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1 Introduction

Gravitational waves (GW) are usually described by a simmetric tensor hij(t) defined in
the transverse-traceless gauge (TT). In the coordinate wave frame, the tensor assumes
a simple form characterized by only two components, h+ and h×.
The IFO’s detector response to GW depends on the orientation of the two arms with
respect to the wave incoming direction and it is well described by two quantities: the
antenna patterns (F+, F×), defined as the product between the detector tensor D and
the wave tensor (h+,h×), as in the following:[

F+

F×

]
=

[
Dxx Dxy

Dyx Dyy

] [
h+

h×

]
(1)

Using antenna patterns we can define the detector response to a gravitational signal ξ
as:

ξ = F+h+ + F×h× (2)

To simplify notations, we can define complex waveforms and antenna patterns as:

u = h+ + ih× (3)

A = F+ + iF× (4)

where i is the imaginary unity. Using this notation the detector response becomes:

ξ = u · Ã+ ũ ·A (5)

and a gauge transformation in the wave coordinate frame is described by a rotation of
the type:

A′ = eiψA
u′ = eiψu

(6)

hence, a gauge transformation does not change the detector response.
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2 Likelihood analysis

2.1 A single detector

For our considerations we can use hypothesis test. This suggests to define a decision
rule to select one of two mutually exclusive hypotheses: the absence (H0, null) and the
presence (H1, alternative) of signals in the data stream.
Consider x = {x[1], x[2], ..., x[I]} as the detector data, the H0 and H1 are described by
the two probability densities p(x|H0) and p(x|H1). Any decision rule is associated to a
threshold applied to these densities, and it is characterized by the table below.

Signal presence
Yes No

Hypothesis
Yes True Alarm False Alarm
No False Dismissal True Dismissal

Table 1: Right and wrong possible outcomes from decision rules. Each outcome has an associated
probability.

The Neyman-Pearson criterion says that in the case that the H1 hypothesis is a
simple one, the optimal decision rule has the least false dismissal probability for fixed
false alarm probability, i.e. the rule rejects H0 when the likelihood ratio Λ(x) is greater
than a threshold value fixed by the specified false alarm probability, Λ(x) defined as:1

Λ(x) =
p(x|H1)
p(x|H0)

(7)

In the GW data analysis, if considering a Gaussian white noise with zero mean, the
probabilities densities are:

p(x|H0) =
I∏
i=1

1√
2πσ

exp

(
−x

2[i]
2σ2

)
(8)

p(x|H1) =
I∏
i=1

1√
2πσ

exp

(
−(x[i]− ξ[i])2

2σ2

)
(9)

where σ is the standard deviation of the noise.
We use the logaritmic value of the likelihood ratio, which we call likelihood functional

(o simply likelihood):

L = ln(Λ(x)) =
I∑
i=1

1
σ2

(
x[i]ξ[i]− 1

2
ξ2[i]

)
(10)

1In the case that H1 is a multiple hypothesis, we cannot use this approach. However, Neymann-
Pearson have demonstrated that we can substitute the likelihood ratio with the ratio of maxima among
the two hypothesis distributions.
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2.2 A network of detectors

The same formalism can be extended to a network of N detectors. So, detector response
of the k detector is given by:

ξ = uk · Ãk + ũk ·Ak (11)

and the total likelihood becomes:

L =
N∑
k=1

I∑
i=1

1
σ2
k

(
xk[i]ξk[i]−

1
2
ξ2k[i]

)
(12)

To simplify notations, it is useful to use a N-dimensional space, where each dimension
represents a particular detector. In this space, each vector has N components. So:

F+ = {F1+, F2+, ..., FN+}
F× = {F1×, F2×, ..., FN×}

σ = {σ1, σ2, .../σN}
u = {u1, u2, ..., uN}
A = {A1, A2, ..., AN}

(13)

We can also define the network antenna patterns:

gr =
N∑
k=1

Ak · Ãk
σ2
k

(14)

gc =
N∑
k=1

A2
k

σ2
k

(15)

We focus on the transformation which allows that the imaginary part of gc is null:s i.e.
if gc = |gc|e2iγ the transformation is: A′k = Ake

−iγ .

