is shown below.

80



Monitoring, Debugging and Statistics

Figure 6.1. pegasus-plot index page

Pegasus plots
Workflow Execution Gantt Chart
Host Over Time Chart
Time Chart
DAX graph
DAG graph
dag_file_name :diamond-0.dag
wi_uuid «d7257985-4e25-4519-a13b-129687d80b36
submit_hostname buterflyisi edo
dax_label :diamond
planner_version :3.1.0cvs
planner_arguments :
grid_dn J/DC=0rg/DC=doegrids/OU=People/CN=Prasanth Thomas 541192
user ‘prasanth
submit_dir Jfs1/pras: d-semup/workflow/hierarichal/dags/prasanth/pegasusierarichalirun0001 /dag _2/diamond_IDOO00002.000

dax_version 133

pegasus-plots generates the following plots and charts.
Dax Graph

Graph representation of the DAX file. A sample page is shown below.

Figure6.2. DAX Graph

DAX Graph
Top level workflow (ad180edc-222b-49d5-hef3-7c40b8969422)

=

wi_unid ad180ede-222b-49d5-bef3. Ted9hB9694 22
dax label hierarichal

Sub workflow's of workflow (ad180edc-222b-49d5-hef3-7Tc49bB969422)

e

wi_uuid :d 1adaB67-5499-436d-b4B0-52d 7384 52 Te
dax label :dinmond

Dag Graph

—_

wi_uuid :812acTe2- |1 aD-4{Tf-adas-8 Secfedbdfal
dax label :diamond

81



Monitoring, Debugging and Statistics

Graph representation of the DAG file. A sample page is shown below.

Figure 6.3. DAG Graph

DAG Graph
Top level workflow (ad180edc-222b-49d5-bef3-Ted9b8969422)

i .

wi_uuid :ad] B0edc-222b-44d5-bof3-TodYbE965422
dag label hierarichal-0

Sub workflow's of workflow (ad180ede-222b-49d5-bef3-Te49b8969422)

R .
e e
e et
i i t—" s m— T s
s e s B
AL s i e e e
e e
wi_unid :dlada:ﬂ-lf::?;mﬁ%ﬁdﬂ“mh wi_wuid :ma::zl;::;:n:maismmmm

Gantt workflow execution chart

Gantt chart of the workflow execution run. A sample page is shown below.

Figure 6.4. Gantt Chart

Workflow execution Gantt chart
et § { I & ¥ EE

hiararichal

Touteaan e 2 OO0

Fabeian e DS

Job count —=

| et e Sewera D oew |

5 ] [E]
Timeline in seconds --=
‘condior o 8 mource deiny & o utme m ety dagran ) ot pagmrmarage:

% o) = ) ) - ] P e o (]

] 9.

0 s ot joib [MOB_TERMINATED -SUBMIT]
] show kickstart fime ¥
] show muntime as soon by dagman [JOB_TERMINATED - EXECUTE] §
0 s sesource delay [EXECUTE SGRID_SUBMITAGLOBUS_SUBMIT]

(1 bow poe seript time i
L aborw sl sl time

———— Condor Expcue
PR— R

Possicrpt Slang Delay

82



Monitoring, Debugging and Statistics

The toolbar at the top provides zoom infout , pan left/right/top/bottom and show/hide job name functionality. The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Host over timechart

Host over time chart of the workflow execution run. A sample page is shown below.

Figure 6.5. Host over time chart

Host Over Time Chart - .
oo et $ I et EE

1 L

Host count —=

@ ) =) =
Timeding in seconds -
e o8 S By e
show eondar job [JOB_TERMINATED -SUBMIT)
show kickstart time

show nuntime s seen: by dagman [J08_TERMINATED - EXECUTE] E 1
show resoence delay [EXECUTE -GRID_SUBMIT/GLOBUS_SUBMIT]

The toolbar at the top provides zoom infout , pan left/right/top/bottom and show/hide host name functionality. The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Timechart

Time chart shows job instance/invocation count and runtime of the workflow run over time. A sample page is shown
below.

83



Monitoring, Debugging and Statistics

Figure 6.6. Time chart

Time chart

Ll JE =S

a®

ann
amm

it
i

.

T
L

Runtime in secands <= >

u
]
.
—
-
a—_
-
.
-
.
count >

o
S dE

TR
L eI
LEC
e

Date time --=

@ sman mean et

Type filter Time fler

* show joba Iy i

show imvocabions ® by bour

The toolbar at the top provides zoom infout and pan left/right/top/bottom functionality. The toolbar at the bottom can
be used to switch between job instances invocations and day/hour filtering.

Breakdown chart

Breakdown chart showsinvocation count and runtime of the workflow run grouped by transformation name. A sample
page is shown below.




Monitoring, Debugging and Statistics

Figure 6.7. Breakdown chart

Invocation breakdown by count grouped by transformation name

diamond
pogasLE: dirmanager MO PrepOcass: diamand: fndrangs pegasus:re-cliant
CRMAnd ANy PUOISULS: POgASUS- NS0
Breakdown by
@ count
O runtime

Note: Legends can be clicked to find information corresponding to the transformation name.

Thetoolbar at the bottom can be used to switch between invocation count and runtime filtering. Legends can be clicked
to get more details.

Dashboard

Asthe number of jobs and tasksin workflows increase, the ability to track the progress and quickly debug aworkflow
becomes more and more important. The dashboard provides users with a tool to monitor and debug workflows both
in real-time as well as after execution is already completed, through a browser.

Workflow Dashboard

Pegasus Workflow Dashboard is bundled with Pegasus. The pegasus-serviceisdevel oped in Python and usesthe Flask
framework to implement the web interface. The users can then connect to this server using a browser to monitor/debug
workflows.

Note

the workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.

To start the Pegasus Dashboard execute the following command
$ pegasus-service --host 127.0.0.1 --port 5000
SSL is not configured: Using self-signed certificate

2015-04-13 16:14: 23, 074: Pegasus. servi ce.server: 79: WARNING SSL is not configured: Using self-signed
certificate

85



Monitoring, Debugging and Statistics

Service not running as root: WIIl not be able to switch users
2015- 04- 13 16: 14: 23, 074: Pegasus. servi ce. server: 86: WARNING Service not running as root: WII not be
able to switch users

By default, the server is configured to listen only on localhost/127.0.0.1 on port 5000. A user can view the dashboard
on https://localhost: 5000/

To make the Pegasus Dashboard listen on all network interfaces OR on adifferent port, users can pass different values
to the --host and/or --port options.

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

The Dashboard's home page lists al workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level
workflows (Pegasus supports hierarchical workflows i.e. workflows within a workflow). The rows in the table are
color coded

e Green: indicates workflow finished successfully.

* Red: indicates workflow finished with afailure.

» Blue: indicates aworkflow is currently running.

¢ Gray: indicates a workflow that was archived.

86



Monitoring, Debugging and Statistics

Figure 6.8. Dashboard Home Page

pegasus-dashboard M
A
Workflow Listing

»

Successful: 8

M Running [l Failed [ Successful

Show results for | all 3
{10 |3

w::::l;w = Submit Host & Submit Directory s State = Submitted On -
split workflow.isi.edu  /nfs/ccg3/ccg/home/examples/split/split/run0006 Running Fri, 23 Oct 2015 16:04:00
split workflow.isi.edu  /nfs/ccg3/ccg/home/examples/split/split/run0004 Failed Fri, 23 Oct 2015 15:56:01
diamond workflow.isiedu /nfs/ccg3/ccg/home/examples/diamond/diamond/run0002  Successful ~ Fri, 23 Oct 2015 15:50:17
split workflow.isi.edu /nfs/ccgd/ccg/home/examples/split/split/run0003 Failed Fri, 23 Oct 2015 15:41:15
split workflow.isi.edu  /nfs/ccg3/ccg/home/examples/split/split/run0002 Successful  Fri, 23 Oct 2015 15:04:44
process workflow.isi.edu /nfs/ccg3/ccg/home/examples/process/process/run0001 Successful  Fri, 23 Oct 2015 15:00:38
pipeline workflow.isi.edu  /nfs/ccg3/ccg/home/examples/pipeline/pipeline/run0001 Successful  Fri, 23 Oct 2015 15:00:28
merge workflow.isiedu /nfs/ccg3/ccg/home/examples/merge/merge/run0001 Successful  Fri, 23 Oct 2015 15:00:15
diamond workflow.isi.edu /nfs/ccg3/ccg/home/examples/diamond/diamond/run0001  Successful  Fri, 23 Oct 2015 15:00:06
split workflow.isi.edu  /nfs/ccg3/ccg/home/examples/split/split/run0001 Successful  Fri, 23 Oct 2015 14:59:50

TS

STAMPEDE

]

i,

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, files,
and metadata associated with the workflow etc. The details page aso displays pie charts showing the distribution of
jobs based on status.

In addition, the details page displays atab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

87



Monitoring, Debugging and Statistics

Note

Failing jobs are currently running jobs (visible in Running tab), which have failed in previous attempts to
execute them.

The information displayed for ajob depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

88



Workflow Details 1145e2d5-ad2f-45d6-a3ce-4bds8499d8af[ M

Summary = Files{)  Metadata @

Label diamond
Type root-wf
Progress Successful
Submit Host cartman
User bamboo
Submit Directory B3 [ Afs1/software/bamboo/data/xmi-data/build-dir/ PEGASUS-WT-T39A/test/core/039-bl. ..
DAGMan Out File & diamond-0.dag.dagman.out
Wall Time 5 mins 9 secs
Cumulative Wall Time 5 mins 52 secs
Job Status (Entire Workflow) Job Status (Per Workflow)

Unsubmitted: 0

Failed: 0

Jobs: 0
Workflows: 0
Total: 0

lobs: 26
Successful: 26 Workflows: 0
Total: 26
Il Unsubmitted Il Failed Il Successful M Running Ml Failed I Successful

Charts Statistics

=

I Sub Workflows

Job Name - Time Taken ¢
analyze_|DO000004 1 min
clean_up_local_level_3_0 5 secs
clean_up_local_level_4_0 5 secs
clean_up_local_level_4_1 3 secs
clean_up_local_level 5 0 7 secs
clean_up_local_level_6_0 3 secs
cleanup_diamond_0_local 3 secs
create_dir_diamond_0_local 2 secs
findrange_ID0000002 1 min 1 sec
findrange_|D0000003 1 min

2 3 Next Last

STAMPEDE

i

[ ¥,

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

89




Monitoring, Debugging and Statistics

Figure 6.10. Dashboard Workflow Metadata

pegasus-dashhoard (i)
V@\ Worldlow

Workflow Details 1145e2d5-ad2f-4546-a3ce-4bd68499d8af[ )

Summary Files @ Metadata @)

createdby Karan Vahi

name diamond

Figure 6.11. Dashboard Workflow Files

pegasus-dashhoard )
y@\ Workflow

Workflow Details 1145e2d5-ad2f-45d6-a3ce-4bds8499d8af[ )

Summary Files Metadata @

raw_input true

f.a PFN net available yet size 1024
2016-01-
file:////Ifs1/software/bamboo/data/xml-data/build-dir/ PEGASUS- ctime 26T09:51:42-
f.b1 WT-T39A/test/core/039-black-metadata/L OCAL/shared- 08:00
storage/f.b1 size 124
user bamboo
2016-01-
file:////Ifs1/software/bamboo/data/xml-data/build-dir/ PEGASUS- ctime 26T09:51:42-
f.b2 WT-T39A/test/core/039-black-metadata/L OCAL/shared- 08:00
storage/f.b2 size 124
user bamboo
2016-01-
file:////Ifs1/software/bamboo/data/xml-data/build-diry PEGASUS- ctime 26T09:53:03-
f.c1 WT-T39A/test/core/039-black-metadata/LOCAL/shared- 08:00
storage/f.c1 size 222
user bamboo
2016-01-
file:////Ifs1/software/bamboo/data/xml-data/build-dir/ PEGASUS- ctime 26T09:52:58-
fic2 WT-T39A/test/core/039-black-metadata/LOCAL/shared- 08:00
storage/f.c2 size 222
user bamboo
2016-01-
files////fs1/software/bamboo/data/xmi-data/build-dirPEGASUS-  ©'™® EZ_TD%Q:M” &
fd WT-T39A/test/core/039-black-metadata/L OCAL/shared- ) )
storage/f.d ﬂhal_output true
size 582
user bamboo

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

90



Monitoring, Debugging and Statistics

The job instance section of the job details page lists all attempts made to run the job i.e. if ajob failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

Thejob details page a so showstab'sfor failed, and successful task invocations (Pegasus allows usersto group multiple
smaller task'sinto asingle job i.e. ajob may consist of one or more tasks)

91



pegasus-dashhoard

Y/ Workflow / Job

Job Details
Label Is_1DO000001
Type Compute
Exit Code 0
Working Directory /private/var/condor/execute/dir_12968

Application Stdour/Stderr
Kickstart Output

Condor Stderr/Pegasus Lite Log

Preview
< 00/00/ls_IDO0O00001 .out.000

<’ 00/00/s_IDOO00001 .er.000

Condor Submit File ¢ Is_ID0000001.sub
Site condorpool
Host 128.9.72.154 > isls.isi.edu
Job States
Submit Thu Mar 23, 2017 01:25:53 PM (0 secs )
Execute Thu Mar 23, 2017 01:26:08 PM ( 15 secs )
Image Size Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Job Terminated Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Job Success Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Post Script Started Thu Mar 23, 2017 01:26:08 PM ( 0 secs )
Post Script Terminated Thu Mar 23, 2017 01:26:13 PM ( 5 secs )
Post Script Success Thu Mar 23, 2017 01:26:13 PM ( 0 secs )

Job Instances

<>
<&

Try = Job Instance ID < Exitcode s Stdout

1 2 0 Preview Preview

Job Invocations

No failed invocations.

STAMPEDE

Copyright ©) 2015 University of Southern California

pegasus-users@isi.edu

92




Monitoring, Debugging and Statistics

The task invocation details page provides task specific information like task name, exit code, duration, metadata
associated with the task, etc. Task details differ from job details, as they are more granular in nature.

93



Monitoring, Debugging and Statistics

Figure 6.13. Dashboard I nvocation Page

pegasus-dashboard

N/ Workflow / Job

Task Details

Task Label
Transformation
Working Directory
Executable
Arguments
Exit Code
Start Time
Remote Duration

Remote CPU Time
Task Metadata
size

time

transformation

STAMPEDE

Task Details

1D0000004

diamend::analyze:4.0

Nvar/lib/condor/execute/dir_784086

[ /var/lib/condor/execute/dir_784086/diamond-analyze-4.0
[} -a analyze -T80 -i f.c1 f.c2 -0 f.d

0

Tue, 26 Jan 2016 09:54:16

1 min

59 secs

2048
60

analyze

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

94



Monitoring, Debugging and Statistics

The dashboard & so has web pages for workflow statistics and workflow charts, which graphically rendersinformation

provided by the pegasus-statistics and pegasus-plots command respectively.
The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

4. Integrity statistics

Figure 6.14. Dashboard Statistics Page

pegasus-dashboard

’p@\ Workflow / Statistics
Statistics
Workflow Wall Time null
Workflow Cumulative Job Wall Time 2 mins 8 secs
Cumulative Job Walltime as seen from Submit Side 2 mins 26 secs
Workflow Cumulative Badput Time 0 secs
Cumulative Job Badput Walltime as seen from Submit Side 0 secs
Workflow Retries 0
| Workflow Statistics

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 o] 0 4 4
Jobs 7 0 1 8 7
Sub Workflows 0 0 0 0 0
Entire Workflow
Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 4
Jobs 7 o] 1 8 7
Sub Workflows 0 0 0 0 0
¢ Job Breakdown Statistics
» Job Statistics
¢ Integrity Statistics
RS INFORMATION [
W% I - USC
sd. AfF bagios INSTITUTE

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu




Monitoring, Debugging and Statistics

The Charts page shows the following charts.
1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

Figure 6.15. Dashboard Plots - Job Distribution

pegasus-dashhoard

’p@\ Workflow / Charts

Charts

| Job Distribution

Invocation Distribution by Count

wo 4 -
\

split 1 ~

pegasus:transfer: & ——— dagman:post: 16

pegasus:rc-client: 2

pegasus:dirmanager: 1

pegasus:cleanup: 4 7

Il dagman:zpost [l pegasus:cleanup [l pegasuszdirmanager I pegasus:re-client [l pegasus:transfer [l split

I wc
By Count By Time

' Time Chart

* Gantt Chart

- R INFORMATION [
CFMP A0 BaEds] © USC

pegasvy’

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

The time chart shown below shows the number of jobs/invocations in the workflow and their total runtime

96



Monitoring, Debugging and Statistics

Figure 6.16. Dashboard Plots - Time Chart

pegasus-dashboard

yﬁ\ Workflow / Charts

Charts

' Job Distribution

| Time Chart

Time Chart by Jobs

800

600

Runtime (secs)
B
=1
=)

2015-10-23 15

M Runtime [l Count

By Jobs By Invocations

' Gantt Chart

= I TU

s TAMPEDE INFORMATION [
WFMP A0 BaEteR] © USC

Copyright ©) 2015 University of Southern California

4 pegasus-users@isi.edu

The workflow gantt chart lays out the execution of the jobsin the workflow over time.

20

97



Monitoring, Debugging and Statistics

Figure 6.17. Dashboard Plots - Workflow Gantt Chart

pegasus-dashboard T

yﬁ/ﬁ\ Workflow / Charts

Charts

' Job Distribution
* Time Chart

Gantt Chart

Workflow Execution Gantt Chart

stage_worker_local_split_0_local
create_dir_split_0_local |
stage_in_remote_local_0_0 _
stage_in_remote_local_0_0 _
stage_in_remote_local_0_0 I
split_IDOC0O000L .
we_ID0000003 |
wc_ID0000002 |
wc_ID000000S 1
we_ID00ooood ]
clean_up_local_level_3_0 I
stage_out_remote_local_1_0 I
clean_up_local_level_4_0 |
stage_out_remaote_local_1_1 |
register_local_1_0 I
clean_up_local_level_5_0 I
register_local _1_1 |
cleanup_split_0_local ‘

0 200 400 600 800 1000 1200 1400 1600 1300
Timeline (Seconds)

STAMPEDE

Copyright (€©) 2015 University of Southern California

4 pegasus-users@isi.edu

Notifications

The Pegasus Workflow Mapper now supportsjob and workflow level notifications. Y ou can specify in the DAX with
the job or the workflow

« the event when the natification needs to be sent

98



Monitoring, Debugging and Statistics

 the executable that needs to be invoked.

The notifications are issued from the submit host by the pegasus-monitord daemon that monitors the Condor logs for
the workflow. When a notification is issued, pegasus-monitord while invoking the notifying executable sets certain
environment variables that contain information about the job and workflow state.

The Pegasus release comes with default notification clients that send notifications via email or jabber.

Specifying Notifications in the DAX
Currently, you can specify notifications for the jobs and the workflow by the use of invoke elements.
Invoke elements can be sub elements for the following elementsin the DAX schema.
« job - to associate notifications with a compute job in the DAX.
« dax - to associate notifications with adax job in the DAX.
« dag - to associate notifications with adag job in the DAX.
 executable - to associate notifications with ajob that uses a particular notification
The invoke element can be specified at the root element level of the DAX to indicate workflow level notifications.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set

Table 6.6. Invoke Element attributes and meaning.

Enumeration of Valuesfor when attribute Meaning
never (default). Never notify of anything. Thisisuseful to tem-
porarily disable an existing notifications.
start create a notification when the job is submitted.
on_error after ajob finishes with failure (exitcode != 0).
on_success after ajob finishes with success (exitcode == 0).
a_end after ajob finishes, regardless of exitcode.
al like start and at_end combined.

You can specify multiple invoke elements corresponding to same when attribute value in the DAX. This will allow
you to have multiple notifications for the same event.

Hereis an example that illustrates that.

<job id="1D000001" nanespace="exanpl e" name="nDi ffFit" version="1.0"
node- | abel =" preprocess" >
<argument>-a top -T 6 -i <file nane="f.a"/> -o <file nane="f.bl"/></argunent>

<!-- profiles are optional -->
<profil e namespace="execution" key="site">isi_viz</profile>
<profil e namespace="condor" key="getenv">true</profile>

<uses nane="f.a" link="input" register="false" transfer="true" type="data" />
<uses nane="f.b" |ink="output" register="false" transfer="true" type="data" />
<l-- '"WHEN enuneration: never, start, on_error, on_success, at_end, all -->

<i nvoke when="start">/path/to/notifyl argl arg2</invoke>

<i nvoke when="start">/path/to/notifyl arg3 arg4</invoke>

<i nvoke when="on_success">/path/to/notify2 arg3 arg4</invoke>
</j ob>

In the above example the executabl e notify1 will be invoked twice when ajob is submitted ( when="start" ), once with
arguments argl and arg2 and second time with arguments arg3 and arg4.

The DAX Generator API chapter has information about how to add notifications to the DAX using the DAX api's.

99



Monitoring, Debugging and Statistics

Notify File created by Pegasus in the submit directory

Pegasus while planning a workflow writes out a notify file in the submit directory that contains al the notifications
that need to be sent for the workflow. pegasus-monitord picks up this notificationsfile to determine what notifications
need to be sent and when.
1. ENTITY_TYPE ID NOTIFICATION_CONDITION ACTION
¢ ENTITY_TYPE can be either of the following keywords
* WORKFLOW - indicates workflow level notification

« JOB - indicates notifications for ajob in the executable workflow

* DAXJOB - indicates notifications for aDAX Job in the executable workflow

DAGJOB - indicates notifications for a DAG Job in the executable workflow

« ID indicates the identifier for the entity. It has different meaning depending on the entity type - -
» workflow - ID iswf_uuid
* JOB|DAXJOB|DAGJOB - ID isthejob identifier in the executable workflow ( DAG).

« NOTIFICATION_CONDITION isthe condition when the notification needs to be sent. The notification condi-
tions are enumerated in thistable

* ACTION iswhat needs to happen when condition is satisfied. It is executable + arguments
2. INVOCATION JOB_IDENTIFIER INV.ID NOTIFICATION_CONDITION ACTION

The INVOCATION lines are only generated for clustered jobs, to specifiy the finer grained notifications for each
constitutent job/invocation .

« JOB IDENTIFIER isthe job identifier in the executable workflow ( DAG).

INV.ID indicates the index of the task in the clustered job for which the notification needs to be sent.

NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

* ACTION iswhat needs to happen when condition is satisfied. It is executable + arguments

A sample notifications file generated is listed below.
WORKFLOW d2c4f 79c- 8d5b- 4577- 8c46- 5031f 4d704e8 on_error /bin/datel

| NVOCATI ON ner ge_vahi -preprocess-1.0_PID1_I Dl 1 on_success /bin/date_executabl e
| NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I Dl 1 on_success /bin/date_execut abl e
| NVOCATI ON ner ge_vahi -preprocess-1.0_PID1_IDl 1 on_error /bin/date_executable

| NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I D1 2 on_success /bin/date_execut abl e
| NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I Dl 2 on_error /bin/date_executabl e

DAXJOB subdax_bl ack_| DO0O0003 on_error /bin/datel3
JOB anal yze_| DO0004 on_success /bin/date

Configuring pegasus-monitord for notifications

Whenever pegasus-monitord entersaworkflow (or sub-workflow) directory, it will read the notificationsfile generated
by Pegasus. Pegasus-monitord will match events in the running workflow against the notifications specified in the
notifications file and will initiate the script specified in a notification when that notification matches an event in the
workflow. It isimportant to note that there will be a delay between a certain event happening in the workflow, and
pegasus-monitord processing the log file and executing the corresponding notification script.

100




Monitoring, Debugging and Statistics

The following command line options (and properties) can change how pegasus-monitord handles notifications:
« --no-notifications (pegasus.monitord.notifications=Fal se): Will disable notifications completely.