F ′
k+ = Fk+Cos(γ) + Fk×Sin(γ)

F ′
k× = −Fk+Sin(γ) + Fk×Cos(γ)

(16)

We can see that the imaginary part of g′c equal to zero is equivalent to the orthogonality

of the two vectors: f ′+ = {F
′
1+

σ1
, ...,

F ′
N+

σN
} and f ′× = {F

′
1×
σ1
, ...,

F ′
N×
σN

}, infact if we define the
vector As = {A1

σ1
, ..., AN

σN
}:

A′2s = A′s ·A′s =
= (f ′+ + i · f ′×) · (f ′+ + i · f ′×) =

= f ′2+ − f ′2× + 2i(f ′+ · f ′×)

(17)

We call this frame Dominant Polarization Frame (DPF).
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From the previous equation we can define the transformation from a general frame
(f+, f×) to the DPF frame (f ′+, f

′
×), i.e. to define the angle γ as a function of (f+, f×).

f2
+−f2

×+2i(f+ ·f×) = A2
s = |As|eiγ |As|eiγ = |As|2e2iγ = |As|2[Cos(2γ)+iSin(2γ)] (18)

From this we have:
Cos(2γ)|As|2 = (f2

+ − f2
×)

Sin(2γ)|As|2 = 2(f+ · f×)
(19)

These are the transformation from the frame (f+, f×) to the DPF frame. We should
calculate from these equalities the expression of Cos(γ) and Sin(γ), but we are not
interested in it for the following considerations.

We can easily see that these transformations assure the orthogonality of f+ and f×
vectors. Infact:

f ′+ · f ′× = (f+Cos(γ) + f×Sin(γ)) · (f+Sin(γ) + f×Cos(γ)) =

= −(f2
+ − f2

×)Cos(γ)Sin(γ) + (f+ · f×)(Cos2(γ)− Sin2(γ)) =

= −(f2
+ − f2

×)Sin(2γ)/2 + (f+ · f×)Cos(2γ) = 0

(20)

We can calculate see that the DPF antenna patterns are related to the network
antenna patterns (Eq: 14 and 15).

|f ′+|2 = |f+Cos(γ) + f×Sin(γ)|2 =

= f2
+Cos

2(γ) + f2
×Sin

2(γ) + (f+ · f×)Cos(γ)Sin(γ) =

= f+
1 + Cos(2γ)

2
+ f×

1− Cos(2γ)
2

+ (f+ · f×)
Sin(2γ)

2
=

=
1
2
((f2

+ + f2
×) + |A2

s|) =
1
2
(|A|+ |A2

s|)

(21)

E analogamente per |f ′×|2

|f ′×|2 =
1
2
(|A| − |A2

s|) (22)

Into the DPF, the likelihood assumes a simple form.2

If we define the normalized vector: X = {x1
σ1
, ..., xn

σN
} and Ξ = { ξ1σ1

, ..., ξnσN
}, the likelihood

becomes:

L =
(
X · Ξ− 1

2
Ξ · Ξ

)
=[

X · (f ′+h+ + f ′×h×)− 1
2
(f ′+h+ + f ′×h×) · (f ′+h+ + f ′×h×)

]
=[

X · f ′+h+ +X · f ′×h× −
1
2
(f

′2
+ h

2
+ + f

′2
× h

2
×)

] (23)

2In the following equations we do not consider the
P

i, but it should be still present.
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where the last equality holds only in the DPF. The maximum likelihood is calculated
from δL

δh+
= 0 and δL

δh×
= 0:

δL
δh+

= X · f ′+ − |f ′+|2h+ = 0
δL
δh×

= X · f ′× − |f ′×|2h× = 0
(24)

which gives the solutions:
h+ =

X·f ′+
|f ′+|2

h× =
X·f ′×
|f ′×|2

(25)

The maximum likelihood is given by these solutions to the equation:

L =
[
X · f ′+h+ +X · f ′×h× −

1
2
(f

′2
+ h

2
+ + f

′2
× h

2
×)

]
=[

X · f ′+
X · f ′+
|f+|2

+X · f ′×
X · f ′×
|f ′×|2

− 1
2

(
f
′2
+

(X · f ′+)2

|f+|4
+ f

′2
×

(X · f ′×)2

|f ′×|4

)]
=(

(X · f ′+)2

|f ′+|2
+

(X · f ′×)2

|f ′×|2

) (26)

This is equivalent to project the x vector on the plane defined by f ′+ and f ′× (see Fig.
1). We define as u the projection of X in the f ′+ and f ′× plane.

u = f ′+
X · f ′+
|f ′+|

+ f ′×
X · f ′×
|f ′×|

(27)

However, it is not necessary to use te DPF to project x in the f ′+ - f ′× plane. Infact
from Eq. 16 we see that the planes defined from f ′+ - f ′× and f+ - f× are the same,
because the vectors that generate them are related by a linear composition. So, the u
vector is the same in the two frames. Unfortunately, in the starting frame f+ and f×
are not orthogonal, so we cannot use the quantity X · f+ and X · f× to construct the
vector u. However, we can solve the problems using the curl.

In Fig. 2 we introduce the vector f+× f×, which describes the sub-space orthogonal
to the plane f+ - f×. Then we define the vector v, v = X × (f+× f×). This vector is on
the plane f+ - f× and it is orthogonal to X. So, if we define the vector u′ = −v×(f+×f×),
u is on the plane f+ - f× (because it is orthogonal to f+ × f×) and (apart from the
module) it is the projection of X (because it is othogonal to v, which is orthogonal to
X, see Appendix A for more details). The vector u’ differ from the likelihood only for
the module, so to obtain the likelihood we should project X on u’, so:

L =
(x · u′)2

|u′|2
(28)

From now we will not distinguish between u and u′, because they difference only for the
module, and in the likelihood calculation we normalize for the module of the vector u
used.

5



Figure 1: Dominant Polarization Frame

Figure 2: General Frame, F+ and F× are not orthogonal
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3 Application

We have many degrees of freedom when analysing data. Because of this, it is possible
to obtain unphysical solutions. Now we focus on how to avoid this. We remind the
definition on the likelihood:

L =
∑
k

(
x2
k

σ2
k

− (xk − ξk)2

σ2
k

)
(29)

We remember the following definitions:

fk+ = Fk+

σk
fk× = Fk×

σk
X = xk

σk
(30)

With this notations the detector response can be written: ξ = f+h+ + f×h×
From previous consideration, we consider the value of L obtained projecting X on the
F+ - F× plane. We can define two quantities: L+ e L× such as L = L+ + L×. In the
Dominant Polarization Frame

L+ ∼ (Xf+)2

|f+|2 L× ∼ (Xf×)2

|f×|2 (31)

The difference between the two vectors ξ e X is the detectors noise (X = ξ + n).
Referring to the Fig. 2, we define the vector h as the projection of X on u ((u ·X)/|u|2 =
h), so for each detector k : ξk = ukh.

The following equation is valid:∑
k

< Xkξk >=
∑
k

< ξ2k > (32)

where the second part is the total reconstructed energy. We have also:∑
k

| < Xkξk > − < ξ2k > | 6= 0 (33)

These informations are useful to avoid unphysical solutions, if we consider the null
stream:

n2
k = (Xk − ξk)2 = X2

k − ξ2k − 2(Xkξk − ξ2k) (34)

we see that this quantity is positive defined, but it is not always ensured by the second
part of the equation. To fix positivity, we can consider the situation X2

k > ξ2k, but it
is better to find the coordinate frame in which the quantity Xkξk − ξ2k is minimal. We
define the quantity energy disbalance:3

qk =
Xkξk − ξ2k

h
= Xkuk − u2

kh (35)

3We decide to divide the quantity Xkξk− ξ2
k to h because in this way we do not consider the solution:

h = 0
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which depends on the u vector. We can consider the angle ψ defined by the two vectors
ξ and f+, so u = u(ψ):

u = u0Cos(ψ) + v0Sin(ψ)
v = −u0Sin(ψ) + v0Cos(ψ)

(36)

where v = ∂u
∂ψ is orthogonal to u if |u0| = |v0| = 1 (Fig. 2).

We find the minimum of the expression: ∂
∂ψ (q · q) = 0. We define the vector p such

as ∂
∂ψ (q · q) = −2q · p, i.e.:

qk = Xkuk − u2
kh

pk = (2ukh−Xk)vk + u2
k(X · v)/|u|2 (37)

Infact

pk =− ∂q

∂ψ
= − ∂

∂ψ
(Xkuk − u2

kh)

= −[Xk
∂uk
∂ψ

− 2ukh
∂uk
∂ψ

− u2
k(X · ∂uk

∂ψ
)]

= −[Xkvk − 2ukhvk − u2
k(x · v)] = (2ukh−Xk)vk + u2

k(X · v)

(38)

We normalize the disbalance for the quantity Xk

X2
k+δ

. In this way the detectors in the
network are comparable, otherwise there could be a detector with a big disbalance and
a small SNR that could modify consistently the minimum.