« --notifications-max=nn (pegasus.monitord.notifications.max=nn): Will limit the number of concurrent notification
scripts to nn. Once pegasus-monitord reaches this number, it will wait until one notification script finishes before
starting a new one. Notifications happening during this time will be queued by the system. The default number of
concurrent notification scripts for pegasus-monitord is 10.

« --notifications-timeout=nn (pegasus.monitord.notifications.timeout=nn): This setting is used to change how long
will pegasus-monitord wait for a notification script to finish. By default pegasus-monitord will wait for aslong as
it takes (possibly indefinitely) until a notification script ends. With this option, pegasus-monitord will wait for at
most nn seconds before killing the notification script.

It is also important to understand that pegasus-monitord will not issue any notifications when it is executed in replay
mode.

Environment set for the notification scripts

Whenever a notification in the notifications file matches an event in the running workflow, pegasus-monitord will
run the corresponding script specified in the ACTION field of the notifications file. Pegasus-monitord will set the
following environment variables for each notification script is starts:

¢ PEGASUS EVENT: The NOTIFICATION_CONDITION that caused the notification. In the case of the"all" con-
dition, pegasus-monitord will substitute it for the actual event that caused the match (e.g. "start" or "at_end").

e PEGASUS EVENT_TIMESTAMP: Timestamp in EPOCH format for the event (better for automated processing).
e PEGASUS EVENT_TIMESTAMP_ISO: Same as above, but in 1SO format (better for human readability).

¢ PEGASUS SUBMIT_DIR: The submit directory for the workflow (usually the vaue from "submit_dir" in the
braindump.txt file)

* PEGASUS STDOUT: For workflow notifications, this will correspond to the dagman.out file for that workflow.
For job and invocation notifications, this field will contain the output file (stdout) for that particular job instance.

« PEGASUS STDERR: For job and invocation natifications, this field will contain the error file (stderr) for the
particular executable job instance. This field does not exist in case of workflow notifications.

¢ PEGASUS WFID: Contains the workflow id for this notification in the form of DAX_LABEL + DAX_INDEX
(from the braindump.txt file).

« PEGASUS JOBID: For workflow notifications, this contains the worfkflow wf_uuid (from the braindump.txt file).
For job and invocation notifications, this field contains the job identifier in the executable workflow ( DAG ) for
the particular notification.

¢ PEGASUS INVID: Containstheindex of the task in the clustered job for the notification.
« PEGASUS STATUS: For workflow natifications, this contains DAGMan's exit code. For job and invocation no-

tifications, this field contains the exit code for the particular job/task. Please note that this field is not present for
‘start' notification events.

Default Notification Scripts

Pegasus ships with two reference notification scripts. These can be used as starting point when creating your own
notification scripts, or if the default oneisall you need, you can use them directly in your workflows. The scripts are:

« libexec/notification/email - sends email, including the output from pegasus-status (default) or pegasus-analyzer.

$ ./libexec/notification/enail --help
Usage: emil [options]

101



Monitoring, Debugging and Statistics

Opti ons:

-h, --help show this hel p nessage and exit

-t TO_ADDRESS, --to=TO ADDRESS
The To: enmil address. Defines the recipient for the
notification.

-f FROM _ADDRESS, - -from=FROM ADDRESS
The From enmil address. Defaults to the required To:
addr ess.

-r REPORT, --report=REPCORT
I ncl ude workflow report. Valid values are: none
pegasus- anal yzer pegasus-status (default)

« libexec/notification/jabber - sends simple notifications to Jabber/GTalk. This can be useful for job failures.

$ ./libexec/notification/jabber --help
Usage: jabber [options]

Opti ons:

-h, --help show this hel p nessage and exit

-i JABBER_ID, --jabberid=JABBER_|D
Your jabber id. Exanple: user @ abberhost.com

-p PASSWORD, - - passwor d=PASSWORD
Your j abber password

-s HOST, --host=HOST Jabber host, if different fromthe host in your jabber
id. For Google talk, set this to talk.google.com

-r RECI PI ENT, --recipient=RECI Pl ENT
Jabber id of the recipient. Not necessary if you want
to send to your own jabber id

For example, if the DAX generator is written in Python and you want notifications on 'at_end' events (successful or

failed):
# job level notifications - in this case for at_end events
job.invoke('at_end', pegasus_home + "/libexec/notifications/email --to nme@onewhere.edu")

Please see the notifications example to see a full workflow using notifications.

Monitoring Database

Pegasus launches a monitoring daemon called pegasus-monitord per workflow ( a single daemon is launched if a
user submits a hierarchal workflow ) . pegasus-monitord parses the workflow and job logs in the submit directory
and populates to a database. This chapter gives an overview of the pegasus-monitord and describes the schema of
the runtime database.

pegasus-monitord

Pegasus-monitord is used to follow workflows, parsing the output of DAGMan's dagman.out file. In addition to gen-
erating the jobstate.log file, which contains the various states that ajob goes through during the workflow execution,
pegasus-monitord can aso be used to mine information from jobs submit and output files, and either populate a
database, or write a file with NetLogger events containing this information. Pegasus-monitord can also send notifi-
cations to usersin real-time as it parses the workflow execution logs.

Pegasus-monitord is automatically invoked by pegasus-run, and tracks workflows in real-time. By default, it pro-
duces the jobstate.log file, and a SQL ite database, which contains all the information listed in the Stampede schema.
When aworkflow fails, and is re-submitted with a rescue DAG, pegasus-monitord will automatically pick up from
where it left previously and continue to write the jobstate.log file and popul ate the database.

If, after the workflow has already finished, users need to re-create the jobstate.log file, or re-populate the database
from scratch, pegasus-monitord's --r eplay option should be used when running it manually.

Populating to different backend databases

In addition to SQL.ite, pegasus-monitord supports other types of databases, such as MySQL and Postgres. Users
will need to install the low-level database drivers, and can use the --dest command-line option, or the pegasus.mon-
itord.output property to select where the logs should go.

102



Monitoring, Debugging and Statistics

As an example, the command:

$ pegasus-nonitord -r di anond-0. dag. dagman. out

will launch pegasus-monitord in replay mode. In this case, if ajobstate.log file already exists, it will be rotated and
anew file will be created. It will aso create/use a SQL ite database in the workflow's run directory, with the name
of diamond-0.stampede.db. If the database already exists, it will make sure to remove any references to the current
workflow before it populates the database. In this case, pegasus-monitord will process the workflow information
from start to finish, including any restarts that may have happened.

Users can specify an alternative database for the events, asillustrated by the following examples:

$ pegasus-nonitord -r -d nysql://usernane: user pass@ost nane/ dat abase_nane di anond- 0. dag. dagnman. out

$ pegasus-nonitord -r -d sqlite:////tnp/dianond-0.db di anond- 0. dag. dagnan. out

Inthefirst example, pegasus-monitord will send the datato the database name database located at server hostname,
using the username and user pass provided. In the second example, pegasus-monitord will store the datain the /
tmp/diamond-0.db SQL ite database.

Note

For absolute paths four slashes are required when specifying an aternative database path in SQLite.

Users should also be aware that in all cases, with the exception of SQLite, the database should exist before pega-
sus-monitord isrun (asit creates all needed tables but does not create the database itself).

Finaly, the following example:

$ pegasus-nonitord -r --dest dianond-0.bp di anond-0. dag. dagnman. out
sends events to the diamond-0.bp file. (please note that in replay mode, any data on the file will be overwritten).

One important detail is that while processing a workflow, pegasus-monitord will automatically detect if/when sub-
workflowsareinitiated, and will automatically track those sub-workflowsaswell. In this case, although pegasus-mon-
itord will create a separate jobstate.log file in each workflow directory, the database at the top-level workflow will
contain the information from not only the main workflow, but also from al sub-workflows.

Monitoring related files in the workflow directory

Pegasus-monitord generates a number of filesin each workflow directory:
« jobstatelog: contains a summary of workflow and job execution.

* monitord.log: contains any log messages generated by pegasus-monitord. It is not overwritten when it restarts.
This file is not generated in replay mode, as all 1og messages from pegasus-monitord are output to the console.
Also, when sub-workflows are involved, only the top-level workflow will have thislog file. Starting with release
4.0 and 3.1.1, monitord.log fileis rotated if it exists already.

« monitord.started: contains atimestamp indicating when pegasus-monitord was started. Thisfile get overwritten
every time pegasus-monitord starts.

¢ monitord.done: contains a timestamp indicating when pegasus-monitord finished. Thisfileis overwritten every
time pegasus-monitord starts.

« monitord.info: contains pegasus-monitord state information, which allows it to resume processing if aworkflow
does not finish properly and a rescue dag is submitted. This file is erased when pegasus-monitord is executed in
replay mode.

e monitord.recover: contains pegasus-monitord state information that allows it to detect that a previous instance
of pegasus-monitord failed (or was killed) midway through parsing aworkflow's execution logs. Thisfileisonly
present while pegasus-monitord is running, asit is deleted when it ends and the monitord.info file is generated.

103



Monitoring, Debugging and Statistics

« monitord.subwf.db: contains information that aids pegasus-monitord to track when sub-workflows fail and are
re-planned/re-tried. It is overwritten when pegasus-monitord is started in replay mode.

« monitord-notifications.log: containsthelog filefor notification-related messages. Normally, thisfile only includes
logs for failed notifications, but can be populated with al notification information when pegasus-monitord isrun
in verbose mode via the -v command-line option.

Multiple End points

pegasus-monitord can be used to publish events to different backends at the same time. The configuration of thisis
managed through properties matching pegasus.catal og.wor kflow.<variable-name>.url .

For example, to enable populating to an AMQP end point and a file format in addition to default sglite you can
configure as follows

pegasus. cat al og. wor kf | ow. angp. url ammgp: // vahi : XXXXX@ngp. i si . edu: 5672/ panor ama/ noni t ori ng
pegasus. cat al og. workflow file.url file:///1fsl/work/nonitord/ angp/nl.bp

If you want to only overridethe default sglite popul ation , then you can specify pegasus.catal og.workflow.url property .

Overview of the Workflow Database Schema.

Pegasustakesin aDAX which is composed of tasks. Pegasus plansit into a Condor DAG / Executable workflow that
consists of Jobs. In case of Clustering, multiple tasks in the DAX can be captured into asingle job in the Executable
workflow. When DAGMan executes a job, ajob instance is populated . Job instances capture information as seen by
DAGMan. In case DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan
finds a job instance has finished , an invocation is associated with job instance. In case of clustered job, multiple
invocationswill be associated with asingle job instance. If aPre script or Post Script is associated with ajob instance,
then invocations are populated in the database for the corresponding job instance.

The current schema version is 4.0 that is stored in the schema _info table.

104



cl

master workflow master workflowstate
wif id wi id
wi uuid state
dax label H—=] timestamp
dax_ version restart count
day file status
dax file name reason
timestamp
submit _hostname
submit i | o ___
planner_arguments L workflow_files L,
user fn_id -
arid_dn L wi _id =
planner version | task_id !
db_url ile_type b
archived
id ensemble ensemble workflow
name ::lame
created hasedir
g:jau:tlzted H =] crealed
max running :gr_:l[:tecl
max_planning priority
username Wi _unid
submitdir
plan_command
ensembile id
REPLICA rc lfn
CATALOG Ifn id H
Ifn
M M
rc meta rc pfn
Ifn id pin id
key ifn id
value pfn
site

105



Monitoring, Debugging and Statistics

Stampede Schema Upgrade Tool

Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sgl/schema._tool.py or /path/to/pegasus-4.x/share/pegasus/sgl/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQL ite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/ workflow directory/w th/3.x.nonitord. db
Check the db version

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tol/the/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 29: 43. 330476Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |
2012- 02-29T01: 29: 43. 330708Z | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema. start |
2012- 02-29T01: 29: 43. 348995Z I NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 29: 43. 349133Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Schena version 3.1 found - expecting 4.0 - database admin will
need to run upgrade tool.

Convert the Database to be version 4.x conpliant

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=sqlite:////tol/the/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 35: 35. 046317Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |
2012- 02-29T01: 35: 35. 0465547 | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema. start |
2012- 02-29T01: 35: 35. 064762Z | NFO  netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 35: 35. 064902Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Schema version 3.1 found - expecting 4.0 - database admn will
need to run upgrade tool.
2012- 02-29T01: 35: 35. 065001Z | NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. upgrade_to_4_0
| Upgrading to schena version 4.0.

Verify if the database has been converted to Version 4.x

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tol/the/ workflow directory/wth/

wor kf | ow. st anpede. db

2012- 02-29T01: 39: 17. 218902Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |

2012- 02-29T01: 39: 17. 2191417 | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema. start |

2012- 02-29T01: 39: 17. 237492Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. check_schema |
Current version set to: 4.0.

2012- 02-29T01: 39: 17. 237624Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. check_schema |
Scherma up to date.

For upgrading a MySQL dat abase the steps renmin the sane. The only thing that changes is the
connection String to the database
E. g.

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=nysql ://usernane: passwor d@er ver : port/dbnane

After the database has been upgraded you can use either 3.x or 4.x clientsto query the database with pegasus-statistics,
aswell as pegasus-plots and pegasus-analyzer.

106



Monitoring, Debugging and Statistics

Storing of Exitcode in the database

Kickstart records capture raw status in addition to the exitcode . The exitcode is derived from the raw status. Starting
with Pegasus 4.0 release, all exitcode columns (i.einvocation and job instance table columns) are stored with theraw
status by pegasus-monitord. If an exitcode is encountered while parsing the dagman log files, the value is converted
to the corresponding raw status beforeit is stored. All user tools, pegasus-analyzer and pegasus-statistics then convert
the raw status to exitcode when retrieving from the database.

Multiplier Factor

Starting with the 4.0 release, there is a multiplier factor associated with the jobs in the job_instance table. It defaults
to one, unless the user associates a Pegasus profile key named cor es with the job in the DAX. The factor can be used
for getting more accurate statistics for jobs that run on multiple processors/cores or mpi jobs.

The multiplier factor is used for computing the following metrics by pegasus statistics.

.

In the summary, the workflow cumulative job wall time
In the summary, the cumulative job wall time as seen from the submit side
In the jobsfile, the multiplier factor islisted along-with the multiplied kickstart time.

In the breakdown file, where statistics are listed per transformation the mean, min , max and average values take
into account the multiplier factor.

Stampede Workflow Events

All the events generated by the system ( Pegasus planner and monitoring daemon) are formatted as Netlogger BP
events. The netlogger events that Pegasus generates are described in Y ang schemafile that can be found in the share/
pegasus/schema/ directory. The stampede yang schema is described below.

Typedefs

The following typedefs are used in the yang schema to describe the certain event attributes.

distinguished-name

typedef distingui shed-nane {
type string;

}

uuid

typedef uuid {
type string {
length "36";
pattern
'[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F] {4}-[0-9a-fA-F] {4}-[0-9a-fA-F] {12}";
}
}
intbool

typedef intbool {
type uint8 {
range "0 .. 1";
}
}
nl_ts

typedef nl_ts {

type string {
pattern
tvd{ar-vd{2i-vd{2id{2r:\d{ 2\ d{ 2} (V. \NdH) 2(Z [V -1Nd{ 2k d{2})) | (Vdf{ 1, 9} (\.\d+)?)";

}
peg_inttype

107



Monitoring, Debugging and Statistics

typedef peg_inttype {
type uint8 {
range "0 .. 11";
}

}
* peg_strtype

typedef peg_strtype {
type enuneration {
enum "unknown" {
val ue 0;
}
enum "conpute" {
val ue 1;
}
enum "stage-in-tx" {
val ue 2;
}
enum "stage-out-tx" {
val ue 3;
}
enum "regi stration" {
val ue 4;
}
enum "inter-site-tx" {
val ue 5;
}
enum "create-dir" {
val ue 6;
}
enum " st aged- conpute" {
val ue 7;
}
enum "cl eanup" {
val ue 8;
}
enum "chrmod" {
val ue 9;
}
enum "dax" {
val ue 10;
}
enum "dag" {
val ue 11;
}
}
}
« condor_jobstates

typedef condor_j obstates {
type enuneration {
enum " PRE_SCRI PT_STARTED" {

val ue 0;

}

enum " PRE_SCRI PT_TERM NATED" {
val ue 1;

}

enum " PRE_SCRI PT_SUCCESS" {
val ue 2;

}

enum " PRE_SCRI PT_FAI LED" {
val ue 3;

}

enum "SUBM T" {
val ue 4;

}

enum "GRID_SUBM T" {
val ue 5;

}

enum " GLOBUS_SUBM T" {
val ue 6;

}

enum " SUBM T_FAI LED" {
val ue 7;

}

enum " EXECUTE" {

108



Monitoring, Debugging and Statistics

val ue 8;

}

enum " REMOTE_ERROR" {
val ue 9;

}

enum " | MACE_SI ZE" {
val ue 10;

}

enum "JOB_TERM NATED' {
val ue 11;

}

enum " JOB_SUCCESS" {
val ue 12;

}

enum "JOB_FAI LURE" {
val ue 13;

}

enum "JOB_HELD' {
val ue 14;

}

enum "JOB_EVI CTED" {
val ue 15;

}

enum "JOB_RELEASED' {
val ue 16;

}
enum " POST_SCRI PT_STARTED" {
val ue 17;

}
enum " POST_SCRI PT_TERM NATED" {
val ue 18;

}
enum " POST_SCRI PT_SUCCESS" {
val ue 19;

}
enum " POST_SCRI PT_FAI LED" {
val ue 20;
}
}
}
« condor_wfstates

typedef condor_wfstates {
type enuneration {
enum "WORKFLOW STARTED" {
val ue O;

}
enum "WORKFLOW TERM NATED" {
val ue 1;

}
}

Groupings
Groupings are groups of common attributes that different type of eventsrefer to. The following groupings are defined.

¢ base-event - Common componentsin all events
* ts- Timestamp, 1SO8601 or numeric seconds since 1/1/1970"
* level - Severity level of event. Subset of NetLogger BP levels. For *.end' events, if status is non-zero then level
should be Error."
« xwf.id - DAG workflow UUID

groupi ng base-event {
description
"Common conponents in all events";
leaf ts {
type nl _ts;
mandatory true;
description
"Ti mestanp, |S0B601 or numeric seconds since 1/1/1970";
}

| eaf level {

109



Monitoring, Debugging and Statistics

type enuneration {
enum "I nfo" {
val ue O;
}
enum "Error" {
val ue 1;
}
}
description
"Severity |level of event.
+ "Subset of NetLogger BP levels. "
+ "For '*.end' events, if status is non-zero then |level should be Error.";

}

leaf xwf.id {
type uuid;
description "DAG workfl ow id";
} //}gr oupi ng base-event
* base-job-inst - Common components for al job instance events
« all attributes from base-event
 job_inst.id - Job instance identifier i.e the submit sequence generated by monitord.
* jsid- Jobstate identifier
* job.id - Identifier for corresponding job in the DAG

groupi ng base-job-inst {
description
"Common conponents for all job instance events";
uses base-event;

leaf job_inst.id {
type int32;
mandatory true;
description
"Job instance identifier i.e the submt sequence generated by nonitord";

}

leaf js.id {
type int32;
description "Jobstate identifier";

}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';
}
}
¢ sched-job-inst - Scheduled job instance.

« al attributes from base-job-inst
 sched.id - Identifier for job in scheduler

groupi ng sched-job-inst {
description "Schedul ed job instance";
uses base-j ob-inst;

| eaf sched.id {
type string;
mandat ory true;
description
“ldentifier for job in scheduler”;
}
}
¢ base-metadata

* uses
. key
* vaue

groupi ng base-netadata {
description
"Common conponents for all netadata events that describe netadata for an entity.";
uses base-event;

110



Monitoring, Debugging and Statistics

| eaf key {
type string;
mandat ory true;
description
"Key for the netadata tuple";

}

| eaf val ue {
type string;
description
"Correspondi ng val ue of the key";

} /1 grouping base-netadata

Events

The system generates following types of events, that are described below.

¢ stampede.wf.plan

¢ stampede.static.start

» stampede.static.end

¢ stampede.xwf.start

» stampedexwf.end

¢ stampede.task.info

» stampede.task.edge

¢ stampede.wf.map.task_job

» stampede.xwf.map.subwf_job
¢ stampede.int.metric

« stampede.job.info

« stampede.job.edge

e stampedejob_inst.pre.start

¢ stampede.job_inst.pre.term

* stampede.job_inst.pre.end

¢ stampedejob_inst.submit.start
» stampede.job_inst.submit.end
¢ stampedejob_inst.held.start
* stampede.job_inst.held.end
« stampede.job_inst.main.start
e stampedejob_inst.main.term
¢ stampedejob_inst.main.end
e stampede.job_inst.composite
¢ stampede.job_inst.post.start

* stampede.job_inst.post.term
¢ stampede.job_inst.post.end
e stampedejob_inst.host.info

» stampede,job_inst.image.info
« stampede.job_inst.tag

e stampede.inv.start

¢ stampede.inv.end

¢ stampede.static.meta.start

¢ stampede.static.meta.end

o stampedexwf.meta

¢ stampede.task.meta
 stampede.task.monitoring

¢ stampede.rc.meta

» stampede.wf.map.file

111



Monitoring, Debugging and Statistics

The events are described in detail below

« stampedewf.plan

cont ai ner stanpede. wf.plan {
uses base-event;

| eaf subnit. hostnane {
type inet:host;
mandatory true;
description
"The hostnanme of the Pegasus subnit host";

}

| eaf dax.|abel {
type string;
default "workflow';
descri ption
"Label for abstract workflow specification";

}

| eaf dax.index {
type string;
default "workfl ow';
description
"I ndex for the DAX"';
}

| eaf dax.version {
type string;
mandatory true;
descri ption
"Versi on nunber for DAX";
}

| eaf dax.file {
type string;
mandatory true;
description
"Filename for for the DAX";
}

| eaf dag.file.name {
type string;
mandatory true;
descri ption
"Fil enane for the DAG';
}

| eaf planner.version {
type string;
mandatory true;
description
"Version string for Pegasus planner, e.g. 3.0.0cvs";

}

leaf grid_dn {
type di stingui shed- naneg;
description
"Grid DN of submitter”;
}

| eaf user {
type string;
description
"User nane of submitter"”;

}

leaf submit.dir {
type string;
mandatory true;
description
"Directory path from whi ch workfl ow was subm tted";

}

leaf argv {

112



Monitoring, Debugging and Statistics

type string;
description
"Al'l argunents given to planner on command-|ine";

}

| eaf parent.xwf.id {
type uuid;
description
"Parent workflow in DAG if any";

}

leaf root.xwf.id {
type string;
mandatory true;
description
"Root of workflow hierarchy, in DAG "
+ "Use this workflows UUIDif it is the root";

} // container stanpede.wf.plan
e stampedestatic.start

contai ner stanpede.static.start {
uses base-event;
}

* stampede.static.end

cont ai ner stanpede.static.end {
uses base-event;
Yy o/

¢ stampedexwf.start

cont ai ner stanpede. xwf.start {
uses base-event;

| eaf restart_count {
type uint32;
mandatory true;
descri ption
"Nunber of times workflow was restarted (due to failures)";

} // container stanpede.xwf.start
« stampedexwf.end

cont ai ner stanpede. xwf.end {
uses base-event;

| eaf restart_count {
type uint32;
mandatory true;
description
"Nunmber of times workflow was restarted (due to failures)";

}

| eaf status {
type int16;
mandatory true;
descri ption
"Status of workflow O=success, -1=failure";

} // container stanpede.xw .end

e stampedetask.info

cont ai ner stanpede.task.info {
description
"Information about task in DAX";
uses base-event;

| eaf transformation {
type string;
mandatory true;
description
"Logi cal name of the underlying executable";

}

leaf argv {
type string;

113



Monitoring, Debugging and Statistics

descri ption
"Al'l argunents given to transfornmati on on conmand-|ine";

}

| eaf type {
type peg_inttype;
mandatory true;
description "Type of task";

}

| eaf type_desc {
type peg_strtype;
mandatory true;
description
"String description of task type";
}

leaf task.id {
type string;
mandatory true;
descri ption
"Identifier for this task in the DAX';
}