If we consider the cases when ψ ∼ 0, the previous equation can be written (see
Appendix B):

q ∼ q0Cos(ψ)− p0Sin(ψ)
p ∼ q0Sin(ψ) + p0Cos(ψ)

(39)

so the q · p = 0 is satisfied by:

Cos(2ψ) = p2
0 − q20

Sin(2ψ) = 2(q0 · p0)
(40)

So we can calculate the maximum likelihood, defined as the projection of X on u (L =
(X · u)2/|u|2).

4 Regulators

We have defined the maximum likelihood starting from the definition of useful quantities:
u, h = (X ·u)/|u|2, ξk = hk. Starting from these vectors, we find the minimum of energy
disbalance to find the correspondence likelihood. The problem of minimum is not easily
solvable, because it is possible to have more local minima. We should adopt a criterium
to choose the right local minimum. One solution is to use a regulator to define the best
guess of u and than find the estimator for the closest minimum.
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The use of regulators is defined by the introduction of the two variable quantities
(δ+, δ×) at the definition of u in the DPF:

u = f+
X · f+

|f+|2 + δ+
+ f×

X · f×
|f×|2 + δ×

∝

∝ f+(X · f+)(|f×|2 + δ×) + f×(X · f×)(|f+|2 + δ+)
(41)

We can use for instance the following regulators:

� weak: u is aligned with ξ → δ+ = 0, δ× = 0

� soft: u is between f+ and ξ → δ+ = ∞, δ× = ∞

� hard: u is aligned with f+ → δ+ = 0, δ× = ∞

� mild: u = f+ ± f× → δ+ 6= 0, δ× 6= 0

5 Appendix A

We explain how to calculate the vector u in the Fig. 2 in the reference frame (f+, f×)
without using the DPF.
Remembering that u = −v × (f+ × f×) and the equality:

a× (b× c) = b(a · c)− c(a · b) (42)

we have:
u = −v × (f+ × f×) = −f+(v · f×) + f×(v · f+) (43)

The vector u is on the plane f+ - f×, so we can define it as a linear combination of the
two vectors: u = f+uc + f×us. Comparing this equality with the previous equation we
have: uc = −v · f× and us = v · f+.
Remebering the definition of v:

v = X × (f+ × f×) = f+(X · f×)− f×(X · f+) = f+X× − f×X+ (44)

where we have defined the quantities: X+ = X · f+ and X× = X · f×. Then:

uc = −v · f× = −(f+X× − f×X+) · f× = X+(f× · f×)−X×(f+ · f×)
us = v · f+ = (f+X× − f×X+) · f+ = X×(f+ · f+)−X+(f× · f+)

(45)

6 Appendix B

The equation 39 is an approximation for ψ ∼ 0. We have:

u = u0Cos(ψ) + v0Sin(ψ)
v = −u0Sin(ψ) + v0Cos(ψ) = ∂u

∂ψ

qk = Xkuk − u2
kh

pk = − ∂q
∂ψ = (2ukh−Xk)vk + u2

k(X · v)

(46)
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To obtain this approximation, we express q as a function of u0, v0, Cos(ψ) and Sin(ψ).
The k index refer to the detectors involved. We use the conventions previously intro-
duced: quantities with k index are vector components. So the scalar product ( · ) refers
to the sum between indexes k.

q =Xu− u2h =
X(u0Cos(ψ) + v0Sin(ψ))+

− (u0Cos(ψ) + v0Sin(ψ))2[X · (u0Cos(ψ) + v0Sin(ψ))]

(47)

In the limit ψ → 0, then Sinn(ψ) ∼ 0 for n ≥ 2:

Sin2(ψ) ∼ 0
Cos2(ψ) = 1− Sin2(ψ) ∼ 1

(48)

So, the previous equation is simplified as:

q =Xu− u2h ∼

Xu0Cos(ψ) +Xv0Sin(ψ)+

− (u2
0 + 2u0v0Cos(ψ)Sin(ψ))[(X · u0)Cos(ψ) + (X · v0)Sin(ψ)] =

Cos(ψ)[Xu0 − u2
0(X · u0)]+

Sin(ψ)[Xv0 − u2
0(X · v0)− 2u0v0(X · u0)] =

Cos(ψ)[Xu0 − u2
0(X · u0)]+

− Sin(ψ)[(2u0h0 −X)v0 + u2
0(X · v0)] =

Cos(ψ)q0 − Sin(ψ)p0

(49)

For p vector we repeat the same procedure.
p = (2uh−X)v + u2(X · v) = 2uhv −Xv + u2(X · v), we consider term by term.

uhv =[u0Cos(ψ) + v0Sin(ψ)][X · (u0Cos(ψ) + v0Sin(ψ))][−u0Sin(ψ) + v0Cos(ψ)] ∼
[(X · u0)Cos(ψ) + (X · v0)Sin(ψ)][(−u2

0 + v2
0)Cos(ψ)Sin(ψ) + u0v0] =

(X · u0)(−u2
0 + v2

0)Sin(ψ) + (X · u0)u0v0Cos(ψ) + (X · v0)u0v0Sin(ψ)
(50)

u2(X · v) =(u0Cos(ψ) + v0Sin(ψ))2[X · (−u0Sin(ψ) + v0Cos(ψ))] ∼
(u2

0 + 2u0v0Cos(ψ)Sin(ψ))(−(X · u0)Sin(ψ) + (X · v0)Cos(ψ)) =

− u2
0(X · u0)Sin(ψ) + u2

0(X · v0)Cos(ψ) + 2u0v0(X · v0)Sin(ψ)

(51)
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and adding the terms:

p =2uhv −Xv + u2(X · v) ∼

2[(X · u0)(−u2
0 + v2

0)Sin(ψ) + (X · u0)u0v0Cos(ψ) + (X · v0)u0v0Sin(ψ)]+
− [−Xu0Sin(ψ) +Xv0Cos(ψ)]+

− u2
0(X · u0)Sin(ψ) + u2

0(X · v0)Cos(ψ) + 2u0v0(X · v0)Sin(ψ) =

=Sin(ψ)[2(X · u0)(−u2
0 + v2

0) + 2(X · v0)u0v0 +Xu0 − u2
0(X · u0) + 2u0v0(X · v0)]

Cos(ψ)[2(X · u0)u0v0 −Xv0 + u2
0(X · v0)] =

=Sin(ψ)q0 + Cos(ψ)p0 + small terms...
(52)

Starting from the equations:

q = q0Cos(ψ)− p0Sin(ψ)
p = q0Sin(ψ) + p0Cos(ψ)

(53)

We can find the minimum:

q · p =(q0Cos(ψ)− p0Sin(ψ))(q0Sin(ψ) + q0Cos(ψ)) =

(q20 − p2
0)Sin(ψ)Cos(ψ) + (q0 · p0)[Cos2(ψ)− Sin2(psi)] =

(q20 − p2
0)Sin(2ψ)/2 + (q0 · p0)Cos(2ψ)

(54)

so q · p = 0 is satisfied by:
Cos(2ψ) = p2

0 − q20
Sin(2ψ) = 2(q0 · p0)

(55)

7 Appendix C

The role of regulators is to decide a position in the (F ′
+, F ′

×) DPF plane to use as a
starting point to calculate the likelihood value. From this starting point, the algorithm
calculate the position in the plane which has the minimum value of energy disbalance.
We have just defined the regulators in the DPF, moreover we can find the expression of
u for each regulator also in the general frame (F+, F×). In general we can express u in
the following form:

u = f+uc + f×us (56)

In the Appendix A we have calculated the u vector in the weak definition, which
assumes that the u vector is aligned with ξ, and conseguently with X.

uc(weak) = −v · f× = −(f+X× − f×X+) · f× = X+(f× · f×)−X×(f+ · f×)
us(weak) = v · f+ = (f+X× − f×X+) · f+ = X×(f+ · f+)−X+(f× · f+)

(57)
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We can calculate the soft definition of u from this equation. Infact the soft can be
obtained assuming that δ+, δ× → ∞. This means that in the previous definition only
the first term is important.

uc(soft) = limδ+,δ×→∞ uc(weak) = X+

us(soft) = limδ+,δ×→∞ us(weak) = X×
(58)

The hard definition of u can be found taking in account that we are interested only
in the u direction and not in the module. So for this regulator u = f ′+, but from Eq. 16
we have that f ′+ = f+Cos(γ) + f×Sin(γ). Because we are interested only in direction,
we calculate the quantity Cos(γ)u instead of u. So ,we have:

Cos(γ)u = f+Cos
2(γ) + f×Sin(γ)Cos(γ) = f+

1
2
[1 + Cos(2γ)] + f×

1
2
Sin(2γ) (59)

and from Eq. 19 we have:

Cos(γ)u = f+
1
2

[
1 +

f2
+ − f2

×
|A|2

]
+ f×

f+ · f×
|A|2

(60)

So, multipling by |A|2 = |A2| and discarding about the factors on the left part we have
the expression for uc and us:

uc(hard) = 1
2 |A|

2 + (f2
+ − f2

×)
us(hard) = f+ · f×

(61)

Finally the mild regulator defines u = f ′+ ± f ′×.We can repeat the same procedure
for the hard regulator.