} // container stanpede.task.info

* stampedetask.edge

cont ai ner stanpede. task. edge {
description
"Represents child/parent relationship between two tasks in DAX';
uses base-event;

| eaf parent.task.id {
type string;
mandatory true;
description "Parent task";

}

leaf child.task.id {
type string;
mandatory true;
description "Child task";

} // container stanpede.task.edge

« stampedewf.map.task_job
cont ai ner stanpede. wf. map. task_job {

descri ption
"Rel ates a DAX task to a DAG job.";
uses base-event;

leaf task.id {
type string;
mandatory true;
description
"Identifier for the task in the DAX";
}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';

} // container stanpede.wf.map.task_job
« stampedexwf.map.subwf_job

cont ai ner stanpede. xwf . map. subwf _j ob {

description
"Rel ates a sub workflow to the corresponding job instance";
uses base-event;

| eaf subwf.id {
type string;
mandatory true;

114



Monitoring, Debugging and Statistics

descri ption
"Sub Workflow ldentified / UUID';
}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';

}

leaf job_inst.id {
type int32;
mandatory true;
description
"Job instance identifier i.e the submt sequence generated by nonitord";

}
} // container stanpede.xwf.map. subwf _j ob
¢ stampedejob.info

cont ai ner stanpede.job.info {

description
"A description of a job in the DAG';
uses base-event;

leaf job.id {
type string;
mandatory true;
description
"ldentifier for job in the DAG';
}

| eaf submt_file {
type string;
mandatory true;
description
"Name of file being submtted to the scheduler”;

}

| eaf type {
type peg_inttype;
mandatory true;
description "Type of task";

}

| eaf type_desc {
type peg_strtype;
mandatory true;
description
"String description of task type";
}

| eaf clustered {
type intbool;
mandatory true;
description
"Whether job is clustered or not";

}

leaf max_retries {
type uint32;
mandatory true;
description
"How many retries are allowed for this job before giving up";

}

| eaf task_count {
type uint32;
mandatory true;
description
"Nunmber of DAX tasks for this job.
+ "Auxiliary jobs without a task in the DAX will have the value '0'";

}

| eaf executable {
type string;

115



Monitoring, Debugging and Statistics

mandatory true;
description
"Programto execute";

}

leaf argv {
type string;
description
"Al'l argunents given to executable (on command-line)";

} // container stanpede.job.info

* stampede,job.edge
cont ai ner stanpede. job. edge {

descri ption
"Parent/child relati onship between two jobs in the DAG';
uses base-event;

| eaf parent.job.id {
type string;
mandat ory true;
description "Parent job";

}

leaf child.job.id {
type string;
mandat ory true;
description "Child job";

} /1 container stanpede.job.edge
* stampedejob_inst.pre.start

contai ner stanpede.job_inst.pre.start {

description
"Start of a prescript for a job instance";
uses base-job-inst;
} // container stanpede.job_inst.pre.start

e stampedejob_inst.preterm

contai ner stanpede.job_inst.pre.term{
description
"Job prescript is termnated (success or failure not yet known)";
} // container stanpede.job_inst.pre.term

« stampedejob_inst.pre.end

cont ai ner stanpede.job_inst.pre.end {
descri ption
"End of a prescript for a job instance";
uses base-job-inst;

| eaf status {
type int32;
mandatory true;
description
"Status of prescript. 0 is success, -1 is error";

}

| eaf exitcode {
type int32;
mandatory true;
descri ption
"the exitcode with which the prescript exited";

} // container stanpede.job_inst.pre.end
¢ stampedejob_inst.submit.start

cont ai ner stanpede.job_inst.submt.start {
description
"Wen job instance is going to be submtted.
+ "Scheduler job id is not yet known";
uses sched-j ob-inst;
} /1 container stanpede.job_inst.submt.start

* stampedejob_inst.submit.end

116



Monitoring, Debugging and Statistics

cont ai ner stanpede.job_inst.subnmt.end {
description
"When executable job is submitted";
uses sched-job-inst;

| eaf status {
type int16;
mandatory true;
description
"Status of workflow O=success, -1=failure";

} // container stanpede.job_inst.subnit.end
* stampedejob_inst.held.start

cont ai ner stanpede.job_inst.held.start {
description
"When Condor hol ds the jobs";
uses sched-job-inst;
} // container stanpede.job_inst.held.start

« stampedejob_inst.held.end

cont ai ner stanpede.job_inst.held. end {
description
"When the job is released after being held";
uses sched-job-inst;

| eaf status {
type int16;
mandatory true;
description
"Status of workflow O=success, -1=failure";

} // container stanpede.job_inst.held.end
¢ stampedejob_inst.main.start

cont ai ner stanpede.job_inst.min.start {
description
"Start of execution of a scheduler job";
uses sched-job-inst;

leaf stdin.file {
type string;
descri ption
"Path to file containing standard input of job";
}

| eaf stdout.file {
type string;
mandatory true;
descri ption
"Path to file containing standard output of job";
}

| eaf stderr.file {
type string;
mandatory true;
descri ption
"Path to file containing standard error of job";

} // container stanpede.job_inst.main.start
e stampedejob_inst.main.term

contai ner stanpede.job_inst.main.term{
descri ption

"Job is term nated (success or failure not yet known)";
uses sched-job-inst;

| eaf status {
type int32;
mandatory true;
descri ption

"Execution status. O=neans job terminated, -1=job was evicted, not term nated";

} // container stanpede.job_inst.nmain.term
* stampedejob_inst.main.end

117



Monitoring, Debugging and Statistics

cont ai ner stanpede.job_inst.min.end {
description
"End of mmin part of scheduler job";
uses sched-job-inst;

leaf stdin.file {
type string;
description
"Path to file containing standard input of job";

}

| eaf stdout.file {
type string;
mandatory true;
description
"Path to file containing standard output of job";

}

| eaf stdout.text {
type string;
descri ption
"Text containing output of job";

}

| eaf stderr.file {
type string;
mandatory true;
description
"Path to file containing standard error of job";

}

| eaf stderr.text {
type string;
descri ption
"Text containing standard error of job";

}

| eaf user {
type string;
descri ption
"Schedul er's nane for user";

}

leaf site {
type string;
mandatory true;
description
"DAX nane for the site at which the job ran";
}

leaf work_dir {
type string;
descri ption
"Path to working directory";

}

| eaf local.dur {
type deci nal 64 {
fraction-digits 6;
}
units "seconds";
description
"Duration as seen at the |ocal node";

}

| eaf status {
type int32;
mandatory true;
descri ption
"Execution status. O=success, -1=failure";

}

| eaf exitcode {
type int32;
mandatory true;
description

118



Monitoring, Debugging and Statistics

"the exitcode with which the executable exited";

}

leaf multiplier_factor {
type int32;
mandatory true;
description
"the multiplier factor for use in statistics";

}

| eaf cluster.start {
type nl _ts;
description
"When the enclosing cluster started”;

}

| eaf cluster.dur {
type deci nmal 64 {
fraction-digits 6;
}
units "seconds";
description
"Duration of enclosing cluster"”;

} // container stanpede.job_inst. main.end
e stampedejob_inst.post.start

cont ai ner stanpede.job_inst.post.start {
description
"Start of a postscript for a job instance";
uses sched-job-inst;
} // container stanpede.job_inst.post.start

¢ stampedejob_inst.post.term

cont ai ner stanpede.job_inst.post.term {
descri ption
"Job postscript is termnated (success or failure not yet known)";
uses sched-j ob-inst;
} /1 container stanpede.job_inst.post.term

« stampedejob_inst.post.end

cont ai ner stanpede.job_inst.post.end {
description
"End of a postscript for a job instance";
uses sched-job-inst;

| eaf status {
type int32;
mandatory true;
description
"Status of postscript. 0 is success, -1=failure";

}

| eaf exitcode {
type int32;
mandatory true;
description
"the exitcode with which the postscript exited";

} // container stanpede.job_inst.post.end
¢ stampedejob_inst.host.info

cont ai ner stanpede.job_inst.host.info {
descri ption
"Host information associated with a job instance";
uses base-j ob-inst;

leaf site {
type string;
mandat ory true;
description "Site nane";

}

| eaf hostname {
type inet:host;
mandat ory true;

119



Monitoring, Debugging and Statistics

description "Host nane";

}

leaf ip {
type inet:ip-address;
mandatory true;
description "I P address";

}

| eaf total _menory {
type uint64;
description
"Total RAM on host";
}

| eaf unane {
type string;
description
"Qperating system nane";

} // container stanpede.job_inst.host.info
« stampedejob_inst.image.info

cont ai ner stanpede.job_inst.imge.info {
description
"l mage size associated with a job instance";
uses base-job-inst;

| eaf size {
type uint64;
description "l mage size";

}

| eaf sched.id {
type string;
mandatory true;
description
"ldentifier for job in scheduler”;

} // container stanpede.job_inst.inmage.info
* stampedejob_inst.tag

cont ai ner stanpede.job_inst.tag {
descri ption
"Atag event to tag errors at a job_instance |level";
uses base-job-inst;

| eaf name {
type string;
description "Name of tagged event such as int.error";

}

| eaf count {
type int32;
mandatory true;
description
"count of occurences of the events of type nane for the job_instance";

} // container stanpede.job_inst.tag
e stampedejob_inst.composite

cont ai ner stanpede.job_inst.conposite{
description
"A de-normalized conposite event at the job_instance |level that captures all the
job information. Useful when popul ating AMQP";
uses base-job-inst;

| eaf jobtype {

type string;

description
"Type of job as classified by the planner.";

}

leaf stdin.file {
type string;
description

120



Monitoring, Debugging and Statistics

"Path to file containing standard input of job";

}

| eaf stdout.file {
type string;
mandatory true;
description
"Path to file containing standard output of job";

}

| eaf stdout.text {
type string;
description
"Text containing output of job";

}

| eaf stderr.file {
type string;
mandatory true;
description
"Path to file containing standard error of job";

}

| eaf stderr.text {
type string;
descri ption
"Text containing standard error of job";

}

| eaf user {
type string;
description
"Schedul er's nane for user";

}

leaf site {
type string;
mandatory true;
descri ption
"DAX nane for the site at which the job ran";
}

| eaf hostnanme {
type inet:host;
mandatory true;
description "Host nane";

}

leaf {
type string;
description
"Path to working directory";

}

| eaf local.dur {
type deci mal 64 {
fraction-digits 6;
}
units "seconds";
description
"Duration as seen at the |ocal node";

}

| eaf status {
type int32;
mandatory true;
descri ption
"Execution status. O=success, -1=failure";

}

| eaf exitcode {
type int32;
mandatory true;
description
"the exitcode with which the executable exited";

121



Monitoring, Debugging and Statistics

leaf multiplier_factor {
type int32;
mandatory true;
description
"the multiplier factor for use in statistics";

}

| eaf cluster.start {
type nl _ts;
descri ption
"When the enclosing cluster started”;

}

| eaf cluster.dur {
type deci nal 64 {
fraction-digits 6;
}
units "seconds";
description
"Duration of enclosing cluster"”;

}

| eaf int_error_count {
type int32;
mandatory true;
descri ption
"nunber of integrity errors encountered";

} // container stanpede.job_inst.conposite
e stampede.inv.start

contai ner stanpede.inv.start {
description
"Start of an invocation";
uses base-event;

leaf job_inst.id {
type int32;
mandatory true;
description
"Job instance identifier i.e the submt sequence generated by nonitord";

}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';

}

leaf inv.id {
type int32;
mandatory true;
description
“ldentifier for invocation.
+ "Sequence nunber, with -1=prescript and -2=postscript";

} // container stanpede.inv.start
e stampede.inv.end

cont ai ner stanpede.inv.end {
description
"End of an invocation";
uses base-event;

leaf job_inst.id {
type int32;
mandatory true;
description
"Job instance identifier i.e the subnmit sequence generated by nonitord";

}

leaf inv.id {
type int32;
mandatory true;
descri ption

122



Monitoring, Debugging and Statistics

"ldentifier for invocation.
+ "Sequence nunber, with -1=prescript and -2=postscript";

}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';

}

| eaf start_tinme {
type nl _ts;
description
"The start tine of the event";

}

| eaf dur {
type deci nal 64 {
fraction-digits 6;
}
units "seconds";
description
"Duration of invocation";

}

| eaf rempte_cpu_tine {
type deci nmal 64 {
fraction-digits 6;
}
units "seconds";
description
"remote CPU tinme conputed as the stime + utinme";

}

| eaf exitcode {
type int32;
description
"the exitcode with which the executable exited";

}

| eaf transformation {
type string;
mandatory true;
description
"Transformation associated with this invocation";

}

| eaf executable {
type string;
mandatory true;
description
"Program executed for this invocation";

}

leaf argv {
type string;
descri ption
"Al'l argunents given to executable on command-|ine";

}

leaf task.id {

type string;

descri ption
"ldentifier for related task in the DAX";

} // container stanpede.inv.end
e stampede.int.metric

contai ner stanpede.int.nmetric {
description
"addi tional task events picked up fromthe job stdout”;
uses base-event;

leaf job_inst.id {
type int32;
mandatory true;

123



Monitoring, Debugging and Statistics

descri ption
"Job instance identifier i.e the submt sequence generated by nonitord";
}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';
}

| eaf type{
type string;
description
"enurnerated type of netrics check|conpute”;
}

leaf file_type{
type string;
description
"enunerated type of file types input]|output”;
}

| eaf count{
type int32;
descri ption
"nunber of integrity events grouped by type , file_ type ";
}

| eaf duration{
type float;
description
"duration in seconds it took to performthese events ";

} // container stanpede.int.netric
e stampede.static.meta.start

contai ner stanpede.static.neta.start {
uses base-event;
} // container stanpede.static.neta.start

¢ stampede.static.meta.end

cont ai ner stanpede.static.neta.end {
uses base-event;
} // container stanpede.static.neta.end

stampede.xwf.meta

cont ai ner stanpede. xwf.neta {
descri ption
"Met adata associated with a workflow';
uses base- et adat a;
} // container stanpede.xwf.neta

e stampedetask.meta

cont ai ner stanpede.task.nmeta {
descri ption
"Met adata associated with a task";
uses base- et adat a;

leaf task.id {

type string;

description
"Identifier for related task in the DAX"';

} // container stanpede.task.neta
* stampedetask.monitoring

cont ai ner stanpede.task.nonitoring {
description
"addi tional task events picked up fromthe job stdout";
uses base-event;

leaf job_inst.id {
type int32;
mandatory true;
descri ption

124



Monitoring, Debugging and Statistics

"Job instance identifier i.e the submt sequence generated by nonitord";

}

leaf job.id {
type string;
mandatory true;
description
"ldentifier for corresponding job in the DAG';

}

| eaf nonitoring_event{
type string;
description
"the name of the nonitoring event parsed fromthe job stdout";

}

| eaf key{
type string;
description
"user defined keys in their payload in the event defined in the job stdout";

} // container stanpede.task.neta
« stampederc.meta

contai ner stanpede.rc.nmeta {
description
"Met adata associated with a file in the replica catal og";
uses base-net adat a;

leaf Ifn.id {

type string;

description
"Logical File Identifier for the file";

} // container stanpede.rc.neta

» stampedewf.map.file

contai ner stanpede.wf.map.file {
descri ption
"Event that captures what task generates or consunes a particular file";
uses base-event;

leaf Ifn.id {

type string;

descri ption
"Logical File Identifier for the file";

}

leaf task.id {

type string;

descri ption
"ldentifier for related task in the DAX";

} /1 container stanpede.w .nmap.file

Publishing to AMQP Message Servers

The workflow events generated by pegasus-monitord can also be used to publish to an AMQP message server such
as RabbitMQ in addition to the stampede workflow database.

Note

A thing to keep in mind. Theworkflow events are documented as conforming to the netlogger requirements.
When events are pushed to an AMQP endpoint, the . in the keys are replaced by _ .

Configuration

In order to get pegasus-monitord to populate to a message queue, you can set the following property

pegasus. cat al og. wor kf | ow. angp. url amgp: / /[ USERNAME: PASSWORD@ angp. i si . edu[ : port]/ <exchange_nane>

125



Monitoring, Debugging and Statistics

The routing key set for the messages matches the name of the stampede workflow event being sent. By default, if you
enable AMQP population only the following events are sent to the server

» stampedejob_inst.tag
¢ stampede.inv.end
« stampede.wf.plan

To configure additional events, you can specify acommaseparated list of eventsthat need to be sent using the property
pegasus.catalog.wor kflow.amgp.events . For example

pegasus. cat al og. wor kf | ow. angp. events = st anpede. xwf. *, st anpede. static.*

Note

To get all eventsyou can just specify * asthe value to the property.

Monitord, RabbitMQ, ElasticSearch Example

The AMQP support in Monitord is still awork in progress, but even the current functionality provides basic support
for getting the monitoring datainto ElasticSearch. In our development environment, we use a RabbitM Q instance with
a simple exhange/queue. The configuration required for Pegasusis:

# hel p Pegasus devel opers collect data on integrity failures

pegasus. noni tord. encodi ng = j son

pegasus. cat al og. wor kf | ow. angp. url = amgp://friend: donat edat a@msgs. pegasus. i si . edu: 5672/ pr od/
wor kf | ows

On the other side of the queue, Logstash is configured to receive the messages and forward them to ElasticSearch.
The Logstash pipeline looks something like:

i nput {
rabbitng {
type => "workfl owevents"”
host => "nsg. pegasus.i si.edu"
vhost => "prod"
queue => "workfl ows- es"
heartbeat => 30
durable => true
password => " XXXXXX"
user => "prod-|ogstash"

}
}
filter {
if [type] == "workflow events" {
mutate {
convert => {
"dur" => "float"
"renote_cpu_tine" => "float"
}
}
date {
# set @inestanp fromthe ts of the actual event
match => [ "ts", "UNIX" ]
}
date {

match => [ "start_tine", "UNI X' ]
target => "start_time_hunan"
}
fingerprint {
# create unique docunent ids
source => "ts"
concat enat e_sources => true
net hod => " SHAL"
key => "Pegasus Event"

126



Monitoring, Debugging and Statistics

target => "[@retadata][fingerprint]"
}
}
}

out put {
if [type] == "workflow events" {
el asticsearch {

"hosts" => ["esl.isi.edu:9200", "es2.isi.edu:9200"]
"sniffing" => fal se
"docurent _type" => "workfl ow events"
"docurent _id" => "% [ @etadata][fingerprint]}"
"index" => "workfl ow event s- % +YYYY. M dd}"
"tenpl ate" => "/usr/share/l ogstash/tenpl at es/ wor kf | ow events. j son"
"tenpl at e_name" => "wor kfl ow events-*"
"tenpl ate_overwite" => true

Once the datais ElasticSearch, you can easily create for example Grafana dashboard like:
%% Pegasus Workflow Events - & @ u > @ Last 24 hour
1h~ FD All -

Planned Workflows Total Events Job Failures Integrity Failures Cumulative Walltime

24741 1401 22 2 years

Job Finishing Job Duration

Job success/failures Integrity Failures

A Pre-Configured Data Collection Pipeline

Inthis repository [https://github.com/pegasus-isi/dibbs-data-coll ection-setup], we provide a containerized data-col-
lection/visualization pipeline similar to what we use in production. Thefigure below illustrates the processesinvol ved
in the pipeline and how they are connected to one another. For more information regarding setup and usage, please
visit the link referenced above.

127


https://github.com/pegasus-isi/dibbs-data-collection-setup
https://github.com/pegasus-isi/dibbs-data-collection-setup

Monitoring, Debugging and Statistics

<font face="Tahoma">1. A workfiow job wmp\eles/vawljann information is sent back 1o the submit host <ffont>

[Not supported by viewer]

[Not supported by views
<font face="Tahoma">2.

/

HTCONaYr |

High Throughput Computing

Condor Pool

iﬂ}

[Not supported by viewer]

bRabbit

by vigwer—>

[Not supported by viewer]

[Not supported by viewer]

)

= logstash

N = I —
=—
=
%0 clasti
iy elastic

Bs

Index: pegasus-composite-events-*

\ =

(15 Grafana |

\m‘«d ot supported by viewer]

128



Chapter 7. Execution Environments

Pegasus supports anumber of execution environments. An execution environment is a setup where jobs from awork-
flow are running.

Localhost

In this configuration, Pegasus schedules thejobsto run locally on the submit host. Running locally is agood approach
for smaller workflows, testing workflows, and for demonstations such as the Pegasus tutorial. Pegasus supports two
methods of local execution: local HTCondor pool, and shell planner. The former is preferred as the latter does not
support all Pegasus features (such as notifications).

Running on alocal HTCondor pool is achieved by executing the workflow on site local (--siteslocal option to pega-
sus-plan). The site "local" is areserved site in Pegasus and results in the jobs to run on the submit host in HTCondor
universe local. The site catalog can be left very simplein this case:

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/ W/ work"/>
</directory>
<directory type="l ocal -storage" path="/tnp/w/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

</ sitecatal og>

The simplest execution environment does not involve HT Condor. Pegasus is capable of planning small workflows for
local execution using a shell planner. Please refer to the shar e/ pegasus/ exanpl es directory in your Pegasus
installation, the shell planner's documentation section, or the tutorials, for details.

Condor Pool

A HTCondor pool is a set of machines that use HTCondor for resource management. A HTCondor pool can be a
cluster of dedicated machines or a set of distributively owned machines. Pegasus can generate concrete workflows
that can be executed on a HTCondor pool.

129



Execution Environments

Figure7.1. Thedistributed resources appear to be part of a HTCondor pool.

Abstract worlflow

|

‘ Pegasus

Condor submit files

B ¥ T e,
P DA GMan _ e Condor Pool
e Shabmif T
I.f'J \Hasf \
:.k\.__‘ Central P Worker Mode

IManager

The workflow is submitted using DAGMan from one of the job submission machines in the HTCondor pool. It isthe
responsibility of the Central Manager of the pool to match the task in the workflow submitted by DAGMan to the
execution machines in the pool. This matching process can be guided by including HTCondor specific attributes in
the submit files of the tasks. If the user wants to execute the workflow on the execution machines (worker nodes) in
aHTCondor pool, there should be a resource defined in the site catalog which represents these execution machines.
The universe attribute of the resource should be vanilla. There can be multiple resources associated with a single
HTCondor pool, where each resource identifies a subset of machine (worker nodes) in the pool.

When running on a HTCondor pool, the user has to decide how Pegasus should transfer data. Please see the Data
Staging Configuration for the options. The easiest is to use condorio as that mode does not require any extra setup -
HTCondor will do the transfers using the existing HT Condor daemons. For an example of this mode see the example
workflow in shar e/ pegasus/ exanpl es/ condor - bl ackdi anond- condori o/ . In HTCondorio mode,
the site catalog for the execution siteis very simple as storage is provided by HTCondor:

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi :schemaLocation="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/ W/ work"/>
</directory>
<directory type="local -storage" path="/tnp/w/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="condorpool " arch="x86_64" os="LI NUX">
<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>
</site>

</sitecatal og>

Thereis a set of HTCondor profiles which are used commonly when running Pegasus workflows. Y ou may have to
set some or al of these depending on the setup of the HTCondor pool:

130



Execution Environments

<!-- Change the style to HTCondor for jobs to be executed in the HTCondor Pool .
By default, Pegasus creates jobs suitable for grid execution. -->
<profil e namespace="pegasus" key="styl e">condor</profile>

<!-- Change the universe to vanilla to make the jobs go to renote conpute
nodes. The default is local which will only run jobs on the submt host -->
<profil e namespace="condor" key="universe" >vanilla</profhile>

<!-- The requirenents expression allows you to linmt where your jobs go -->
<profil e namespace="condor" key="requirenments">(Target.Fil eSystenDomain !=
&quot ; yggdrasi |l .isi.edu&quot;)</profile>

<l-- The following two profiles forces HTCondor to always transfer files. This
has to be used if the pool does not have a shared fil esystem-->

<profil e namespace="condor" key="shoul d_transfer_fil es">True</profil e>

<profil e namespace="condor" key="when_to_transfer_output”">ON_EXI T</profil e>

Glideins

In this section we describe how machines from different administrative domains and supercomputing centers can be
dynamically added to a HT Condor pool for certain timeframe. These machines join the HTCondor pool temporarily
and can be used to execute jobs in anon preemptive manner. This functionality is achieved using aHTCondor feature
called glideins (see http://cs.wisc.edu/condor/glidein [http://cs.wisc.edu/condor/glidein]) . The startd daemon is the
HTCondor daemon which provides the compute slots and runs the jobs. In the glidein case, the submit machine is
usually a static machine and the glideins are told configued to report to that submit machine. The glideins can be
submitted to any type of resource: a GRAM enabled cluster, a campus cluster, a cloud environment such as Amazon
AWS, or even another HT Condor cluster.

Tip

As glideins are usually coming from different compute resource, and/or the glideins are running in an ad-
ministrative domain different from the submit node, there is usually no shared filesystem available. Thus
the most common data staging modes are condorio and nonshar edfs..

There are many useful tools which submits and manages glideins for you:

¢ GlideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WM S/glideinWMS/] is a tool and host environ-
ment used mostly on the Open Science Grid [http://www.opensciencegrid.org/].

e Corra WMS [http://pegasus.isi.edu/projects/corralwmeg] is a personal frontend for GlideinWMS. Corrd WM S was
developed by the Pegasus team and works very well for high throughput workflows.

« condor_glidein [http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html] is a simple glidein tool for
Globus GRAM clusters. condor_glidein is shipped with HTCondor.

¢ Glideins can aso be created by hand or scripts. This is a useful solution for example for cluster which have no
external job submit mechanisms or do not allow outside networking.

CondorC

Using HTCondorC users can submit workflows to remote HTCondor pools. HTCondorC is a HTCondor specific
solution for remote submission that does not involve the setting up a GRAM on the headnode. To enable HTCondorC
submission to a site, user needs to associate pegasus profile key named style with value as HTCondorc. In case, the
remote HTCondor pool does not have a shared filesytem between the nodes making up the pool, users should use
pegasusin the HTCondorio data configuration. Inthismode, al the datais staged to the remote node in the HT Condor
pool using HTCondor File transfers and is executed using PegasusL ite.

A sample site catalog for submission to aHTCondorC enabled site islisted below

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schema/ sc- 4. 0. xsd"

131


http://cs.wisc.edu/condor/glidein
http://cs.wisc.edu/condor/glidein
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://pegasus.isi.edu/projects/corralwms
http://pegasus.isi.edu/projects/corralwms
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html

Execution Environments

version="4,0">

<site handl e="local" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tmp/wf/work"/>
</directory>
<directory type="local -storage" path="/tnp/wf/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="condorcpool " arch="x86_86" os="LI NUX">
<l-- the grid gateway entries are used to designate
the renote schedd for the HTCondorC pool -->
<grid type="condor" contact="ccg-condorctest.isi.edu" schedul er="Condor"
j obt ype="conpute" />
<grid type="condor" contact="ccg-condorctest.isi.edu" schedul er="Condor"
j obtype="auxillary" />

<!-- enabl e submi ssi on using HICondorc -->
<profil e namespace="pegasus" key="styl e">condorc</profil e>

<!-- specify which HTCondor collector to use.
If not specified defaults to renpte schedd specified in grid gateway -->
<profil e namespace="condor" key="condor_col | ector">condorc-collector.isi.edu</profile>
<profil e namespace="condor" key="shoul d_transfer_fil es">Yes</profile>
<profil e namespace="condor" key="when_to_transfer_output">ON_EXI T</profil e>
<profil e namespace="env" key="PEGASUS HOVE" >/usr</profile>
<profil e namespace="condor" key="universe">vanilla</profile>

</site>

</ sitecatal og>

To enable PegasusLite in HTCondorlO mode, users should set the following in their properties

# pegasus properties
pegasus. dat a. confi guration condorio

132



Execution Environments

Cloud (Amazon EC2/S3, Google Cloud, ...)

Figure 7.2. Cloud Sample Site L ayout

submit host (SH) Data flow —=>
Jab flow ———=

Condor
collector

W ]
VM VM

Condor
startd

Condor
startd

Condor
startd

local FS local FS

local FS

multi-resource request multi-resource request

another Cloud a Cloud

This figure shows a sample environment for executing Pegasus across multiple clouds. At this point, it is up to the
user to provision the remote resources with a proper VM image that includes a HTCondor worker that is configured
to report back to a HT Condor master, which can be located inside one of the clouds, or outside the cloud.

The submit host isthe point where a user submits Pegasus workflows for execution. Thissite typically runsaHTCon-
dor collector to gather resource announcements, or is part of alarger HTCondor pool that collects these announce-
ments. HT Condor makes the remote resources available to the submit host's HT Condor installation.

The figure above shows the way Pegasus WMS is deployed in cloud computing resources, ignoring how these re-
sources were provisioned. The provisioning request shows multiple resources per provisioning request.

Theinitial stage-in and final stage-out of application datainto and out of the node set is part of any Pegasus-planned
workflow. Several configuration options exist in Pegasusto deal with the dynamics of push and pull of data, and when
to stage data. In many use-cases, some form of external access to or from the shared file system that is visible to the
application workflow is required to facilitate successful data staging. However, Pegasus is prepared to deal with a
set of boundary cases.

The dataserver in thefigureis shown at the submit host. Thisis not astrict requirement. The data server for consumed
data and data products may both be different and external to the submit host, or one of the object storage solution
offered by the cloud providers

133



Execution Environments

Once resources begin appearing in the pool managed by the submit machine's HTCondor collector, the application
workflow can be submitted to HTCondor. A HTCondor DAGMan will manage the application workflow execution.
Pegasus run-time tools obtain timing-, performance and provenance information as the application workflow is exe-
cuted. At this point, it isthe user's responsibility to de-provision the allocated resources.

In the figure, the cloud resources on the right side are assumed to have uninhibited outside connectivity. This enables
the HT Condor 1/0 to communicate with the resources. The right side includes a setup where the worker nodes use all
private IP, but have out-going connectivity and a NAT router to talk to the internet. The Condor connection broker
(CCB) facilitates this setup almost effortlessly.

The left side shows a more difficult setup where the connectivity is fully firewalled without any connectivity except
to in-site nodes. In this case, a proxy server process, the generic connection broker (GCB), needs to be set up in the
DMZ of the cloud site to facilitate HT Condor /O between the submit host and worker nodes.

If the cloud supports data storage servers, Pegasus is starting to support workflows that require staging in two steps:
Consumed dataisfirst staged to adata server in the remote site's DM Z, and then a second staging task moves the data
from the data server to the worker node where the job runs. For staging out, data needs to be first staged from the
job'sworker node to the site's data server, and possibly from there to another data server externa to the site. Pegasus
is capable to plan both steps: Normal staging to the site's data server, and the worker-node staging from and to the
site's data server as part of the job.

Amazon EC2

There are many different waysto set up an execution environment in Amazon EC2. The easiest way isto use a submit
machine outside the cloud, and to provision several worker nodes and afile server node in the cloud as shown here:

Figure 7.3. Amazon EC2

Condor

Submit Host

Condor
startd

Worker

Condor
startd

Worker

File Server

Amazon Elastic Compute Cloud (EC2)

The submit machine runs Pegasus and a HT Condor master (collector, schedd, negotiator). The workersrun aHTCon-
dor startd. And the file server node exports an NFS file system. The startd on the workers is configured to connect to
the master running outside the cloud, and the workers al so mount the NFS file system. More information on setting up
HTCondor for thisenvironment can befound at http://www.isi.edu/~gideon/condor-ec2 [ http://www.isi .edu/~gideon/
condor-ec2/].

The site catalog entry for this configuration is similar to what you would create for running on alocal Condor pool
with a shared file system.

134


http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/

Execution Environments

Google Cloud Platform

Using the Google Cloud Platform is just like any other cloud platform. Y ou can choose to host the central manager /
submit host inside the cloud or outside. The compute VMs will have HTCondor installed and configured to join the
pool managed by the central manager.

Google Storage is supported using gsutil. First, create a .boto file by running:

gsutil config

Then, use a site catalog which specifies which .boto file to use. You can then use gs:// URLs in your workflow.
Example:

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://pegasus.i si.edu/ schena/sitecatal og
http://pegasus.isi.edu/ schena/ sc-4.0.xsd" version="4.0">

<site handle="local" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/tnp">
<file-server operation="all" url="file:///tm"/>
</directory>
<profil e namespace="env" key="PATH'>/opt/gsutil:/usr/bin:/bin</profile>

</site>

<l-- compute site -->
<site handl e="condorpool " arch="x86_86" os="LI NUX">
<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>
</site>

<l-- storage sites have to be in the site catalog, just liek a conpute site -->
<site handl e="googl e_storage" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/ny-bucket/scratch">
<file-server operation="all" url="gs://nmy-bucket/scratch"/>
</directory>
<directory type="l ocal -storage" path="/my-bucket/out puts">
<file-server operation="all" url="gs://my-bucket/outputs"/>
</directory>
<profil e namespace="pegasus" key="BOTO CONFI G'>/ honme/ myuser/.boto</profil e>
</site>

</ sitecatal og>

Amazon AWS Batch

Unlike the execution environments described in the previous section on Cloud where the user has to start condor
workers on the cloud nodes, Amazon provides a managed service called AWS Batch. It automates the notion of
provisioning nodes in the cloud, and setting up of a compute environment and a job queue that can submit jobs to
those nodes.

Starting 4.9 release, Pegasus has support for executing horizontally clustered jobs on Amazon AWS Batch Service
using the command line tool pegasus-aws-batch. In other words, you can get Pegasus to cluster each level of your
workflow into abag of tasks and run those clustered jobs on Amazon Cloud using AWS Batch Service. In upcoming
releases, we plan to add support to pegasus-aws-batch to do dependency management that will allow us to execute
the whole workflow in asingle AWS Batch job.

Setup

To use AWS Batch as user you need to do some one time setup to get started at running. Please follow the instructions
carefully in this section.

135



Execution Environments

Credentials
To use AWS Batch for your workflows, we need two credential files

1. AWSCredentials File: Thisisthefile that you create and use whenever accessing Amazon EC2 and is located at
~/.aws/credentials. For our purposes we need the following information in that file.

$ cat ~/.aws/credentials

[defaul t]

aws_access_key_id = XXXXXXXXXXXX
aws_secret _access_key = XXXXXXXXXXX

2. S3 Config File: Pegasus workflows use pegasus-s3 command line tool to stage-in input data required by the tasks
to S3 and push data output data generated to S3 when user application code runs. These credentials are specified
in .s3cfg file usually put in the user home directory. Thisformat of the file is described in the pegaus-s3 command
line client's man page. A minimaistic fileisillustrated below

$ cat ~/.s3cfg

[ amazon]

# end point has to be consistent with the EC2 region you are using. Here we are referring to us-
west-2 region.

endpoi nt = http://s3-us-west-2. anazonaws. com

# Amazon now al | ows 5TB upl oads
max_obj ect _si ze = 5120

nul ti part_upl oads = True
ranged_downl oads = True

[ user @nazon]
access_key = XXXXXXXXXXXX
secret _key = XXXXXXXXXXXX

Setting up Container Image which your jobs run on

All jobsin AWS Batch are run in a container viathe Amazon EC2 container service. The Amazon EC2 container ser-
vice does not give control over the docker run command for a container. Hence, Pegasus runs jobs on container that is
based on the Amazon Fetch and Run Exampl e [ https://aws.amazon.com/bl ogs/compute/creating-a-simpl e-fetch-and-
run-aws-batch-job/] . This container image allows us to fetch user executables automatically from S3. All container
images referred used for Pegasus workflows must be based on the above example.

Additionally, the Docker filefor your container image should include these additional Docker run commandsto install
the yum packages that Pegasus requires.

RUN yum -y install perl findutils

After you have pushed the Docker image to the Amazon ECR Repository, the image URL for that image you will use
later to refer in the job definition to use for your jobs.

One time AWS Batch Setup

If you are using AWS Batch for the very first time, then you need to use the Amazon Web console to create arole
with your user that will give the AWS Batch services privileges to execute to access other AWS services such as EC2
Container Service, CloudWatchL ogs etc. The following roles need to be created

1. AWSBatch Service |IAM Role: For convenience and ease of use make sure you name the role AW SBatchSer -
viceRole, so that you don't have to make other changes. Complete the procedures listed at AWS Batch Service
IAM Role [https://docs.aws.amazon.com/batch/l atest/userguide/service |IAM_role.html].

2. Amazon ECS Instance Role: AWS Batch compute environments are populated with Amazon ECS container
instances, and they run the Amazon ECS container agent locally. The Amazon ECS container agent makes calls
to various AWS APIs on your behalf, so container instances that run the agent require an IAM policy and role for
these services to know that the agent belongs to you. Complete the procedures listed at Amazon ECS Instance Role
[https.//docs.aws.amazon.com/batch/l atest/userguide/instance_IAM_role.html].

136


https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://docs.aws.amazon.com/batch/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/batch/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/batch/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/batch/latest/userguide/instance_IAM_role.html
https://docs.aws.amazon.com/batch/latest/userguide/instance_IAM_role.html

Execution Environments

3. IAM Role: Whenever a Pegasus job runs via AWS Batch it needs to fetch data from S3 and push data back to
S3. To create thisjob role follow the instructions at section Create an |AM role in Amazon Fetch and Run Exam-
ple [https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/] to create al AM role
named batchJobRole.

Note

batchJobRole should have full write accessto S3i.e have the policy AmazonS3FullAccess attached toit.

Note

Itisimportant that you namethe roles aslisted above. Else, you will need to update the same job definition,
compute environment, and job queue json files that you use to create the various Batch entities.

Creation of AWS Batch Entities for your Workflow

AWS Batch has a notion of

1. Job Definition - job definitionis something that allowsyou to use your container imagein Amazon EC2 Repository
to run one or many AWS Batch jobs.

2. Compute Environment - what sort of compute nodes you want your jobs to run on.
3. Job Queue - the queue that feeds the jobs to a compute environment.

Currently, with Pegasus you can only use one of each for aworkflow i.e the samejob definition, compute environment
and job queue need to be used for al jobs in the workflow.

To create the above entities we recommend you to use pegasus-aws-batch client . Y ou can start with the samplejson
files present in share/pegasus/examples/awsbatch-bl ack-nonsharedfs directory.

« sample-job-definition.json : Edit the attribute named image and replace it with the ARN of the container image
you built for your account

« sample-compute-env.json : Edit the attributes subnets and securityGrouplds

Before running the pegasus-aws-batch client make sure your properties file has the following properties

pegasus. aws. regi on= [anmazon ec2 region]
pegasus. aws. account =[ your aws account id - digits]

You can then use pegasus-aws-batch client to generate the job definition, the compute environment and job queue
to use.

$ pegasus-aws-batch --conf ./conf/pegasusrc --prefix pegasus-awsbatch-exanple --create --conpute-
envi ronment ./conf/sanpl e-conpute-env.json --job-definition ./conf/sanple-job-definition.json --job-
queue ./ conf/sanpl e-j ob- queue.j son

2018-01- 18 15:16:00. 771 INFO [Synch] Created Job Definition

arn: aws: bat ch: us- west - 2: 405596411149: j ob- def i ni ti on/ pegasus- awsbat ch- exanpl e-j ob-definition: 1
2018-01-18 15:16: 07.034 INFO [Synch] Created Conpute Environnment

arn: aws: bat ch: us- west - 2: XXXXXXXXXX: conmput e- envi r onment / pegasus- awsbat ch- exanpl e- conput e- env
2018-01-18 15:16:11.291 INFO [Synch] Created Job Queue

arn: aws: bat ch: us- west - 2: XXXXXXXXXX: j ob- queue/ pegasus- awsbat ch- exanpl e-j ob- queue

2018-01-18 15:16:11.292 I NFO [PegasusAWSBatch] Tinme taken to execute
is 12.194 seconds

Y ou need to add the ARN's of created job definition, compute environment and job queue listed in pegasus-aws-batch
output to your pegasusrc file

# Properties required to run on AWS Batch

# the amazon region in which you are runni ng workfl ows
pegasus. aws. r egi on=us- west - 2

137


https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/

Execution Environments

# your AWS account id ( in digits)
# pegasus. aws. account =XXXXXXXXXX

# ARN of the job definition that you create using pegasus-aws-batch
# pegasus. aws. bat ch. j ob_defi ni ti on=arn: aws: bat ch: us- west - 2: XXXXXXXXXX: j ob-defi nition/fetch_and_run

# ARN of the job definition that you create using pegasus-aws-batch
# pegasus. aws. bat ch. conput e_envi r onment =ar n: aws: bat ch: us- west - 2: XXXXXXXXXX: conput e- envi r onnent /
pegasus- awsbat ch- exanpl e- conput e- env

# ARN of the job queue that you create using pegasus-aws-batch
# pegasus. aws. bat ch. j ob_queue=ar n: aws: bat ch: us- west - 2: XXXXXXXXXX: j ob- queue/ pegasus- awsbat ch- exanpl e-
j ob- queue

Site Catalog Entry for AWS Batch

To run jobs on AWS Batch, you need to have an execution site in your site catalog. Here is a sample site catalog to
use for running workflows on AWS Batch

<?xm version="1.0" encodi ng="UTF-8"?>

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og" xm ns:xsi ="http://ww.w3. org/ 2001/
XM.Schema- i nst ance"”
xsi : schemalLocati on="http://pegasus.isi.edu/ schema/
sitecatal og
http://pegasus.isi.edu/ schema/ sc-4. 0. xsd"
version="4.0">

<site handle="local" arch="x86_64" os="LINUX" osrel ease="" osversion="" glibc="">
<directory path="/LOCAL/shared-scratch" type="shared-scratch" free-size="" total-size="">
<file-server operation="all" url="file:///LOCAL/ shared-scratch">
</file-server>
</directory>
<directory path="/LOCAL/shared-storage" type="shared-storage" free-size="" total-size="">
<file-server operation="all" url="/LOCAL/shared-storage">
</file-server>
</directory>
<profil e namespace="env" key="PEGASUS HOME">/usr/bin/..</profile>
</site>
<site handl e="aws-batch" arch="x86_64" os="LI NUX">
<directory path="pegasus-batch-banboo" type="shared-scratch" free-size="" total-size="">
<file-server operation="all" url="s3://user@nazon/ pegasus-batch-banboo">

</file-server>
</directory>

<profile namespace="pegasus" key="clusters. nunt>1</profile>

<profile namespace="pegasus" key="styl e">condor</profile>

</site>

</ sitecatal og>

Properties

Once the whole setup is complete, before running a workflow make sure you have the following properties in your
configuration file

# get clustered jobs running using AWsBatch
pegasus. cl usterer.job. aggregator AWSBatch

#cluster even single jobs on a |evel
pegasus. cl usterer.all ow. single True
# Properties required to run on AWS Batch

# the amazon region in which you are runni ng workfl ows
pegasus. aws. r egi on=us- west - 2

138



Execution Environments

# your AWS account id ( in digits)
# pegasus. aws. account =XXXXXXXXXX

# ARN of the job definition that you create using pegasus-aws-batch
pegasus. aws. bat ch. j ob_defi ni ti on=pegasus- awsbat ch- exanpl e-j ob-definition

# ARN of the job definition that you create using pegasus-aws-batch
pegasus. aws. bat ch. conput e_envi r onment =pegasus- awsbat ch- exanpl e- conput e- env

# ARN of the job queue that you create using pegasus-aws-batch
pegasus. aws. bat ch. j ob_queue=pegasus- awsbat ch- exanpl e-j ob- queue

Remote Cluster using PyGlidein

Glideins (HT Condor pilot jobs) provide an efficient solution for high-throughput workflows. The glideins are submit-
ted to the remote cluster scheduler, and once started up, makes it appear like your HTCondor pool extends into the
remote cluster. HTCondor can then schedule the jobs to the remote compute node in the same way it would schedule
jobsto local compute nodes.

Some infrastructures, such as Open Science Grid, provide infrastructure level glidein solutions, such as GlideinWMS.
Another solution is BOSCO. For some more custom setups, pyglidein [https://github.com/WIPACrepo/pyglidein]
from the IceCube [http://icecube.wisc.edu/] project provides a nice framework. The architecture consists on a server
on the submit host, which job it is to determining the demand. On the remote resource, the client can be invoked
for example via cron, and submits directly to HTCondor, SLURM and PBS schedulers. This makes pyglidein very
flexible and works well for example if the resource requires two-factor authentication.

Figure 7.4. pyglidein overview

Compute Node

Glidein

HTCondor
Startd

Central HTCondor
Submit Machine

HTCondor
Shared Port
HTCondor

Collector &
CCB Server

HTCondor
Schedd

condor_q

Job Slot
Job Slot

1

1

! Remote Submit
| Machine

1

: Job Scheduler
1

1

|

I

I

¥

HTCondor, PBS,
SLURM, ...

[ submit.py

http / jsonrpc )

\:\{ client.py J

|
1
Potential site firewall

To get started with pyglidein, check out a copy of the Git repository on both your submit host as well as the clus-
ter you want to glidein to. Starting with the submit hogt, first make sure you have HTCondor configured for PASS-
WORD [http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000]

139


https://github.com/WIPACrepo/pyglidein
https://github.com/WIPACrepo/pyglidein
http://icecube.wisc.edu/
http://icecube.wisc.edu/
http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000
http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000
http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000

Execution Environments

authentication. Make a copy of the HTCondor pool password file. You will need it later in the configuration, and it is
abinary file, so make sure you cp instead of a copy-and-paste of the file contents.

Follow the installation instructions provided in the PyGlidein repo [https://github.com/WIPA Crepo/pyglidein]. Note
that you can use virtualenv if you do not want to do a system-wide install:

$ nodul e | oad pyt hon2 (m ght not be needed on your systen)
$ virtual env pyglidein

New pyt hon executabl e in /home/user/pyglidein/bin/python
Installing setuptools, pip, wheel...done.

$ . pyglidein/bin/activate

$ pip install pyglidein

Then, to get the server started:

pygl i dei n_server --port 22001

By default, the pyglidein server will use all jobs in the system to determine if glideins are needed. If you want user
jobs to explicitly let us know they want glideins, you can pass a constraint for the server to use. For example, jobs
could have the + WantPSCBridges = True attribute, and then we could start the server with:

pygl i dei n_server --port 22001 --constraint "'Wnt PSCBridges == True'"

One the server is running, you can check status by pointing aweb browser to it.

The client (running on the cluster you want glideins on), requires a few configuration files and a glidein.tar.gz file
containing the HTCondor binaries, our pool password file, and amodified job wrapper script. This glidein.tar.gzfile
can be created using the provided create_glidein_tarball.py script, but an easier way is using the already prepared
tarball from and injecting your pool password file. For example:

wget https://downl oad. pegasus. i si.edu/ pyglidein/glidein.tar.gz
nkdir glidein

cd glidein

tar xzf ../glidein.tar.gz

cp /sone/ path/to/ pool passwd passwdfil e

tar czf ../glidein.tar.gz .

cd ..

rm-rf glidein

PR PRPPHHS

You can serve this file over for example http, but as it now contains your pool password, we recommend you copy
the glidein.tar.gz to the remote cluster via scp.