Cos(γ)u = Cos(γ)(f ′+ ± f ′×) =

= (f+Cos
2(γ) + f×Cos(γ)Sin(γ))± (−f+Cos(γ)Sin(γ) + f×Cos

2(γ)) =

= f+(Cos2(γ)∓ Cos(γ)Sin(γ)) + 1/2f×(Sin(γ)Cos(γ)± 2Cos2(γ)) =

= f+

[
1
2

(
1 +

f2
+ − F 2

×
|A|2

)
∓ f+ · f×

|A|2

]
+ f×

[
f+ · f×
|A|2

± 1
2

(
1 +

f2
+ − f2

×
|A|2

)]
(62)

Repeating the procedure of multipling for |A|2 and discarding for the common factor,
we obtain the final form:

uc(mild) = 1/2|A|2 + 1/2(f2
+ − f2

×)∓ (f+ · f×)
us(mild) = (f+ · f×)± 1/2(|A|2 − (f2

+ − f2
×))

(63)

The ± sign depends on what quadrants of the f+,f× plane the X vector is projected.
So, if the porjection of X is on the first or third quadrant the sign is +, otherwise ths
sign is −. This conditions can be expressed using the disuguagliances:

Condition Sign
(X · f ′+)(X · f ′×) > 0 +
(X · f ′+)(X · f ′×) < 0 −

(64)
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It is possible to use choose intermediate situations between regulators using variable
parameters. For instance in the definition of mild regulators: uc(mild) = 1/2|A|2 +
1/2(f2

+−f2
×)∓(f+·f×) we can define a parameter called mild in the same way: uc(mild) =

1/2|A|2+1/2(f2
+−f2

×)∓mild(f+·f×). Changing the value of the parameter mild from 0 to
1 we can use an intermediate regulator from mild (mild=1) to hard (mild=0) definitions.
We can use one definition of uc and us for all the regulators in the following way:

uc(all) = softX++
+ mild(f+ · f×)gg+

+
hard

(f2
+ + f2

×)/2 + |A|2

[
X+

(
|A2|+

f2
+ − f2

×
2

)
+X×(f+ · f×)

]
us(all) = softX×+

+ mild(|A2|+ (f2
+ − f2

×)/2)gg+

+
hard

(f2
+ + f2

×)/2 + |A|2

[
X×

(
|A|2 −

f2
+ − f2

×
2

)
+X+(f+ · f×)

]
(65)

where gg is defined as:

gg =
1(

|A|2 +
f2
+−f2

×
2

)2

+ (f+ · f×)2{[
X×

(
|A2|+

f2
+ − f2

×
2

)
−X+(f+ · f×)

]
±

∣∣∣∣X+

(
|A2|+

f2
+ − f2

×
2

)
+X×(f+ · f×)

∣∣∣∣}
(66)

We can obtain the previous definitions, apart from common factors (but we know that
we are interested in direction and not in the module of u) using the following parameters
values:

� soft: soft=1, mild=0, hard=0;

� weak: soft=1, mild=0, hard=-1;

� mild: soft=1, mild=1, hard=0;

� hard: soft=0, mild=0, hard=1;

8 Appendix D

In this section we describe the corrispondence between the formula previous used and
the code, in particular the likelihoodB function in the network class. In the code the
normalized antenna patterns are indicated with Fp and Fx, where as the normalized
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data vector X is called am.

f+ = {F
′
1+

σ1
, ...,

F ′
N+

σN
} = Fp

f× = {F
′
1×
σ1
, ...,

F ′
N×
σN

} = Fx
X = { xσ1

, ..., x
σN
} = am

(67)

Scalar products between these vectors are called with the following labels:

gp = f+ · f+ = f2
+

gx = f× · f× = f2
×

gI = f+ · f×
Xp = X · f+ = X+

Xx = X · f× = X×

(68)

The code introduces the following values:

� |As|/2: gr = (gp+gx)/2

� real part of As/2: gR = (gp-gx)/2

� |(As/2)2| = |As/2|2: gc =
√

gR2 + gI2

The code defines also the transformation angles to DPF frame:

co = Cos2(γ)/2 = Cos(γ)Cos(γ)/2 = gc+gR
si = Sin(2γ) = Sin(γ)Cos(γ)/2 = gI

(69)

where we have multiplied the angles for the common factor Cos(γ)/2 because we are
interested in directions of vectors, and not in the module, s in the previous paragraph.