Create a configuration file for your glidein. Hereis an example for PSC Bridges (other config file examples available
under configs/ in the PyGlidein GitHub repo):

[ Mode]
debug = True

[Gidein]

address = http://workflow isi.edu:22001/j sonr pc

site = PSC Bridges

tarbal |l = /home/rynge/ pyglidein-config/glidein.tar.gz

[Custer]

user = rynge

os = RHEL7

schedul er = slurm
max_idle_jobs = 1
limt_per_submt = 2
wal I time_hrs = 48
partitions = RM

[~V

140


https://github.com/WIPACrepo/pyglidein
https://github.com/WIPACrepo/pyglidein

Execution Environments

gpu_only = Fal se

whol e_node = True

whol e_node_nenory = 120000

whol e_node_cpus = 28

whol e_node_di sk 8000000

whol e_node_gpus 0

partition = RM

group_j obs = Fal se

submi t _command = sbatch

runni ng_cnd = squeue -u $USER -t RUNNING -h -p RM| we -I
idle_cnd = squeue -u $USER -t PENDING -h -p RM| wc -1

[SubnitFile]

filenane = submit.slurm

local _dir = $LOCAL

sbatch = #SBATCH

cust om header = #SBATCH - C EGRESS
#SBATCH - - account =ABC123

cvnfs_job_wapper = Fal se

[ St artdLoggi ng]

send_startd_|l ogs = Fal se

url = s3.amazonaws. com

bucket = pyglidein-1o0ggi ng-bridges

[ St ar dChecks]
enabl e_startd_checks = True

[ Cust onEnv]
CLUSTER = wor kfl ow. i si.edu

This configuration will obviously look different for different clusters. A few thingsto note:
¢ addressisthe location of the server we started earlier
 tarball isthefull path to our custom glidein.tar.gz file we created above.

e CLUSTER is the location of your HTCondor central manager. In many cases this is the same host you started
the server on. Please note that if you do not set this variable, the glideins will try to register into the IceCube
infrastructure.

« #SBATCH -C EGRESS is PSC Bridges specific and enables outbound network connectivity from the compute
nodes.

« #SBATCH --account=ABC123 specifieswhich alocation to charge the job to. Thisisarequired setting on many,
but not all, HPC systems. On PSC Bridges, you can get alist of your allocation by running the projects command,
and looking for the Charge ID field.

We also need secrets file. We are not using any remote logging in this example, but the file still has to exist with
the following content:

[ StartdLoggi ng]
access_key =
secret_key =

At this point we can try our first glidein:
pyglidein_client --config=bridges.config --secrets=secrets

Once we have a seen a successful glidein, we can add the client to the crontab:

# m h domnon dow conmand
*/10 * * * * (cd ~/ pyglidein/ && pyglidein_client --config=bridges.config --
secrets=secrets) >~/cron-pyglidein.log 2>&1

With this setup, glideins will now appear automatically based on the demand in the local HTCondor queue.

141



Execution Environments

Remote Cluster using Globus GRAM
Figure 7.5. Grid Sample Site Layout

Compute

Cluster e
Cluster

Nodes -
Head Node Scheduler

Globus GRAM .
Port 2119 GridFTP Server 1
Grid Host PBS .
Certificate Maui
Grid Mapfile |
CA Certificates LSF - -

and Signing Condor

Palicies

NTP Client
Port 2811 Public IP

F

| /} |
R |

E |

W

ﬁ. Network File System

-
C For better Performance
GridFTP server may be run on

Dt \ the data server

Ports 40000 - 41000 | Requirementa
i Public IP
Submit Node \ NTE Cliert

Cumf;g SEL(IBSMAN Data S Host Cerlificate

L Lty CA Certificates and Signing Policies
Condor Schedd ( Machine Running NFS) Gridmap Fil
CA Certificates and Signing Policies el Al
NTP Client

Public IP
Optional )
GridFTP Client
GridFTP Server
Host Certificate
Gridmap File

A generic grid environment shown in thefigure above. Wewill work from theleft to theright top, then theright bottom.

On the left side, you have a submit machine where Pegasus runs, HTCondor schedules jobs, and workflows are
executed. We call it the submit host (SH), though its functionality can be assumed by avirtual machineimage. In order
to properly communicate over secured channels, it isimportant that the submit machine has a proper notion of time,
i.e. runsan NTP daemon to keep accurate time. To be able to connect to remote clusters and receive connections from
the remote clusters, the submit host has a public | P address to facilitate this communication.

In order to send ajob request to theremote cluster, HT Condor wrapsthejob into Globus callsviaHTCondor-G. Globus
uses GRAM to manage jobs on remote sites. In terms of a software stack, Pegasus wraps the job into HTCondor.
HTCondor wrapsthejob into Globus. Globustransportsthejob to the remote site, and unwraps the Globus component,
sending it to the remote site's resource manager (RM).

To be able to communicate using the Globus security infrastructure (GSl), the submit machine needs to have the
certificate authority (CA) certificates configured, requires a host certificate in certain circumstances, and the user a
user certificate that is enabled on the remote site. On the remote end, the remote gatekeeper node requires a host
certificate, all signing CA certificate chains and policy files, and a goot time source.

In a grid environment, there are one or more clusters accessible via grid middleware like the Globus Toolkit [http://
www.globus.org/]. In case of Globus, there isthe Globus gatekeeper listening on TCP port 2119 of the remote cluster.
The port is opened to a single machine called head node (HN).The head-node is typically located in a de-militarized
zone (DMZ) of the firewall setup, asit requires limited outside connectivity and a public | P address so that it can be
contacted. Additionally, once the gatekeeper accepted ajob, it passesit on to ajobmanager. Often, these jobmanagers
require alimited port range, in the example TCP ports 40000-41000, to call back to the submit machine.

142


http://www.globus.org/
http://www.globus.org/
http://www.globus.org/

Execution Environments

For the user to be able to run jobs on the remote site, the user must have some form of an account on the remtoe site.
The user's grid identity is passed from the submit host. An entity called grid mapfile on the gatekeeper maps the user's
grid identity into aremote account. While most sites do hot permit account sharing, it is possible to map multiple user
certificates to the same account.

The gatekeeper is the interface through which jobs are submitted to the remote cluster's resource manager. A resource
manager is a scheduling system like PBS, Maui, LSF, FBSNG or HTCondor that queues tasks and allocates worker
nodes. The worker nodes (WN) in the remote cluster might not have outside connectivity and often use all private IP
addresses. The Globus toolkit requires a shared filesystem to properly stage files between the head node and worker
nodes.

Note

The shared filesystem requirement is imposed by Globus. Pegasus is capable of supporting advanced site
layoutsthat do not require ashared filesystem. Please contact usfor details, should you require such a setup.

To stage data between externa sitesfor the job, it isrecommended to enable a GridFTP server. If ashared networked
filesystem isinvolved, the GridFTP server should belocated as closeto thefile-server aspossible. The GridFTP server
requires TCP port 2811 for the control channel, and alimited port range for data channels, here as an examplethe TPC
ports from 40000 to 41000. The GridFTP server requires a host certificate, the signing CA chain and policy files, a
stabletime source, and agridmap file that maps between auser's grid identify and the user's account on theremote site.

The GridFTP server is often installed on the head node, the same asthe gatekeeper, so that they can share the grid map-
file, CA certificate chains and other setups. However, for performance purposesiit is recommended that the GridFTP
server has its own machine.

An example site catalog entry for a GRAM enabled site looks as follow in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi :schemaLocation="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="Trestl es" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="trestles.sdsc. edu/jobmanager-fork" schedul er ="Fork"
j obtype="auxillary"/>
<grid type="gt5" contact="trestles.sdsc. edu/jobmanager-pbs" schedul er =" unknown"
j obtype="conpute"/>

<directory type="shared-scratch" path="/oasis/projects/nsf/USERNAME" >
<file-server operation="all" url="gsiftp://trestles-dml. sdsc. edu/ oasi s/ proj ects/nsf/
USERNAME" / >
</directory>
<I-- specify the path to a PEGASUS WORKER | NSTALL on the site -->

<profil e namespace="env" key="PEGASUS_HOVE" >/path/to/ PEGASUS/ | NSTALL</ profile>
</site>

</ sitecatal og>

Remote Cluster using CREAMCE

CREAM [https://wiki.italiangrid.it/twiki/bin/view/CREAM/Functional Description] is a webservices based job sub-
mission front end for remote compute clusters. It can be viewed as areplaced for Globus GRAM and ismainly popular
in Europe. It widely used in the Italian Grid.

In order to submit aworkflow to compute site using the CREAMCE front end, the user needs to specify the following
for the sitein their site catalog

1. pegasus profile style with value set to cream

2. grid gatewaydefined for the site with contact attribute set to CREAMCE frontend and scheduler attribute to
remote scheduler.

3. aremote queue can be optionally specified using globus profile queue with value set to queue-name

143


https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription
https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription

Execution Environments

An example site catalog entry for a creamce site looks as follow in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://pegasus.isi.edu/ schena/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="creante" arch="x86" os="LI NUX">
<grid type="creant contact="https://ce0l-lcg.cr.cnaf.infn.it:8443/ce-creani servi ces/ CREAM2"
schedul er="LSF" jobtype="conpute" />
<grid type="creant contact="https://ce0l-lcg.cr.cnaf.infn.it:8443/ce-creani servi ces/ CREAM"
schedul er="LSF" jobtype="auxillary" />

<l-- Scratch directory on the cluster -->
<directory type="shared-scratch" path="/hone/virgo034">
<file-server operation="all" url="gsiftp://ce0l-1cg.cr.cnaf.infn.it/hone/virgo034"/>

</directory>

<l-- creamis the style to use for CREAMCE subnits -->

<profil e namespace="pegasus" key="style">creanx/profile>

<!-- the renmpte queue is picked up fromglobus profile -->
<profil e namespace="gl obus" key="queue">virgo</profile>

<!-- Staring HTCondor 8.0 additional creamattributes
can be passed by setting creamattributes -->
<profil e namespace="condor" key="cream attributes">keyl=val uel; key2=val ue2</profil e>
</site>

</ si tecatal og>

The pegasus distribution comes with creamce examplesin the examples directory. They can be used asa starting point
to configure your setup.

Tip

Usually , the CREAMCE frontends accept VOMS generated user proxies using the command voms-proxy-
init . Steps on generating a VOMS proxy are listed in the CREAM User Guide here [https://wiki.italian-
grid.it/twiki/bin/view/CREAM/UserGuide#1_1 Before_starting_get_your_useg] .

Local Campus Cluster Using Glite

This section describes the configuration required for Pegasus to generate an executable workflow that uses glite to
submit to a Slurm, PBS, or SGE batch system on alocal cluster. This environment is referred to as the local campus
cluster, as the workflow submit node (Pegasus + HTCondor) need to be installed on alogin node (or a hode where
the local batch scheduler commands can be executed) of the cluster.

Note

Glite is the old name for BLAH (or BLAHP). BLAH binaries are distributed with HTCondor as the
"batch_gahp". For historical reasons, we often usetheterm"glite", and you will see"glite" and "batch_gahp"
referencesin HTCondor, but all of them refer to the same thing, which has been renamed BLAH.

This guide covers Slurm, PBS, Moab, and SGE, but glite also works with other PBS-like batch systems, including
LSF, Cobalt and others. If you need help configuring Pegasus and HTCondor to work with one of these systems,
please contact pegasus-support@isi.edu. For the sake of brevity, the text below will say "PBS", but you should read
that as "PBS or PBS-like system such as SGE, Moab, L SF, and others'.

This is because the glite layer communicates with the batch system running on the cluster using squeue/qsub/...
or equivalent commands. If you can submit jobs to the local scheduler from the workflow submit host, then the local
HTCondor can be used to submit jobs via glite (with some modifications described below). If you need to SSH to a
different cluster head node in order to submit jobs to the scheduler, then you can use BOSCO, which is documented
in another section.

144


https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use

Execution Environments

Tip

There is also away to do remote job submission via glite even if you cannot SSH to the head node. This
might be the case, for example, if the head node requires 2-factor authentication (e.g. RSA tokens). This
approach is called the "Reverse GAHP' and you can find out more information on the GitHub page [https://
github.com/juve/rvgahp]. All it requiresis SSH from the cluster head node back to the workflow submit host.

In either case, you need to modifiy the HTCondor glite installation that will be used to submit jobs to the local sched-
uler. Todothis, runthepegasus- conf i gur e- gl i t e command. Thiscommand will install al therequired scripts
to map Pegasus profiles to batch-system specific job attributes, and add support for Moab. Y ou may need to run it as
root depending on how you installed HTCondor.

Tip

HTCondor has an issue for the Slurm configuration when running on Ubuntu systems. Since in Ubuntu, /
bi n/ sh does not link to bash, the Slurm script will fail when trying to run the sour ce command. A
quick fix tothisissueistoforcethescripttousebash. Inthebl s_set _up_| ocal _and_extra_args
function of the bl ah_common_subni t _functi ons. sh script, which is located in the same folder
as the installation above, only add bash before $bl s_opt _tnp_req_file >> $bls_tnp_file
2> /[dev/ nul | command line.

In order to configure a workflow to use glite you need to create an entry in your site catalog for the cluster and set
the following profiles:

1. pegasus profile style with value set to glite.
2. condor profile grid_resour ce with value set to batch slurm, batch pbs, batch sge or batch moab.

An example site catalog entry for alocal glite PBS site looks like this:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86" os="LI NUX">
<directory type="shared-scratch" path="/I|fs/shared-scratch/glite-sharedfs-exanpl e/ work">
<file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-exanple/
wor k" / >
</directory>
<directory type="local -storage" path="/shared-scratch//glite-sharedfs-exanpl e/ outputs">
<file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-exanple/
out puts"/>
</directory>
</site>

<site handl e="local -slurm arch="x86" os="LINUX">

<l-- the following is a shared directory shared anmongst all the nodes in the cluster -->
<directory type="shared-scratch" path="/I1fs/glite-sharedfs-exanple/local-slurnf shared-
scratch">
<file-server operation="all" url="file:///lfs/glite-sharedfs-exanple/local-slurm shared-
scratch"/>
</directory>

<profil e namespace="env" key="PEGASUS HOVE">/| f s/ sof t war e/ pegasus</ profil e>
<profil e namespace="pegasus" key="style" >glite</profile>

<profil e namespace="condor" key="grid_resource">batch slurnx/profile>
<profil e namespace="pegasus" key="queue">normal </ profil e>

<profil e namespace="pegasus" key="runti me">30000</profil e>

</site>

</ sitecatal og>

145


https://github.com/juve/rvgahp
https://github.com/juve/rvgahp
https://github.com/juve/rvgahp

Execution Environments

Tip
Starting 4.2.1, in the examples directory you can find a glite shared filesystem example that you can use
to test out this configuration.

You probably don't need to know this, but Pegasus generates a +r enot e_cer equi r ement s expression for an

HTCondor glite job based on the Pegasus profiles associated with the job. This expression is passed to glite and used

by the* | ocal _submit_attributes. sh scriptsinstalled by pegasus- confi gure-glite to generate

the correct batch submit script. An example +r enpt e_cer equi r enent s classad expression in the HTCondor

submit file looks like this:

+renot e_cerequi rements = JOBNAME=="preprocessj 1" &% PASSENV==1 && WALLTI ME=="01: 00: 00" && \
EXTRA_ARGUMENTS=="-N testjob -1 walltinme=01:23:45 -1 nodes=2" && \

MYENV==" CONDOR_JOBI D=$( cl uster). $(process), PEGASUS_DAG JOB_| D=pr eprocess_j 1, PEGASUS_HOVE=/
usr, PEGASUS_WF_UUlI D=aael4bc4- b2d1- 4189- 89ca- ccd99e30464f "

The job name and environment variables are automatically passed through to the remote job.

The following sections document the mapping of Pegasus profiles to batch system job requirements as implemented
by Pegasus, HTCondor, and glite.

Setting job requirements
The job requirements are constructed based on the following profiles:

Table 7.1. Mapping of Pegasus Profilesto Job Requirements

ProfiIeKey"L Keyin +re- |SLURM pa-|PBS Para-|SGE Para-{Moab Para-|Cobalt Pa-|Description
ote_cerequir erameter meter meter meter rameter
ments

pega- CORES --ntasks n/‘a -pe ompi n/a --proccount |Pegasus us-
sus.cores cores cores es cores to
caculate ei-
ther nodes or
ppn. If cores
and ppn
are specified,
then nodes
is comput-
ed. If cores
and nodes
is specified,
then ppn is
computed. If
both  nodes
and ppn
are specified,
then  cores
is ignored.
The result-
ing vaues
for nodesand
ppn are used
to set the
job require-
ments  for
PBS and
Moab. If nei-
ther  nodes
nor ppn
is Speci-
fied,  then

146



Execution Environments

Profile KeynL

Keyin +re-
ote_cerequir
ments

SLURM pa-
e ameter

PBS Para-
meter

SGE Para-
meter

Moab Para-
meter

Cobalt
rameter

Pa-

Description

no require-
ments are set
inthe PBS or
Moab submit
script.  For
SGE, how
the process-
es are dis
tributed over
nodes de
pends on
how the par-
dle  envi-
ronment has
been config-
ured; it is set
to '‘ompi' by
default.

pegasus.n-
odes

NODES

--nodes
nodes

-I nodes

n/a

-I nodes

-n nodes

This  speci-
fies the num-
ber of nodes
that the job
should use.
This is not
used for
SGE.

pegasus.ppn

PROCS

n/a

-l ppn

n/a

-l ppn

--mode
c[ppn]

This
ifies
number
processors
per node
that the job
should use.
This is not
used for
SGE.

Spec-
the
of

pegasus.run-
time

WALLTIME

--time wall-
time

-l walltime

-l h_rt

-l walltime

-t walltime

This  speci-
fies the max-
imum  run-
time for
the job in
seconds. It
should be an
integer val-
ue. Pegasus
converts it to
the "hh:m-
m:ss' format
required by
thebatch sys-
tem. Theval-
ue is round-
ed up to the
next whole
minute.

147




Execution Environments

Profile KeynL

Keyin +re-
ote_cerequir
ments

SLURM pa-
e ameter

PBS Para-
meter

SGE Para-
meter

Moab Para-
meter

Cobalt
rameter

Pa-

Description

pega-
sus.memory

PER_PRO-
CESS MEM-
ORY

--mem mem-
ory

-| pmem

-l h_vmem

--mem-per-
Ccpu pmem

n/a

This  speci-
fiesthemaxi-
mum amount
of physi-
cad memo-
ry used by
any process
in the job.
For example,
if thejobruns
four process-
es and each
requiresupto
2 GB (g-
gabytes) of
memory,

then this val-
ue should be
set to "2gb"
for PBS
and Moab,
and "2G"
for SGE.
The corre-
sponding

PBS direc-
tive would
be "#PBS -
pmem=2gb".

pega-
sus.project

PROJECT

--account

project_name

-A
project_name

n/a

-A
project_name

-A
project_name

Causes the
job time to
be charged to
or associated
with a partic-
ular project/
account. This
is not used
for SGE.

pega-
sus.queue

QUEUE

--partition

'
o]

This  spec-
ifies the
queue for the
job. Thispro-
file does not
have a corre-
sponding
value

+r e-

note_cere
ments. In-
stead, Pega-
sus sets the
bat ch_que
key in the
Condor sub-
mit file,

in

qui r e-

148



Execution Environments

Profile KeynL

Keyin +re-
ote_cerequir
ments

SLURM pa-
e ameter

PBS Para-
meter

SGE Para-
meter

Moab Para-
meter

Cobalt
rameter

Pa-

Description

which gLite/
blahp trans-
lates into
the appropri-
ate batch sys-
tem require-
ment.

globus.to-
talmemory

TO-
TAL_MEM-
ORY

--mem mem-

-l mem

n/a

-l mem

n/a

The total
memory that
your job re-
quires. It is
usually better
to just spec-
ify the pega-
sus.memory

profile. This
is not

mapped for
SGE.

pega-
sus.glite.ar-
guments

Ex_
TRA_AR-
GUMENTS

prefixed by
"#SBATCH"

prefixed by
"#PBS"

prefixed by
nggn

prefixed by
"#MSUB"

n/a

This  speci-
fies the ex-
tra argu-
ments  that
must appear
in the gen-
erated sub-
mit  script
for a job.
The value of
this profileis
added to the
submit script
prefixed by
thebatch sys-
tem-specific
value. These
requirements
override any
requirements
specified us-
ing other pro-
files.  This
is useful
when  you
want to pass
through spe-
cia options
to the under-
lying batch
system. For
example, on
the usC
cluster we
use resource
properties to

149




Execution Environments

Profile KeynL

Keyin +re-
ote_cerequir

SLURM pa-
e ameter

PBS Para-
meter

SGE Para-
meter

Moab Para-
meter

Cobalt
rameter

Pa-

Description

ments

specify  the
network
type. If you
want to use
the Myrinet
network, you
must  spec-
ify  some
thing like "-I
nodes=8:pp-
n=2:myri".
For infini-
band, you
would  use
something
like -l
nodes=8:pp-
n=2:1B". In
that case,
both the
nodes and
ppn profiles
would be ef-
fectively ig-
nored.

Specifying a remote directory for the job

gLite/blahp does not follow ther enpt e_i nitial dir orinitial di r classad directives. Therefore, all the jobs
that havethegl i t e style applied don't have a remote directory specified in the submit script. Instead, Pegasus uses
Kickstart to change to the working directory when the job is launched on the remote system.

SDSC Comet with BOSCO glideins

BOSCO documentation: https://twiki.opensciencegrid.org/bin/view/CampusGridsBoSCO

BOSCO is part of the HTCondor system which allows you to set up a personal pool of resources brought in from a
remote cluster. In this section, we describe how to use BOSCO to run glideins (pilot jobs) dynamically on the SDSC
Comet cluster. The glideins are submitted based on the demand of the user jobs in the pool.

Asyour regular user, on the host you want to use as a workflow submit host, download the latest version of HTCon-
dor from the HTCondor Download page [https://research.cs.wisc.edu/htcondor/downloads/>]. At this point the latest
version was 8.5.2 and we downloaded condor-8.5.2-x86_64 RedHat6-stripped.tar.gz. Untar, and run the installer:

$ tar xzf condor-8.5.2-x86_64_RedHat 6-stripped.tar.gz
$ cd condor-8. 5. 2-x86_64_RedHat 6- st ri pped
$ ./bosco_install

Created a script you can source to setup your Condor environment
variables. This command nust be run each tinme you log in or nay
be placed in your login scripts:

sour ce / horme/ $USER/ bosco/ bosco_set env

Source the setup file asinstructed, run bosco_start, and then test that condor_q and condor_status works.

$ source /hone/ $USER/ bosco/ bosco_set env
$ condor_q

150


https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO
https://research.cs.wisc.edu/htcondor/downloads/>
https://research.cs.wisc.edu/htcondor/downloads/>

Execution Environments

- Schedd: workflow iu.xsede.org : 127.0.0.1:110007?...
ID OMER SUBM TTED RUN_TI ME ST PRI SI ZE CMD

0 jobs; O conpleted, O removed, 0 idle, O running, O held, O suspended

$ condor_status

Let'stell BOSCO about our SDSC Comet account:

$ bosco_cluster -a YOUR SDSC_USERNAME@onet - | n2. sdsc. edu pbs

BOSCO needsalittle bit moreinformation to be ableto submit the glideinsto Comet. Log in to your Comet account via
ssh (important - this step has to take place on Comet) and create the ~/bosco/glite/bin/pbs local_submit_attributes.sh
file with the following content. Y ou can find your allocation by running show_accounts and looking at the project
column.

echo "#PBS -q conpute"”

echo "#PBS -1 nodes=1: ppn=24"

echo "#PBS -1 walltine=24:00: 00"

echo "#PBS - A [ YOUR_COVET_ALLOCATI ON] "

Also chmod thefile:

$ chnod 755 ~/ bosco/glite/bin/pbs_|ocal _submit_attributes.sh

Log out of Comet, and get back into the host and user BOSCO was installed into. We also need to edit afew files
on that host. ~/bosco/libexec/campus_factory/share/glidein_jobs/glidein_wrapper.sh has a bug in some versions of
HTCondor. Open up the file and make sure the eval line in the beginning is below the unset/export HOME section.
If that is not the case, edit the fileto look like:

#!/ bi n/ sh

starting_dir="$( cd "$( dirnanme "${BASH SOURCE[0]}" )" &% pwd )"
# BLAHP does weird things with home directory

unset HOME

export HOMVE

eval canpus_factory_dir=$_canpusfact ory_CAMPUSFACTORY_LCOCATI ON

If the order of the HOME and eval statements are reversed in your file, change them to look like the above. At the end
of ~/boscol/libexec/campus_factory/share/glidein_jobs/glidein_condor_config add:

# dynami c slots

SLOT_TYPE_1 = cpus=100% di sk=100% swap=100%
SLOT_TYPE_1_PARTI TI ONABLE = TRUE

NUM SLOTS = 1

NUM SLOTS TYPE 1 = 1

In the file ~/bosco/libexec/campus_factory/share/glidein_jobs/job.submit.template find the line reading:
_condor _NUM CPUS=1; \
Y ou should now have a functioning BOSCO setup. Submit a Pegasus workflow.

Remote PBS Cluster using BOSCO and SSH

BOSCO [http://bosco.opensciencegrid.org/about/] enables HTCondor to submit jobs to remote PBS clusters using
SSH. This section describes how to specify a site catalog entry for a site that has been configured for BOSCO job
submissions.

151


http://bosco.opensciencegrid.org/about/
http://bosco.opensciencegrid.org/about/

Execution Environments

First, the site needs to be setup for BOSCO according to the BOSCO documentation [https://twiki.openscience-
grid.org/bin/view/CampusGrids/BoSCO]. BOSCO uses glite to submit jobs to the PBS scheduler on the remote clus-
ter. Youwill also need to configurethegliteinstalled for BOSCO on the remote system according to the documentation
in the glite section in order for the mapping of Pegasus profiles to PBS job requirements to work. In particular, you
will needtoinstall thepbs_| ocal _subnmit _attri butes. shandsge_| ocal _subnit_attri butes. sh
scriptsin the correct placein the glite bi n directory on the remote cluster, usually in the directory ~/bosco/glite/bin/ .

Second, to tag a site for SSH submission, the following profiles need to be specified for the site in the site catal og:
1. pegasus profile style with value set to ssh

2. Specify the service information as grid gateways. This should match what BOSCO provided when the cluster was
et up.

An example site catalog entry for aBOSCO site looks like this:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="USC_HPCC Bosco" arch="x86_64" os="LI NUX">

<I-- Specify the service information. This should match what Bosco provi ded when the cluster
was set up. -->

<grid type="batch" contact="vahi @pc-pegasus. usc. edu” schedul er="PBS" j obtype="conpute"/>

<grid type="batch" contact="vahi @pc-pegasus. usc. edu” schedul er="PBS" jobtype="auxillary"/>

<l-- Scratch directory on the cluster -->
<directory type="shared-scratch" path="/home/rcf-40/vahi/tnmp">
<file-server operation="all" url="scp://vahi @pc-pegasus. usc. edu/ hore/rcf-40/vahi/tm"/>

</directory>

<l-- SSHis the style to use for Bosco SSH subnmits -->
<profil e namespace="pegasus" key="styl e">ssh</profile>

<I-- works around bug in the HTCondor GAHP, that does not
set the renote directory -->
<profil e namespace="pegasus" key="change. dir">true</profile>
<I-- Job requirenments shoul d be specified using Pegasus profiles -->
<profil e namespace="pegasus" key="queue">defaul t</profile>
<profil e namespace="pegasus" key="runti me">30</profil e>

</site>

</sitecatal og>

Note

Itisrecommended to have a submit node configured either asaBOSCO submit node or avanillaHTCondor

node. Y ou cannot have HT Condor configured both asa BOSCO install and atraditional HTCondor submit

node at the same time as BOSCO will override the traditional HTCondor pool in the user environment.
There is a bosco-shared-fs example in the examples directory of the distribution.

Job Reguirements for the jobs can be set using the same profiles as listed here .

Campus Cluster

There are almost as many different configurations of campus clusters as there are campus clusters, and because of that
it can be hard to determine what the best way to run Pegasus workflows. Below is aordered checklist with some ideas
we have collected from working with usersin the past:

152


https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO
https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO
https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO

Execution Environments

1. If the cluster scheduler is HTCondor, please see the HT Condor Pool section.

2. If the cluster is Globus GRAM enabled, see the Globus GRAM section. If you have have alot of short jobs, also
read the Glidein section.

3. For clusters without GRAM, you might be able to do glideins. If outbound network connectivity is allowed, your
submit host can be anywhere. If the cluster is setup to not allow any network connections to the outside, you will
probably have to run the submit host inside the cluster as well.

If the cluster you are trying to use is not fitting any of the above scenarios, please post to the Pegasus users mailing
list [http://pegasus.isi.edu/support] and we will help you find a solution.

XSEDE

The Extreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] provides a set of
High Performance Computing (HPC) and High Throughput Computing (HTC) resources.

For the HPC resources, it is recommended to run using Globus GRAM or glideins. Most of these resources have
fast parallel file systesm, so running with sharedfs data staging is recommended. Below is example site catalog and
pegasusrc to run on SDSC Trestles [http://www.sdsc.edu/us/resources/trestles/]:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/wf/work"/>
</directory>
<directory type="l ocal -storage" path="/tnp/wf/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="Trestl es" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="trestles.sdsc. edu: 2119/ j obmanager - f or k" schedul er =" PBS"
j obtype="auxillary"/>
<grid type="gt5" contact="trestles.sdsc. edu: 2119/ j obmanager - pbs" schedul er =" PBS"
j obtype="conpute"/>
<directory type="shared-scratch" path="/phasel/ USERNAME" >
<file-server operation="all" url="gsiftp://trestles-dml. sdsc. edu/ phasel/ USERNAME"/ >
</directory>
</site>

</ sitecatal og>

pegasusrc:

pegasus. cat al og. replica=Sinpl eFile
pegasus. catal og.replica.file=rc

pegasus. catal og.site.file=sites.xm

pegasus. cat al og. t ransf or mat i on=Text
pegasus. catal og. transformation.file=tc

pegasus. dat a. configuration = sharedfs
# Pegasus mght not be installed, or be of a different version

# so stage the worker package
pegasus. transfer. worker. package = true

The HTC resources available on XSEDE are all HTCondor based, so standard HT Condor Pool setup will work fine.

If you need to run high throughput workloads on the HPC machines (for example, post processing after alarge parallel
job), glideins can be useful asit is amore efficient method for small jobs on these systems.

153


http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
https://www.xsede.org/
https://www.xsede.org/
http://www.sdsc.edu/us/resources/trestles/
http://www.sdsc.edu/us/resources/trestles/

Execution Environments

Titan Using Glite

Titan [https://www.olcf.ornl.gov/ol cf-resources/compute-systems/titan/] is part of Oak Ridge Leadership Computing
Facilities (OLCF) and offers hybrid computing resources (CPUs and GPUSs) to scientists since 2012.

In order to submit to Titan, a Titan login node or a system that has accessto the Lustrefilesystem and the batch sched-
uler (eg. OLCF's Kubernetes Deployment [https://www.ol cf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day 3-
Kincl.pdf]), must be used as the submit node. Submission style must be Pegasus Glite [https://pegasus.isi.edu/docu-
mentation/glite.php] and an example site calatog entry looks like this:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocation="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 1. xsd"

version="4.1">

<site handl e="l ocal " arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/lustre/atlas/scratch/user/workfl owdir/scratch"/>
<file-server operation="all" url="file:///lustre/atlas/scratch/user/workflowdir/
scratch"/>
</directory>
<directory type="shared-storage" path="/lustre/atlas/scratch/user/workfl owdir/output/">

<file-server operation="all" url="file:///lustre/atlas/scratch/user/workflowdir/
output"/>
</directory>
</site>

<site handl e="titan" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/lustre/atlas/scratch/user/titan/scratch">
<file-server operation="all" url="file:///lustre/atlas/scratch/user/titan/scratch"/>
</directory>

<profil e namespace="pegasus" key="style">glite</profile>
<profil e namespace="condor" key="gri d_resource">batch pbs</profile>

<profil e namespace="pegasus" key="queue">titan</profile>
<profil e namespace="pegasus" key="auxillary.local ">true</profile>

<profil e namespace="env" key="PEGASUS HOME">/| ustre/atl as/worl d-shared/ csc320/ SOFTWARE/
instal |/ pegasus/ def aul t </ profile>
<profil e namespace="pegasus" key="runti ne">1800</profil e>
<profil e namespace="pegasus" key="nodes">1</profile>
<profil e namespace="pegasus" key="project">CSC320</profile>
</site>
</ sitecatal og>

1. pegasus profile style with value set to glite

2. condor profile grid_resource with value set to batch pbs

3. pegasus profile queue is mandatory and should be set to titan

4. pegasus profile runtime is mandatory and should be set in sites or transformation catalog
5. pegasus profile nodes is mandatory and should be set in sites or transformation catalog

6. pegasus profile project must be set to the project name your jobs run under

Note
pegasus profile cores isincompatible with Titan's PBS submissions.

Open Science Grid Using glideinWMS

glideinWMSS [ http://www.uscms.org/SoftwareComputing/Grid/ WM S/glideinWM /] is a glidein system widely used
on Open Science Grid. Running on top of glideinWMSis like running on a Condor Pool without a shared filesystem.

154


https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day3-Kincl.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day3-Kincl.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/11/2018UM-Day3-Kincl.pdf
https://pegasus.isi.edu/documentation/glite.php
https://pegasus.isi.edu/documentation/glite.php
https://pegasus.isi.edu/documentation/glite.php
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/

Chapter 8. Containers

Overview

Application containers provides a solution to package software with complex dependencies to be used during work-
flow execution. Starting with Pegasus 4.8.0, Pegasus has support for application containers in the non-shared filesys-
tem or condorio data configurations using PegasusL ite. Users can specify with their transformations in the Transfor-
mation Catalog the container in which the the transformation should be executed. Pegasus currently has support for
the following container technol ogies:

1. Docker
2. Singularity

Theworker packageisnot required to be pre-installed inimages. If amatching worker packageisnot installed, Pegasus
will try to determine which package is required and download it.

Configuring Workflows To Use Containers

Containers currently can only be specified in the Transformation Catalog. Users have the option of either using a
different container for each executable or same container for all executables. In the case, where you wants to use a
container that does not have your executable pre-installed, you can mark the executable as STAGEABLE and Pegasus
will stage the executable into the container, as part of executable staging.

The DAX API extensions don't support references for containers.

Containerized Applications in the Transformation Catalog

Users can specify what container they want to use for running their application in the Transformation Catalog using
the multi line text based format described in this section. Users can specify an optional attribute named container that
refers to the container to be used for the application.

tr exanple::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

profile env "APP_HOME" "/tnp/ nyscratch”
profile env "JAVA HOVE' "/opt/javal/l.6"

site isi {
# environnent to be set when the job is run in the container
# overrides env profiles specified in the container
profile env "HELLo" "WORLD'
profile env "JAVA HOME" "/bin/java.1.6"

profile condor "FOO' "bar"

pfn "/path/tol keg
arch "x86"

os "linux"

osrel ease "fc"
osversion "4"

# | NSTALLED neans pfn refers to path in the container.
# STAGEABLE neans the executable can be staged into the container
type "I NSTALLED'

#optional attribute to specify the container to use
cont ai ner "cent os- pegasus”
}
}

cont centos- pegasus{

155



Containers

# can be either docker or singularity or shifter
type "docker"

# URL to inmage in a docker|singularity hublshitfer repo url OR
# URL to an existing docker inmage exported as a tar file or singularity inmage
image "docker:///rynge/ nontage: | atest"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
image_site "optional site"

# mount information to nount host directories into container
# format src-dir:dest-dir[:options]
mount "/ Vol unmes/ Work/ | fsl:/shared-data/:ro"

# environnent to be set when the job is run in the container
# only env profiles are supported
profile env "JAVA HOVE' "/opt/javal/l.6"

}

The container itself is defined using the cont entry. Multiple transformations can refer to the same container.
1. cont cont - A container identifier.

2. image - URL to image in a docker|singularity hub| singularity library | shifter repo URL or URL to an existing
docker image exported as a tar file or singularity image. An example docker hub URL is docker:///rynge/mon-
tage:latest. An example Singularity hub URL is shub://singularity-hub.org/pegasus-isi/fedora-montage. Singularity
library URLs are prefixed with "library" rather than "shub™. Shifter images can only be referred to by shifter URL
scheme that indicates that the image is available in the local shifter repository on the compute site. For example
shifter:///papajim/namd_image:latest .

3. image_site - The siteidentifier for the site where the container is available

4. mount - mount information to mount host directories into container of format src-dir:dest-dir[:options] . Consult
Docker and Singularity documentation for options supported for -v and -B options respectively.

5. Profiles- Oneor many profiles can be attached to atransformation for all sites or to atransformation on a particular
site. For containers, only env profiles are supported.

Note

Containerized Applications can only be specified in the transformation catalog, not viathe DAX API.

Containers on OSG

OSG hasit's own way of handling container deployments for jobs that is hidden from the user and hence Pegasus.
They don't allow a user to run an image directly by invoking docker run or singluarity exec. Instead the condor job
wrappers deployed on OSG do it for you based on the classads associated with the job. As a result, for a workflow
to run on OSG, one cannot specify or describe the container in the transformation catalog. Instead you catalog the
executables without a container reference, and the path to the executable is the path in the container you want to use.
To specify the container, that needs to be setup you instead specify the following Condor profiles

Table 8.1. Condor Profiles For Specifying Singularity Container for Jobs

Key Value
requirements HAS SINGULARITY ==True
+Singularitylmage path to singluarity image on CVMFS

For example you can specify the following in the site catalog for OSG site

<l-- this is our execution site -->
<site handl e="0SG' arch="x86_64" os="LI NUX">
<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>

156



Containers

<profil e namespace="condor" key="requirenments" >HAS SI NGULARI TY == True</profil e>
<profil e namespace="condor" key="+Si ngul aritylmage" >"/cvnfs/
singul arity. opensci encegri d. org/ pegasus/ osg-el 7:l atest"</profil e>
<profil e namespace="condor" key="request_cpus" >1</profile>
<profil e namespace="condor" key="request_mnenory" >1 GB</profil e>
<profil e namespace="condor" key="request_di sk" >1 GB</profil e>
</site>

Container Execution Model

User's containerized applications are launched as part of PegasusL ite jobs. PegasusL ite job when starting on aremote
worker node.

1. Setsup adirectory to run auser jobin.
2. Pullsthe container image to that directory

3. Optionally, loads the container from the container image file and sets up the user to run as in the container (only
applicable for Docker containers)

4. Mountsthejob directory into the container as/scratch for Docker containers, whileas/srv for Singularity containers.
5. Container will run ajob specific script that figures created by PegasusL ite that does the following:
a. Figuresthe appropriate Pegasus worker to use in the container if not already installed

b. Sets up the job environment to use including transfer and setup of any credentials transferred as part of Pega-
susLite

c. Pullsin all the relevant input data, executables required by the job

d. Launchesthe user application using pegasus-kickstart.
6. Optionaly, shuts down the container (only applicable for Docker containers)
7. Ships out the output data to the staging site

8. Cleans up the directory on the worker node.

Note

Starting Pegasus 4.9.1 the container data transfer model has been changed. Instead of data transfers for the
job occurring outside the container in the PegasusLite wrapper, they now happen when the user job starts
in the container.

In versions of Pegasus >= 4.9.1 the transfers are handled from within the container, and thus container recipes require
some extra attention. A Dockerfile example that prepares a container for GridFTP transfersis provided below.

In this example there are three sections.
e Essential Packages

« Install Globus Toolkit

* Install CA Certs

From the "Essential Packages', python and either curl or wget have to be present. "Install Globus Toolkit", sets up
the enviroment for GridrFTP transfers. And "Install CA Certs' copies the grid certificates in the container.

Note

Globus Toolkit introduced some breaking changes in August 2018 to its authentication module, and some
sites haven't upgraded their installations (eg. NERSC). GridFTP in order to authenticate successfully, re-

157



Containers

quiresthe libglobus-gssapi-gsi4 package to be pinned to the version 13.8-1. The code snipet below contains
installation directives to handle this but they are commented out.

#### This Contai ner Supports GidFTP ####

FROM ubunt u: 18. 04

#### Essential Packages ####

RUN apt -get update &&\

apt-get install -y software-properties-comon curl wget python unzip &8\
rm-rf /var/lib/apt/lists/*

#### Install G obus Tool kit ####

RUN wget -nv http://ww. gl obus. org/ftppub/gt6/installers/repo/globus-toolkit-repo_|atest_all.deb &8\
dpkg -i globus-toolkit-repo_latest_all.deb &8\

apt-get update &8\

# apt-get install -y libglobus-gssapi-gsi4=13.8-1+gt6. bionic &\

# apt-mark hold Iibgl obus-gssapi-gsi4 &R\

apt-get install -y gl obus-data-managenment-client &8\

rm-f globus-toolkit-repo_|latest_all.deb &8\

rm-rf /var/lib/apt/lists/*

#### I nstall CA Certs ####

RUN nkdir -p /etc/grid-security &&\

cd /etc/grid-security &R\

wget -nv https://downl oad. pegasus.i si.edu/ containers/certificates.tar.gz &_\
tar xzf certificates.tar.gz &R\

rm-f certificates.tar.gz

#### Your Contai ner Specific Commands ####

Staging of Application Containers

Pegasus treats containers as other files in terms of data management. Container to be used for ajob istracked as an
input dependency that needs to be staged if it is not already there. Similar to executables, you specify the location for
your container imagein the Transformation Catal og. Y ou can specify the source URL'sfor containers asthefollowing.

1. URL to acontainer hosted on a central hub repository

Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://pegasus-isi/fedo-
ra-montage

2. URL to acontainer image file on afile server.

« Docker - Docker supports loading of containers from atar file, Hence, containers images can only be specified
astar files and the extension for the filename is not important.

¢ Singularity - Singularity supports container imagesin various forms and relies on the extension in the filename
to determinewhat format thefileisin. Pegasus supportsthe following extensionsfor singularity container images

e .img

e tar

o targz
o .tar.bz2
e .cpio

e .cpio.gz

o sif

158



Containers

Singularity will fail to run the container if you don't specify the right extension , when specify the source URL
for theimage.

In both the cases, Pegasus will place the container image on the staging site used for the workflow, as part of the data
stage-in nodes, using pegasus-transfer. When pulling in an image from a container hub repository, pegasus-transfer
will export the container as atar filein case of Docker, and as .img filein case of Singularity

Shifter Containers

Shifter containers are different from docker and singularity with respect to the fact that the containers cannot be ex-
ported to a container imagefilethat can reside on afilesystem. Additionally, the container are expected to be available
locally on the compute sites in the local Shifter registry. Because of this, Pegasus does not do any transfer of Shifter
containers. Y ou can specify a shifter container using the shifter url scheme. For example, below is a transformation
catalog for anamd transformation that is executed in a shifter container.

cont nand_i mage{
# can be either docker or singularity
type "shifter"

# image |l oaded in the local shifter repository at cor
image "shifter:///papajim nanmd_i nage: | atest"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
imge_site "cori"

}
tr nand2 {
site cori {
pfn "/opt/NAVD 2. 12_Li nux-x86_64-rul ti cor e/ nand2"
arch "x86_64"
0os "LINUX"
type "I NSTALLED"
cont ai ner "nand_i mage"
profile gl obus "maxTime" "20"
profile pegasus "exitcode.successnmsg" "End of progrant
}
}

Symlinking and File Copy From Host OS

Since, Pegasus by default only mounts the job directory determined by PegasusLite into the application container,
symlinking of input data sets works only if in the container definition in the transformation catalog user defines the
directories containing theinput datato be mounted in the container using the mount key word. We recommend to keep
the source and destination directoriesto be the samei.e. the host path is mounted in the same | ocation in the container.

The aboveis also true for the case, where you input datasets are on the shared filesystem on the compute site and you
want afile copy to happen, when PegasusL ite job starts the container.

For example in the example below, we have input datasets accessible on /lizard on the compute nodes, and mounting
them as read-only into the container at /lizard

cont centos-base{
type "singularity"”

# URL to inmage in a docker hub or a url to an existing
# singularity image file
image "gsiftp://banboo.isi.edu/lfsl/banmboo-tests/datal/centos7.ing"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
imge_site "local"

# nmount point in the container
mount "/lizard:/lizard:ro"

# specify env profile via env option do docker run
profile env "JAVA HOVE' "/opt/javal/l.6"

159



Containers

}

To enable symlinking for containers set the following properties

# Tells Pegasus to try and create symlinks for input files
pegasus.transfer.links true

# Tells Pegasus to by the staging site ( creation of stage-in jobs) as
# data is available directly on conpute nodes
pegasus. transfer. bypass.input.staging true

f you don't set pegasus.transfer.bypass.input.staging then you still can have symlinking if

1. your staging site is same as your compute site

2. the scratch directory specified in the site catalog is visible to the worker nodes

3. you mount the scratch directory in the container definition, NOT the original source directory.

Enabling symlinking of containersis useful, when running large workflows on a single cluster. Pegasus can pull the
image from the container repository once, and place it on the shared filesystem where it can then be symlinked from,
when the PegasusLite jobs start on the worker nodes of that cluster. In order to do this, you need to be running the
nonsharedfs data configuration mode with the staging site set to be the same as the compute site.

Container Example - Montage Workflow

Montage Using Containers

This section contains an example of areal workflow running inside Singularity containers. The applicationis Montage
[http://montage.ipac.caltech.edu/] using the montage-v2 workflow [https://github.com/pegasus-isi/montage-work-
flow-v2]. Be aware that this workflow can be fairly data intensive, and when running with containers in condorio or
nonsharedfs data management modes, the data staging of the application data and the container image to each job can
result in anon-trivial amount of network traffic.

The software dependencies consists of the Montage software stack, and AstroPy. These are installed into the image
(see the Singularity file in the GitHub repository). The image has been made available in Singularity Hub [https:/
singularity-hub.org/].

Now that we have an image, the next step is to check out the workflow from GitHub, and use it to create an abstract
workflow description, a transformation catalog and a replica catalog. The montage-wor kflow.py command create all
this for us, but the command itself requires Montage to look up input data for the specified location in the sky. The
provide the environment, run this command inside the same Singularity image. For example:

singularity exec \
--bind $PWD: /srv --workdir /srv \
shub: //singul arity-hub. or g/ pegasus-i si/ mont age- wor kf | owv2 \
/ srv/ nont age- wor kf | ow. py \
--tc-target container \
--center "56.7 24.00" \
--degrees 2.0\
--band dss: DSS2B: bl ue \
--band dss: DSS2R: green \
--band dss: DSS2I R red

The command executes adatafind for the 3 specified bands, 2.0 degrees around the location 56.7 24.00, and generates
aworkflow to combine the images into a single image. One extraflag is provided to let the command know we want
to execute the workflow inside containers: --tc-target container. The result is atransformation catalog in data/tc.txt

, with starts with:

cont nontage {
type "singularity"”
i mage "shub://singul arity-hub. org/ pegasus-i si/ nont age- wor kf | ow v2"
profile env "MONTAGE_HOVE" "/ opt/Montage"

160


http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://singularity-hub.org/
https://singularity-hub.org/
https://singularity-hub.org/

Containers

}

tr mMDiffFit {
site condor_pool {
type "I NSTALLED'
cont ai ner "nont age"
pfn “file:///opt/Montage/bin/mDiffFit"
profile pegasus "clusters.size" "5"
}
}

Thefirst entry describes the container, where the image can be found (Singularity Hub in this example), and a special
environment variable we want to be set for the jobs.

The second entry, of which there are many more similar ones in the file, describes the application. Note how it refers
back to the "montage" container, specifying that we want the job to be wrapped in the container.

In the data/ directory. we can aso find the abstract workflow (montage.dax), and replica catalog (rc.dax). Note that
this are the same as if the workflow was running in a non-container environment. To plan the workflow:

pegasus-pl an \
--dir work \
--relative-dir “date + %'~ \
--dax dat a/ nont age. dax \
--sites condor_pool \
--output-site local \
--cluster horizontal

161



Chapter 9. Example Workflows

These examples are included in the Pegasus distribution and can be found under shar e/ pegasus/ exanpl es in
your Pegasusinstall (/ usr/ shar e/ pegasus/ exanpl es for native packages)

Note

These examplesareintended to be astarting point for when you want to create your own workflows and want
to see how other workflows are set up. The example workflows will probably not work in your environment
without modifications. Site and transformation catalogs contain site and user specifics such as paths to
scratch directoriesand install ed software, and at |east minor modificiationsare required to get the workflows
to plan and run.

Grid Examples

These examples assumes you have accessto a cluster with Globusinstalled. A pre-ws gatekeeper and gridftp server is
reguired. Y ou also need Globus and Pegasus installed, both on the machine you are submitting from, and the cluster.

Black Diamond

Pegasusis shipped with 3 different Black Diamond examplesfor the grid. Thisisto highlight the available DAX APIs
which are Java, Perl and Python. The examples can be found under:

shar e/ pegasus/ exanpl es/ gri d- bl ackdi anond-j ava/
shar e/ pegasus/ exanpl es/ gri d- bl ackdi amond- per |/
shar e/ pegasus/ exanpl es/ gri d- bl ackdi anond- pyt hon/

The workflow has 4 nodes, layed out in adiamond shape, with files being passed between them (f.*):

162



Example Workflows

preprocess

findrange —

The binary for the nodes is a simple "mock application" name keg ("canonical example for the grid") which reads
input files designated by arguments, writes them back onto output files, and produces on STDOUT a summary of
where and when it was run. Keg ships with Pegasus in the bin directory.

This example ships with a "submit" script which will build the replica catalog, the transformation catalog, and the
site catalog. When you create your own workflows, such a submit script is not needed if you want to maintain those
catalogs manually.

Note

Theuseof . / submi t scriptsinthese examplesare just to make it more easy to run the examples out of the
box. For a production site, the catalogs (transformation, replica, site) may or may not be static or generated
by other tooling.

To test the examples, edit the submit script and change the cluster config to the setup and install locations for your
cluster. Then run:

163



Example Workflows

$ ./submt

The workflow should now be submitted and in the output you should see a work dir location for the instance. With
that directory you can monitor the workflow with:

$ pegasus-status [workdir]
Once the workflow is done, you can make sure it was sucessful with:

$ pegasus-anal yzer -d [workdir]

NASA/IPAC Montage

This example can be found under

shar e/ pegasus/ exanpl es/ gri d- nont age/

The NASA IPAC Montage (http://montage.ipac.caltech.edu/) workflow projects'/montages a set of input images from
telescopes like Hubble and end up with images like http://montage.ipac.caltech.edu/imagessm104.jpg . The test work-
flow isfor a1 by 1 degreestile. It has about 45 input images which al have to be projected, background modeled
and adjusted to come out as one seamless image.

Just like the Black Diamond above, thisexampleusesa. / subni t script.

The Montage DAX is generated with atool called mDAG shipped with Montage which generates the workflow.

Rosetta

This example can be found under

shar e/ pegasus/ exanpl es/ gri d-rosetta/

Rosetta (http://www.rosettacommons.org/) is a high resolution protein prediction and design software. Highlightsin
this example are:

¢ Using the Pegasus Java API to generate the DAX
« The DAX generator loops over the input PDBs and creates a job for each input

« Thejobsall have adependency on aflatfile database. For simplicity, each job dependson all thefilesin the database
directory.

¢ Job clustering is turned on to make each grid job run longer and better utilize the compute cluster

Just like the Black Diamond above, thisexampleusesa. / subni t script.

Condor Examples

Black Diamond - condorio

There are a set of Condor examples available, highlighting different data staging configurations.The most basic one
is condorio, and the example can be found under:

shar e/ pegasus/ exanpl es/ condor - bl ackdi anond- condori o/

This example is using the same abstract workflow as the Black Diamond grid example above, and can be executed
either on the submit machine (universe="local") or on aloca Condor pool (universe="vanilla").

Y ou can run this example with the . / submi t script. Example:

$ . /submt

164


http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/images/m104.jpg
http://www.rosettacommons.org/

Example Workflows

Container Examples

Montage Using Containers

This section contains an example of areal workflow running inside Singularity containers. The application is Montage
[http://montage.ipac.caltech.edu/] using the montage-v2 workflow [https://github.com/pegasus-isi/montage-work-
flow-v2]. Be aware that this workflow can be fairly data intensive, and when running with containers in condorio or
nonsharedfs data management modes, the data staging of the application data and the container image to each job can
result in anon-trivial amount of network traffic.

The software dependencies consists of the Montage software stack, and AstroPy. These are installed into the image
(see the Singularity file in the GitHub repository). The image has been made available in Singularity Hub [https.//
singularity-hub.org/].

Now that we have an image, the next step is to check out the workflow from GitHub, and use it to create an abstract
workflow description, a transformation catalog and a replica catalog. The montage-wor kflow.py command create all
this for us, but the command itself requires Montage to look up input data for the specified location in the sky. The
provide the environment, run this command inside the same Singularity image. For example:

singularity exec \
--bind $PWD: /srv --workdir /srv \
shub: //singul arity-hub. or g/ pegasus-i si / nont age- wor kf [ owv2 \
/ srv/ nont age- wor kf | ow. py \
--tc-target container \
--center "56.7 24.00" \
--degrees 2.0 \
--band dss: DSS2B: bl ue \
--band dss: DSS2R: green \
--band dss: DSS2I R red

The command executes adatafind for the 3 specified bands, 2.0 degrees around the location 56.7 24.00, and generates
aworkflow to combine the images into a single image. One extraflag is provided to et the command know we want
to execute the workflow inside containers: --tc-target container. The result is atransformation catalog in data/tc.txt

, with starts with:

cont nontage {
type "singularity"”
i mage "shub://singul arity-hub. org/ pegasus-i si/ nont age- wor kf | ow v2"
profile env "MONTAGE_HOVE" "/ opt/Montage"

}

tr nDiffFit {
site condor_pool {
type "I NSTALLED'
cont ai ner "nontage"
pfn “file:///opt/Mntage/bin/mDiffFit"
profile pegasus "clusters.size" "5"

Thefirst entry describes the container, where the image can be found (Singularity Hub in this example), and a special
environment variable we want to be set for the jobs.

The second entry, of which there are many more similar ones in the file, describes the application. Note how it refers
back to the "montage" container, specifying that we want the job to be wrapped in the container.

In the data/ directory. we can aso find the abstract workflow (montage.dax), and replica catalog (rc.dax). Note that
this are the same as if the workflow was running in a non-container environment. To plan the workflow:

pegasus-pl an \
--dir work \
--relative-dir “date + %' \
--dax data/ nont age. dax \
--sites condor_pool \

165


http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://singularity-hub.org/
https://singularity-hub.org/
https://singularity-hub.org/

Example Workflows

--output-site local \
--cluster horizontal

Local Shell Examples

Black Diamond

To aid in workflow development and debugging, Pegasus can now map aworkflow to alocal shell script. One advan-
tage is that you do not need a remote compute resource.

This example is using the same abstract workflow as the Black Diamond grid example above. The difference is that
aproperty is set in pegasusrc to force shell execution:

# tell pegasus to generate shell version of
# the workfl ow
pegasus. code. generator = Shel |

You can run this example with the. / submi t script.

Notifications Example

A new feature in Pegasus 3.1. is notifications. While the workflow is running, a monitoring tool is running side by
side to the workflow, and issues user defined notifications when certain events takes place, such as job completion or
failure. See notifications section for detailed information. A workflow example with notifications can be found under
examples/notifications. This workflow is based on the Black Diamond, with the changes being notifications added to
the DAX generator. For example, notifications are added at the workflow level:

# Create a abstract dag

di amond = ADAG "di anond")

# dax level notifications

di amond. i nvoke('all', os.getcwd() + "/ny-notify.sh")

The DAX generator also containsjob level notifications:

# job level notifications - in this case for at_end events
frr.invoke('at_end', os.getcwd() + "/ny-notify.sh")

These invoke lines specify that the my-notify.sh script will be invoked for events generated (all in the first case,
at_end in the second). The my-notify.sh script contains call outs sample notification tools shipped with Pegasus, one
for email and for Jabber/GTalk (commented out by default):

#!/ bi n/ bash

# Pegasus ships with a couple of basic notification tools. Below
# we show how to notify via enail and gtalk.

# all notifications will be sent to email
# change $USER to your full emmil addess
$PEGASUS HOVE/ | i bexec/ notification/emil -t $USER

# this sends notifications about failed jobs to gtalk.

# note that you can also set which events to trigger on in your DAX

# set jabberid to your gnmil address, and put in yout

# password

# uncomment to enable

if [ "X$PEGASUS_STATUS" != "x" -a "$PEGASUS_STATUS" != "0" ]; then

$PEGASUS_HOWVE/ | i bexec/ notification/jabber --jabberid FI XME@nuil.com\

--password FI XME \
--host tal k. googl e.com

fi

Workflow of Workflows

Galactic Plane

The Galactic Plane [http://en.wikipediaorg/wiki/Galactic_plane] workflow is a workflow of many Montage work-
flows. The output is a set of tiles which can be used in software which takes the tiles and produces a seamless image

166


http://en.wikipedia.org/wiki/Galactic_plane
http://en.wikipedia.org/wiki/Galactic_plane

Example Workflows

which can be scrolled and zoomed into. As this is more of a production workflow than an example one, it can be a
little bit harder to get running in your environment.

Highlights of the example are:

* The subworkflow DAXes are generated as jobs in the parent workflow - thisis an example on how to make more
dynamic workflows. For example, if you need ajob in your workflow to determine the number of jobsin the next
level, you can have thefirst job create a subworkflow with the right number of jobs.

« DAGMan job categories are used to limit the number of concurrant jobs in certain places. Thisis used to limit the
number of concurrant connections to the data find service, as well limit the number of concurrant subworkflows
to manage disk usage on the compute cluster.

« Job priorities are used to make sure we overlap staging and computation. Pegasus sets default priorities, which for
most jobs are fine, but the priority of the data find job is set explicitly to a higher priority.

« A specific output site is defined the the site catalog and specified with the --output option of subworkflows.

The DAX API has support for sub workflows:

renote_tile_setup = Job(nanespace="gp", nane="renote_tile_setup", version="1.0")
renote_til e_setup. addArgunent s("%05d" % (tile_id))
renote_tile_setup.addProfile(Profile("dagman", "CATEGORY", "renote_tile_setup"))
renote_til e_setup.uses(parans, |ink=Link.|NPUT, register=False)

renote_til e_setup.uses(ndagtar, |ink=Link.OUTPUT, register=Fal se, transfer=True)
uber dax. addJob(renpte_til e_setup)

subwf = DAX("9%05d.dax" % (tile_id), "1D¥®5d" % (tile_id))

subwf . addAr gunent s(" - Dpegasus. schenma. dax=%/ et c/ dax- 2. 1. xsd" 9% os. envi ron[ " PEGASUS_HOVE"] ),
"-Dpegasus. catalog.replica.file=%/rc.data" % (tile_work_dir),
"-Dpegasus. catalog.site.file=%/sites.xm" % (work_dir),
"-Dpegasus. transfer.links=true",
"--sites", cluster_nane,

"--cluster", "horizontal ",
"--basenane", "tile-9%95d" % (tile_id),

"--force",

"--output", output_nane)
subwf . addProfil e(Profil e("dagman", "CATEGORY", "subworkflow'))
subwf . uses(subdax_file, |ink=Link.|INPUT, register=False)
uber dax. addDAX( subwf )

167



Chapter 10. Data Management

Replica Selection

Each job in the DAX maybe associated with input LFN's denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus queries the Replica catalog to get all the PFN's (replicas)
associated with aLFN. The Replica Catalog may return multiple PFN'sfor each of the LFN's queried. Hence, Pegasus
needs to select a single PFN amongst the various PFN's returned for each LFN. This process is known as replica
selection in Pegasus. Users can specify the replica selector to use in the propertiesfile.

This document describes the various Replica Selection Strategies in Pegasus.

Configuration

The user properties determine what replica selector Pegasus Workflow Mapper uses. The property pegasus.selec-
tor.replicais used to specify the replica selection strategy. Currently supported Replica Selection strategies are

1. Default
2. Regex

3. Restricted
4. Local

The values are case sensitive. For example the following property setting will throw a Factory Exception .

pegasus. sel ector.replica default
The correct way to specify is

pegasus. sel ector.replica Default

Supported Replica Selectors

The various Replica Selectors supported in Pegasus Workflow Mapper are explained below.

Note

Starting 4.6.0 release the Default and Regex Replica Selectorsreturn an ordered list with priorities set. pega-
sus-transfer at runtimewill failover to alternate url's specified, if ahigher priority source URL isinaccessible.

Default

Thisis the default replica selector used in the Pegasus Workflow Mapper. If the property pegasus.selector.replicais
not defined in properties, then Pegasus uses this selector.

The selector orders the various candidate replica's according to the following rules

1. validfileURL's. That is URL'sthat have the site attribute matching the site where the executabl e pegasus-transfer
is executed.

2. al URL'sfrom preferred site (usually the compute site)
3. al other remotely accessible ( non file) URL's

To usethisreplica selector set the following property

168



Data Management

pegasus. sel ector.replica Def aul t

Regex
This replica selector allows the user to specific regular expressions that can be used to rank various PFN's returned
from the Replica Catalog for a particular LFN. This replica selector orders the replicas based on the rank. Lower the
rank higher the preference.
The regular expressions are assigned different rank, that determine the order in which the expressions are employed.
The rank values for the regex can expressed in user properties using the property.
pegasus. sel ector. replica. regex.rank. [val ue] regex- expressi on
The [valu€] in the above property is an integer value that denotes the rank of an expression with arank value of 1
being the highest rank.
For example, auser can specify the following regex expressions that will ask Pegasus to prefer file URL's over gsiftp
url's from example.isi.edu
pegasus. sel ector.replica.regex.rank. 1 file://l.*
pegasus. sel ector. replica. regex. rank. 2 gsiftp://exanple\.isi\.edu.*
User can specify as many regex expressions as they want.
Since Pegasusisin Java, the regex expression support iswhat Java supports. It is pretty close to what is supported by
Perl. More details can be found at http://java.sun.com/j2se/1.5.0/docs/api/javalutil/regex/Pattern.html
Before applying any regular expressions on the PFN's for a particular LFN that has to be staged to a site X, the file
URL 'sthat don't match the site X are explicitly filtered out.
To use thisreplica selector set the following property
pegasus. sel ector.replica Regex

Restricted

Thisreplicaselector, allows the user to specify good sites and bad sitesfor staging in datato a particular compute site.
A good site for a compute site X, is a preferred site from which replicas should be staged to site X. If there are more
than one good sites having a particular replica, then arandom siteis selected amongst these preferred sites.

A bad site for acompute site X, isasite from which replicas should not be staged. The reason of not accessing replica
from abad site can vary from the link being down, to the user not having permissions on that site's data.

The good | bad sites are specified by the following properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is taken to mean al
sites. The value to these propertiesis a comma separated list of sites.

For example the following settings

pegasus. sel ector.replica.*. prefer.stagein.sites usc
pegasus. replica.uwm prefer.stagein.sites isi,cit

meansthat prefer all replicasfrom siteusc for staging in to any compute site. However, for uwm use atighter constraint
and prefer only replicas from site isi or cit. The pool attribute associated with the PFN's tells the replica selector to
what site areplica/PFN is associated with.

The pegasus.replica* .prefer.stagein.sites property takes precedence over pegasus.replica* .ignore.stagein.sites prop-
erty i.e. if for asite X, asite Y is specified both in the ignored and the preferred set, then site Y is taken to mean as
only apreferred site for asite X.

169



Data Management

Local

To use this replica selector set the following property

pegasus. sel ector.replica Restricted

Thisreplica selector always prefers replicas from the local host ( pool attribute set to local ) and that start with afile:
URL scheme. It is useful, when users want to stagein files to a remote site from the submit host using the Condor
file transfer mechanism.

To use this replica selector set the following property

pegasus. sel ector.replica Local

Data Transfers

As part of the Workflow Mapping Process, Pegasus does data management for the executable workflow . It queries
a Replica Catalog to discover the locations of the input datasets and adds data movement and registration nodes in
the workflow to

1. stage-in input data to the staging sites ( a site associated with the compute job to be used for staging. In the shared
filesystem setup, staging site is the same as the execution sites where the jobs in the workflow are executed )

2. stage-out output data generated by the workflow to the final storage site.
3. stage-in intermediate data between compute sitesiif required.
4. dataregistration nodes to catalog the locations of the output data on the final storage site into the replica catal og.

The separate datamovement jobs that are added to the executable workflow are responsible for staging datato awork-
flow specific directory accessible to the staging server on a staging site associated with the compute sites. Depending
on the data staging configuration, the staging site for a compute site is the compute site itself. In the default case,
the staging server is usually on the headnode of the compute site and has access to the shared filesystem between the
worker nodes and the head node. Pegasus adds a directory creation job in the executable workflow that creates the
workflow specific directory on the staging server.

In addition to data, Pegasus will transfer user executables to the compute sites if the executables are not installed on
the remote sites before hand. This chapter gives an overview of how the transfers of data and executables are managed

in Pegasus.

Pegasus picks up filesfor datatransfers based on the transfer attribute associated with the input and output filesfor the
job. These are designated in the DAX as uses elements in the job element. If not specified, the transfer flag defaults
to true. So if you don't want al the generated files to be transferred to the output site, you need to explicitly set the
transfer flag to false for thefile.

<I'-- snippet of job description -->
<j ob id="1D000001" namespace="exanple" name="nDi ffFit" version="1.0"
node- | abel =" preprocess" >

<argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.bl"/></argunent>
<uses nanme="f.a" link="input" transfer="true" register="true"/>
<l-- tells Pegasus to not transfer the output file f.b to the output site -->
<uses nanme="f.b" link="output" transfer="false" register="false" />
</j ob>

Data Staging Configuration

Pegasus can be broadly setup to run workflows in the following configurations

¢ Shared File System

170



Data Management

Shared

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in adirectory on the shared filesystem.

NonShared FileSystem

This setup appliesto where the head node and the worker nodes of a cluster don't share afilesystem. Compute jobs
in the workflow run in alocal directory on the worker node

Condor Pool Without a shared filesystem
This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. Al

data |0 is achieved using Condor File |O. Thisisaspecial case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File 10 is used.

For the purposes of data configuration various sites, and directories are defined below.

1

Submit Host

The host from where the workflows are submitted . Thisiswhere Pegasus and Condor DAGMan areinstalled. This
isreferred to asthe " local" sitein thesitecatalog .

. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

. Staging Site

A siteto which the separate transfer jobsin the executable workflow (jobswith stage in, stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

. Output Site

The output site is the fina storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

. Input Site

The site where the input datais stored. The locations of the input data are catalogued in the Replica Catalog, and
the "site" attribute of the locations gives us the site handle for the input site.

. Workflow Execution Directory

Thisisthedirectory created by the create dir jobsin the executable workflow on the Staging Site. Thisisadirectory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

. Worker Node Directory

Thisisthe directory created on the worker nodes per job usually by the job wrapper that launches the job.

File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

171



Data Management

Figure 10.1. Shared File System Setup

- - ™
COMPUTE SITE

v STAGING SITE

\
' 2 WN
1 HEAD NODE

1
Can Execute an Submit

@ Host or Head Mode
ﬂﬂﬂﬂ - WHN

e

A

-
.‘: S Staging Job Trensfer
’ using pegesus-
w © Can Exscute on Sulbmit tranafer

Host or Heed Mode Compute Job Posix
-= [s]

-
-
-
-
-
-

WN [ \warker Mode

Stegein Job

. Stegeout Job

DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES RELYING ON A
. Compute Job

T
£
o
-

SHARED FILESYSTEM
COMPUTE AND STAGING SITE ARE SAME

The dataflow is asfollowsin this case

1. Stagein Job executes ( either on Submit Host or Head Node ) to stage in input data from Input Sites ( 1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on aworker node in the workflow execution directory. Accesses the input data using Posix 10

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
10

4. Stageout Job executes ( either on Submit Host or Head Node ) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip
Set pegasus.data.configuration to sharedfsto runin this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be afile server on the head node of a cluster or can be on a separate machine.

Setup

¢ compute and staging site are the different

« head node and worker nodes of compute site don't share a filesystem
¢ Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

172



Data Management

Figure 10.2. Non Shared Filesystem Setup

i cnmured )
4
Input Site 1 | | Input Site n Ny
- - 1 ETAGING SITE ¥ WN
L a FILE Server b
Can Execute on Submit —_ -_r—_—__;-_-;—_—_p-_-

Host or Head Nade

. A

Staging Job Transfer
- using pegasus-ranster

-~ © Can Execute on Submit
- Hest or Head Mode ==

- Compute Job Staging
- -—= using pegasus-fransier

Compute Job Posix 10

WHN ‘Worker Mode

Stagein Job

. Stageout Job
DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES AND NO
SHARED FILESYSTEM
COMPUTE AMD STAGING SITE ARE DIFFERENT . Computs Job

The dataflow is asfollowsin this case

1. Stagein Job executes ( either on Submit Host or on staging site) to stage in input data from Input Sites ( 1---n) to
aworkflow specific execution directory on the staging site.

2. Compute Job starts on aworker node in alocal execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to alocal directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10
5. Output Datais pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes ( either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup ashared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set p egasus.data.configuration to nonshar edfsto run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

In this setup, Pegasus always stages the input files through the staging sitei.e the stage-in job stagesin data from the
input site to the staging site. The PegasusL ite jobs that start up on the worker nodes, then pull the input data from the
staging site for each job. In some cases, it might be useful to setup the PegasusLite jobs to pull input data directly
from the input site without going through the staging server. This is based on the assumption that the worker nodes
can access the input site. Starting 4.3 release, users can enable this. However, you should be aware that the access to

173



Data Management

the input siteis no longer throttled ( asin case of stagein jobs). If large number of compute jobs start at the sametime
in aworkflow, theinput server will see a connection from each job.

Tip

Set pegasus.transfer.bypass.input.staging to trueto enable the bypass of staging of input files via the
staging server.

Condor Pool Without a Shared Filesystem

This setup appliesto acondor pool where the worker nodes making up acondor pool don't share afilesystem. All data
10 isachieved using Condor File IO. Thisisaspecial case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File 1O is used.

Setup

e Submit Host and staging site are same

» head node and worker nodes of compute site don't share a filesystem
¢ Input Datais staged from remote sites.

« Remote Output Sitei.e site other than compute site. Can be submit host.

Figure 10.3. Condor Pool Without a Shared Filesystem

- =,
CONDOR POOL OF
NODES
4
i
3 ¥ WH
!f
#| wn
e === i

Staging Job Transfer
using pegasus-transfer

Cen Execute on Submit

Compute Job Posix 10

\ Haost or Head Mode - =
—_—— Candor File b2
WH ‘Worker Nade

Stagein Job
. Stageout Job

DATA FLOW TO COMPUTE JOBS ON A CONDOR POOL WITH NO SHARED
FILESYSTEM AND USING CONDOR 10

SUBMIT HOST AND STAGING SITE ARE SAME

The data flow is asfollowsin this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites ( 1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on aworker nodein alocal execution directory. Before the compute job starts, Condor transfers
theinput data for the job from the workflow execution directory on thesubmit host to the local execution directory
on the worker node.

174



Data Management

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

6. Stageout Job executes ( either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup ashared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

In this setup, Pegasus always stages the input files through the submit host i.e the stage-in job stagesin data from the
input site to the submit host (local site). The input data is then transferred to remote worker nodes from the submit
host using Condor file transfers. In the case, where the input datais locally accessible at the submit host i.e the input
site and the submit host are the same, then it is possible to bypass the creation of separate stage in jobs that copy the
data to the workflow specific directory on the submit host. Instead, Condor file transfers can be setup to transfer the
input files directly from the locally accessible input locations ( file URL's with "site" attribute set to local) specified
in the replica catalog. Starting 4.3 release, users can enable this.

Tip
Set pegasus.transfer .bypass.input.staging to trueto bypass the creation of separate stage in jobs.

Local versus Remote Transfers

As far as possible, Pegasus will ensure that the transfer jobs added to the executable workflow are executed on the
submit host. By default, Pegasus will schedule atransfer to be executed on the remote staging site only if thereis no
way to execute it on the submit host. Some scenarios where transfer jobs are executed on remote sites are as follows:

« thefile server specified for the staging site/compute site is afile server. In that case, Pegasus will schedule all the
stage in data movement jobs on the compute site to stage-in the input data for the workflow.

¢ auser has symlinking turned on. In that case, the transfer jobs that symlink against the input data on the compute
site, will be executed remotely ( on the compute site).

In certain execution environments, such alocal campus cluster the compute site and the local share a filesystem (i.e.
compute site has file servers specified for the staging/compute site, and the scratch and storage directories mentioned
for the compute site arelocally mounted on the submit host), it isbeneficial to have the remote transfer jobsrun locally
and hence bypass going through the local scheduler queue. In that case, users can set a boolean profile auxillary.loca
in pegasus hamespace in the site catalog for the compute/staging site to true.

Users can specify the property pegasus.transfer.*.remote.sitesto change the default behaviour of Pegasus and force
pegasus to run different types of transfer jobs for the sites specified on the remote site. The value of the property isa
comma separated list of compute sites for which you want the transfer jobs to run remotely.

The table below illustrates all the possible variations of the property.

Table 10.1. Property Variationsfor pegasus.transfer.*.remote.sites

Property Name Appliesto

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

175



Data Management

Property Name Appliesto
pegasus.transfer.stageout.remote.sites the stage out transfer jobs
pegasus.transfer.inter.remote.sites the inter site transfer jobs
pegasus.transfer.* .remote.sites all types of transfer jobs

The prefix for the transfer job name indicates whether the transfer job is to be executed locallly (‘on the submit host )
or remotely ( on the compute site ). For example stage in_local_ in a transfer job name stage in_local_isi_viz_0
indicates that the transfer job is a stage in transfer job that is executed locally and is used to transfer input data to
compute siteisi_viz. The prefix naming scheme for the transfer jobsis [stage in|stage out|inter]_[local|remote]_ .

Controlling Transfer Parallelism

When it comesto datatransfers, Pegasus shipswith adefault configuration which istrying to strike a balance between
performance and aggressiveness. We obviously want data transfersto be as quick as possibly, but we also do not want
our transfers to overwhelm data services and systems.

Starting 4.8.0 release, the default configuration of Pegasus now adds transfer jobs and cleanup jobs based on the
number of jobs at aparticular level of the workflow. For example, for every 10 computejobson alevel of aworkflow,
one data transfer job( stage-in and stage-out) is created. The default configuration also sets how many threads such a
pegasus-transfer job can spawn. Cleanup jobs are similarly constructed with an internal ratio of 5.

Information on how to control the number of stagein and stageout jobs can be found in the Data Movement Nodes
section.

How to control the number of threads pegasus-transfer can use depends on if you want to control standard transfer
jobs, or PegasusLite. For the former, see the pegasus.transfer.threads property, and for the latter the pegasus.trans-
fer.lite.threads property.

Symlinking Against Input Data

If input data for a job aready exists on a compute site, then it is possible for Pegasus to symlink against that data.
In this case, the remote stage in transfer jobs that Pegasus adds to the executable workflow will symlink instead of
doing a copy of the data.

Pegasus determines whether afile is on the same site as the compute site, by inspecting the "site" attribute associated
with the URL in the Replica Catalog. If the "site" attribute of an input file location matches the compute site where
thejob is scheduled, then that particular input file is a candidate for symlinking.

For Pegasus to symlink against existing input data on a compute site, following must be true

1. Property pegasus.transfer.linksissetto true

2. Theinput file location in the Replica Catal og has the "site" attribute matching the compute site.
Tip
To confirm if a particular input file is symlinked instead of being copied, look for the destination URL for
that filein stage_in_remote*.in file. The destination URL will start with symlink:// .

In the symlinking case, Pegasus strips out URL prefix from a URL and replacesit with afile URL.

For exampleif auser hasthe following URL catalogued in the Replica Catalog for an input file f.input

f.input gsiftp://server.isi.edu/shared/storage/input/data/f.input site="isi"

and the compute job that requires this file executes on a compute site named isi , then if symlinking is turned on the
datastagein job (stage_in_remote viz_0) will have the following source and destination specified for the file

#viz viz
file:///shared/storage/input/data/f.input symink://shared-scratch/workflow exec-dir/f.input

176



Data Management

Addition of Separate Data Movement Nodes to Executable
Workflow

Pegasus relies on a Transfer Refiner that comes up with the strategy on how many data movement nodes are added
to the executable workflow. All the compute jobs scheduled to a site share the same workflow specific directory. The
transfer refiners ensure that only one copy of the input data is transferred to the workflow execution directory. This
is to prevent data clobbering . Data clobbering can occur when compute jobs of a workflow share some input files,
and have different stage in transfer jobs associated with them that are staging the shared files to the same destination
workflow execution directory.

Pegasus supports three different transfer refiners that dictate how the stagein and stageout jobs are added for the
workflow.The default Transfer Refiner used in Pegasus is the BalancedCluster Refiner. Starting 4.8.0 release, the
default configuration of Pegasus now adds transfer jobs and cleanup jobs based on the number of jobs at a particular

level of the workflow. For example, for every 10 compute jobs on alevel of aworkflow, one data transfer job( stage-
in and stage-out) is created.

The transfer refiners also allow the user to specify how many local remote stagein|stageout jobs are created per exe-
cution site.

The behavior of the refiners (BalancedCluster and Cluster) are controlled by specifying certain pegasus profiles
1. either with the execution sites in the site catalog

2. OR globally in the propertiesfile

Table 10.2. Pegasus Profile Keys For the Cluster Transfer Refiner

Profile Key Description

stagein.clusters This key determines the maximum number of stage-in
jobsthat are can executed locally or remotely per compute
site per workflow.

stagein.local.clusters Thiskey providesfiner grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.

stagein.remote.clusters Thiskey providesfiner grained control in determining the
number of stage-in jobsthat are executed remotely on the
remote site and are responsible for staging datato it.

stageout.clusters This key determines the maximum number of stage-out
jobsthat are can executed locally or remotely per compute
site per workflow.

stageout.local.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed locally and are
responsible for staging data from a particular remote site.

stageout.remote.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed remotely onthe
remote site and are responsible for staging data from it.

Tip
Which transfer refiner to useis controlled by property pegasus.transfer.refiner
BalancedCluster
Thisis a new transfer refiner that was introduced in Pegasus 4.4.0 and is the default one used in Pegasus. It does a

round robin distribution of the files amongst the stagein and stageout jobs per level of the workflow. The figure below
illustrates the behavior of this transfer refiner.

177



Data Management

Figure 10.4. BalancedCluster Transfer Refiner : Input Data To Workflow Specific Directory
on Shared File System

Addition of Data Stage-In and Stage-Out Nodes by the BalancedCluster Transfer Refiner

f.b1
fb1'

b1’ £b2'

f.b1.fb2 1b3', f.04'

f.b3,f.bd

Pegasus Profiles

For Balanced Cluster Refiner
stagein.clusters set to 2
stageout.clusters set fo 2

O Stage-In Transfer Node
Stage-Out o
. Trar\s?erNoda :31-;& ;.;‘;'.lgi'
3. 1.04
Compute Job
. scheduled at same
site

2. Workflow After Adding the Stage-In and Stage-Out Nodes

Cluster

Thistransfer refiner issimilar to BalancedCluster but differsin the way how distribution of files happen across stagein
and stageout jobs per level of the workflow. In this refiner, all the input files for a job get associated with a single
transfer job. Asillustrated in the figure below each compute usually gets associated with one stagein transfer job. In
contrast, for the BalancedCluster a compute job maybe associated with multiple data stagein jobs.

178



Data Management

Figure 10.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on
Shared File System

Addition of Data Stage-In and Stage-Out Nodes by the Cluster Transfer Refiner

f.b2.f.b2"

f.b1,fbl fb4fbd"

1.03,f.b3"

Pegasus Profiles For Cluster Refinel
stagein.clusters set to 2
stageout.clusters set to 2

Stage-In
Transfer Node
f.di, f.d1' f.d2, 1.d2'

Stage-Out . ‘
. Transfer Node -3, 1.d3 f.dd, .44

Compute Job

. scheduled at
same site

2. Workflow After Adding the Stage-In and Stage-Out Nodes

Basic

Pegasus also supports abasic Transfer Refiner that adds one stagein and stageout job per compute job of the workflow.
This is not recommended to be used for large workflows as the number of data transfer nodes in the worst case are
2n where n isthe number of compute jobs in the workflow.

Staging of Executables

Users can get Pegasus to stage the user executable ( executable that the jobsin the DAX refer to) aspart of thetransfer
jobs to the workflow specific execution directory on the compute site. The URL locations of the executable need to
be specified in the transformation catalog as the PFN and the type of executable needsto be setto STAGEABLE .
The location of atransformation can be specified either in

« DAX in the executable section. More details here .

¢ Transformation Catalog. More details here .

A particular transformation catalog entry of type STAGEABLE is compatible with a compute site only if al the
System Information attributes associated with the entry match with the System Information attributes for the compute
sitein the Site Catalog. The following attributes make up the System Information attributes

1. arch

2. 0s

3. osrelease

4. osversion

179



Data Management

Transformation Mappers

Pegasus has a notion of transformation mappers that determines what type of executable are picked up when a job
is executed on a remote compute site. For transfer of executable, Pegasus constructs a soft state map that resides on
top of the transformation catalog, that helps in determining the locations from where an executable can be staged to
the remote site.

Users can specify the following property to pick up a specific transformation mapper

pegasus. cat al og. t ransf or mati on. napper

Currently, the following transformation mappers are supported.

Table 10.3. Transformation M appers Supported in Pegasus

Transformation Mapper Description

Installed This mapper only relies on transformation catalog entries
that are of type INSTALLED to construct the soft state
map. This results in Pegasus never doing any transfer of
executable as part of the workflow. It always prefers the
installed executable at the remote sites

Staged This mapper only relies on matching transformation cate-
log entries that are of type STAGEABLE to construct the
soft state map. Thisresultsin the executable workflow re-
ferring only to the staged executable, irrespective of the
fact that the executable are already installed at the remote
end

All This mapper relies on all matching transformation catalog
entries of type STAGEABLE or INSTALLED for a par-
ticular transformation as valid sources for the transfer of
executable. Thisthe most general mode, and resultsin the
constructing the map as a result of the cartesian product
of the matches.

Submit This mapper only on matching transformation catal og en-
triesthat are of type STAGEABLE and reside at the sub-
mit host (site local), are used while constructing the soft
state map. Thisis especially helpful, when the user wants
to use the latest compute code for his computations on the
grid and that relies on his submit host.

Staging of Worker Package

The worker package contains runtime tools such as pegasus-kickstart and pegasus-transfer, and is required to be
available for most jobs.

How the package is made available to the jobs depends on multiple factors. For example, a pre-installed Pegasus can
be used if the location is set using the environment profile PEGASUS_HOME for the site in the Site Catal og.

If Pegasus is not already available on the execution site, the worker package can be staged by setting the following
property:

pegasus. transfer. wor ker. package true
Note that how the package is transferred and accessed differs based on the configured data management mode:
« sharedfs mode: the package is staged in to the shared filesystem once, and reused for all the jobs

« nonsharedfs or condorio mode: each job carries aworker package. Thisis obviously less efficient, but the size of
the worker package is kept small to minimize the impact of these extratransfers.

180



Data Management

Which worker package is used is determined in the following order:

e Thereis an entry for pegasus::worker executable in the transformation catalog. Information on how to construct
that entry is provided below.

e The planner at runtime creates a worker package out of the binary installation, and puts it in the submit directory.
This worker package is used if the OS and architecture of the created worker package match with remote site, or
there is an exact match with (osrelease and osversion) if specified by the user in the site catalog for the remote site.

« Theworker package compatible with the remote site is available as a binary from the Pegasus download site.

¢ Atruntime, in the nonsharedfs or condorio modes, extra checks are made to make sure the worker package matches
the Pegasus version and the OS and architecture. The reason is that these workflows might be running in an hetero-
geneous environment, and thus there is no way to know before the job starts what worker packageisrequired. If the
runtime check fails, aworker package matching the Pegasus version, OS and architecture will be downloaded from
the Pegasus download site. This behavior can be controlled with the pegasus.transfer.worker.package.autodown-
load and pegasus.transfer.worker.package.strict properties.

If you want to specify a particular worker package to use, you can specify the transformation pegasus::worker in
the transformation catalog with:

e typesetto STAGEABLE

¢ System Information attributes of the transformation catalog entry match the System Information attributes of the
compute site.

« the PFN specified should be aremote URL that can be pulled to the compute site.

# exanpl e of specifying a worker package in the transformation catal og
tr pegasus::worker {
site corbusier {
pfn "https://downl oad. pegasus. i si . edu/ pegasus/ 4. 8. 0dev/ pegasus- wor ker - 4. 8. Odev-
x86_64_macos_10.tar. gz"
arch "x86_64"
os " MACOSX"
type "I NSTALLED'
}
}

Staging of Application Containers

Pegasus treats containers as other files in terms of data management. Container to be used for ajob is tracked as an
input dependency that needs to be staged if it is not already there. Similar to executables, you specify the location for
your container imagein the Transformation Catal og. Y ou can specify the source URL'sfor containers asthefollowing.

1. URL to acontainer hosted on a central hub repository

Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://pegasus-isi/fedo-
ra-montage

2. URL to acontainer image file on afile server.

« Docker - Docker supports loading of containers from atar file, Hence, containers images can only be specified
as tar files and the extension for the filename is not important.

¢ Singularity - Singularity supports container imagesin various forms and relies on the extension in the filename
to determinewhat format thefileisin. Pegasus supportsthefollowing extensionsfor singul arity container images

e .img
o tar
o tar.gz

o tar.bz2

181



Data Management

e .cpio
e .cpio.gz
o of

Singularity will fail to run the container if you don't specify the right extension , when specify the source URL
for theimage.

In both the cases, Pegasus will place the container image on the staging site used for the workflow, as part of the data
stage-in nodes, using pegasus-transfer. When pulling in an image from a container hub repository, pegasus-transfer
will export the container as atar filein case of Docker, and as .img filein case of Singularity

Shifter Containers

Shifter containers are different from docker and singularity with respect to the fact that the containers cannot be ex-
ported to a container imagefilethat can reside on afilesystem. Additionally, the container are expected to be available
locally on the compute sites in the local Shifter registry. Because of this, Pegasus does not do any transfer of Shifter
containers. Y ou can specify a shifter container using the shifter url scheme. For example, below is a transformation
catalog for anamd transformation that is executed in a shifter container.

cont nand_i mage{
# can be either docker or singularity
type "shifter"

# image |l oaded in the local shifter repository at cor
image "shifter:///papajimnanmd_i mage: | atest"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
imge_site "cori"

}
tr nand2 {
site cori {
pfn "/opt/NAVD 2. 12_Li nux-x86_64-nul ti core/ nand2"
arch "x86_64"
0s "LINUX"
type "I NSTALLED"
cont ai ner "nand_i mage"
profile gl obus "maxTime" "20"
profile pegasus "exitcode.successnmsg" "End of progrant
}
}

Symlinking and File Copy From Host OS

Since, Pegasus by default only mounts the job directory determined by PegasusLite into the application container,
symlinking of input data sets works only if in the container definition in the transformation catalog user defines the
directories containing theinput datato be mounted in the container using the mount key word. We recommend to keep
the source and destination directoriesto be the samei.e. the host path is mounted in the same location in the container.

The aboveis also true for the case, where you input datasets are on the shared filesystem on the compute site and you
want afile copy to happen, when PegasusL ite job starts the container.

For example in the example below, we have input datasets accessible on /lizard on the compute nodes, and mounting
them as read-only into the container at /lizard

cont centos- base{
type "singularity"”

# URL to image in a docker hub or a url to an existing
# singularity image file
image "gsiftp://banboo.isi.edu/lfsl/ banboo-tests/datalcentos?.ing"

# optional site attribute to tell pegasus which site tar file
# exists. useful for handling file URL's correctly
image_site "local "

182



Data Management

# mount point in the container
mount "/lizard:/lizard:ro"

# specify env profile via env option do docker run

profile env "JAVA HOVE' "/opt/javal/l.6"
}

To enable symlinking for containers set the following properties

# Tells Pegasus to try and create syminks for input files
pegasus.transfer.links true

# Tells Pegasus to by the staging site ( creation of stage-in jobs) as
# data is available directly on conpute nodes
pegasus. transfer. bypass. i nput.stagi ng true

f you don't set pegasus.transfer.bypass.input.staging then you still can have symlinking if

1. your staging site is same as your compute site

2. the scratch directory specified in the site catalog is visible to the worker nodes

3. you mount the scratch directory in the container definition, NOT the original source directory.

Enabling symlinking of containersis useful, when running large workflows on a single cluster. Pegasus can pull the
image from the container repository once, and place it on the shared filesystem where it can then be symlinked from,
when the PegasusLite jobs start on the worker nodes of that cluster. In order to do this, you need to be running the
nonsharedfs data configuration mode with the staging site set to be the same as the compute site.

Staging of Job Checkpoint Files

Pegasus has support for transferring job checkpoint files back to the staging site, when a job exceeds it's advertised
running time. In order to use this feature, you need to

1. Associate a job checkpoint file ( that the job creates ) with the job in the DAX. A checkpoint file is specified by
setting the link attribute to checkpoint for the usestag.

2. Associate a Pegasus profile key named checkpoint.timeisthetimein minutes after which ajob is sent the TERM
signal by pegasus-kickstart, telling it to create the checkpoint file.

3. Associate aPegasus profile key named maxwalltime with the job that specifies the max runtime in minutes before
thejob will bekilled by the local resource manager ( such as PBS) deployed on the site. Usually, this value should
be associated with the execution site in the site catal og.

Pegasus planner uses the above mentioned profile keys to setup pegasus-kickstart such that the job is sent a TERM
signal when the checkpoint time of job isreached. A KILL signal is sent at (checkpoint.time + (maxwalltime-check-
point.time)/2) minutes. This ensures that there is enough time for pegasus-lite to transfer the checkpoint file before
thejob iskilled by the underlying scheduler.

Supported Transfer Protocols

Pegasus refers to a python script called pegasus-transfer as the executable in the transfer jobs to transfer the data.
pegasus-transfer looks at source and destination url and figures out automatically which underlying client to use.
pegasus-transfer is distributed with the PEGASUS and can be found at $PEGASUS _HOME/bin/pegasus-transfer.

Currently, pegasus-transfer interfaces with the following transfer clients

Table 10.4. Transfer Clientsinterfaced to by pegasus-transfer

Transfer Client Used For
gfal-copy staging file to and from GridFTP servers

183



Data Management

Transfer Client Used For

globus-url-copy staging files to and from GridFTP servers, only if gfal is
not detected in the path.

gfal-copy staging files to and from SRM or XRootD servers

wget staging filesfrom aHTTP server

cp copying filesfrom a POSIX filesystem

In symlinking against input files

pegasus-s3 staging filesto and from S3 bucketsin Amazon Web Ser-
vices

gsutil staging files to and from Google Storage buckets

scp staging files using scp

gsiscp staging files using gsiscp and X509

iget staging files to and from iRODS servers

htar to retrieve input files from HPSS tape storage

docker to pull images from Docker hub

singularity to pull images from Singularity hub and Singularity li-
brary (Sylabs Cloud)

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of PEGASUS HOME env profile
specified in the site catalog. To specify adifferent path to the pegasus-transfer client , users can add an entry into the
transformation catalog with fully qualified logical name as pegasus.: pegasus-tr ansfer

Amazon S3 (s3://)

Pegasus can be configured to use Amazon S3 as a staging site. In this mode, Pegasus transfers workflow inputs from
theinput siteto S3. When ajob runs, theinputsfor that job are fetched from S3 to the worker node, thejob is executed,
then the output files are transferred from the worker node back to S3. When the jobs are complete, Pegasus transfers
the output data from S3 to the output site.

In order to use S3, it is necessary to create a config file for the S3 transfer client, pegasus-s3. See the man page for
details on how to create the config file. Y ou aso need to specify S3 as a staging site.

Next, you need to modify your site catalog to tell the location of your s3cfg file. See the section on credential staging.

The following site catalog shows how to specify the location of the s3cfg file on the local site and how to specify
an Amazon S3 staging site:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://pegasus.isi.edu/ schena/sitecatal og
http://pegasus.isi.edu/ schema/sc-3.0.xsd" version="3.0">
<site handl e="local " arch="x86_64" os="LI NUX">
<head- f s>
<scratch>
<shared>
<file-server protocol="file" url="file://" mount-point="/tnp/w/work"/>
<i nternal - nount - poi nt nount - poi nt ="/t np/ wf / wor k" / >
</ shar ed>
</ scratch>
<storage>
<shared>
<file-server protocol="file" url="file://" mount-point="/tnp/w/storage"/>
<i nt er nal - nount - poi nt nount - poi nt ="/t np/ wf/ st orage"/ >
</ shar ed>
</ storage>
</ head- f s>
<profil e namespace="env" key="S3CFG'>/ hone/ usernane/.s3cfg</profile>

</site>
<site handl e="s3" arch="x86_64" os="LI NUX">
<head- f s>

184



Data Management

<scratch>
<shar ed>
<l-- wf-scratch is the name of the S3 bucket that will be used -->
<file-server protocol ="s3" url="s3://user @mazon" nount-poi nt="/wf-scratch"/>
<i nt ernal - mount - poi nt nount - poi nt ="/ wf -scratch"/>
</ shar ed>
</ scratch>
</ head- f s>

</site>
<site handl e="condor pool " arch="x86_64" os="LI NUX">
<head- f s>

<scratch/ >
<st or age/ >
</ head- f s>
<profil e namespace="pegasus" key="styl e">condor</profile>
<profil e namespace="condor" key="universe">vanilla</profile>
<profil e namespace="condor" key="requirenments">(Target.Arch == "X86_64")</profil e>
</site>
</ sitecatal og>

Docker (docker://)

Container images can be pulled directly from Docker Hub using Docker URLs. Example: docker://pegasus/osg-el 7
Example: docker://pegasus/osg-€l7

Only public images are supported at thistime.

Singularity (<shub | library>://)

Container images can be pulled directly from Singularity hub and Singularity library depending on the version of
Singularity installed on anode requiring the container image. Singularity hub imagesrequire at least Singularity v2.3,
while Singularity library images require at least Singularity v3.0.

Example: shub://vsoch/singularity-images
Example: library://sylabsed/examples/lolcow

Only public images are supported at thistime.

File / Symlink (file:// , symlink://)
GridFTP (gsiftp://)

Preference of GFAL over GUC

JGlobusisno longer actively supported and isnot in compliance with RFC 2818 [ https://docs.globus.org/security-bul -
leting/2015-12-strict-mode] . As aresult cleanup jobs using pegasus-gridftp client would fail against the servers sup-
porting the strict mode. We have removed the pegasus-gridftp client and now use gfal clients as globus-url-copy does
not support removes. If gfal isnot available, globus-url-copy isused for cleanup by writing out zero bytesfilesinstead
of removing them.

If you want to force globus-url-copy to be preferred over GFAL, set the PEGASUS FORCE_GUC=1 environment
variable in the site catalog for the sites you want the preference to be enforced. Please note that we expect globus-
url-copy support to be completely removed in future releases of Pegasus due to the end of life of Globus Toolkit (see
announcement [ https://www.globus.org/bl og/support-open-source-globus-tool kit-ends-january-2018]).

GridFTP over SSH (sshftp://)

Instead of using X.509 based security, newer version of Globus GridFTP can be configured to set up transfers over
SSH. See the Globus Documentation [http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-con-
fig-security-sshftp] for details on installing and setting up this feature.

185


https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp

Data Management

Pegasus requires the ability to specify which SSH key t