Now we can write the definitions of us and us as in the code:

uc = soft*Xp + mild*si*gg + hard
gr+gc ∗ (Xp(gc+gR)+Xx*gI)

us = soft*Xx - mild*co*gg + hard
gr+gc ∗ (Xx*(gc-gR)+Xp*gI)

(70)

where gg is defined as:

gg =
1

co2 + si2
(Xx*co-Xp*si± |Xp*co+Xx*si|) (71)

Now we show how to obtain the different regulators from these equations.

Soft regulator
Reminding the definition of soft regulator, and writing it in the code format:

uc(soft) = X+ = Xp
us(soft) = X× = Xx

(72)

that can be obtained from Eq. 70 assuming soft=1, mild=0, hard=0.

14



Weak regulator
Reminding the definition of weak regulator, and writing it in the code format:

uc(weak) = X+(f× · f×)−X×(f+ · f×) = Xp*gx - Xx*gI
us(weak) = X×(f+ · f+)−X+(f× · f+) = Xx*gp-Xp*gI

(73)

that can be obtained from Eq. 70 assuming soft=1, mild=0, hard=-1

uc = Xp− 1
gr+gc

∗ (Xp(gc+gR)+Xx*gI) =

=
1

gr+gc
∗ (Xp*(gc+gr-gc-gR)-Xx*gI) =

=
1

gr+gc
∗ (Xp*gx-Xx*gI)

us = Xx− 1
gr+gc

∗ (Xx*(gc-gR)+Xp*gI) =

=
1

gr+gc
∗ (Xx*(gr+gc-gc+gR)-Xp*gI) =

=
1

gr+gc
∗ (Xx*gp-Xp*gI)

(74)

that is the soft definition apart from a common factor: 1
gr+gc .

Mild regulator
Reminding the definition of mild regulator, and writing it in the code format:

uc(mild) = 1/2|A|2 + 1/2(f2
+ − f2

×)∓ (f+ · f×) = (gc+gR)± gI
us(mild) = (f+ · f×)± 1/2(|A|2 − (f2

+ − f2
×)) = gI± (gc+gR)

(75)
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that can be obtained from Eq. 70 assuming soft=1, mild=1, hard=0

uc = Xp + si*gg =

= Xp+si ∗ 1
co2 + si2

(Xx*co-Xp*si± |Xp*co+Xx*si|) =

=
1

co2 + si2
(Xp*(co*co+si*si)+Xx*co*si-Xp*si*si± si ∗ |Xp*co+Xx*si|) =

=
1

co2 + si2
(Xp*co+Xx*si) ∗ (co± si) =

=
1

co2 + si2
(Xp*co+Xx*si) ∗ (gc+gR± gI)

us = Xx - co*gg =

= Xx - co ∗ 1
co2 + si2

(Xx*co-Xp*si± |Xp*co+Xx*si|) =

=
1

co2 + si2
(Xx*(co*co+si*si)-Xx*co*co+Xp*si*co± co ∗ |Xp*co+Xx*si|) =

=
1

co2 + si2
(Xp*co+Xx*si) ∗ (si± co) =

=
1

co2 + si2
(Xp*co+Xx*si) ∗ (gI± gc+gR)

(76)

that is the mild definition apart from a common factor: 1
co2+si2

(Xp*co+Xx*si).

Hard regulator
Reminding the definition of hard regulator, and writing it in the code format:

uc(hard) = 1/2|A|2 + 1/2(f2
+ − f2

×) = gc+gR
us(hard) = f+ · f× = gI

(77)

that can be obtained from Eq. 70 assuming soft=0, mild=0, hard=1.
Disregarding the common factor 1

gr+gc , it is convenient to multiply the two quantities
for (gc+gR)

(gc+gR) ∗ uc = (gc+gR)*[Xp*(gc+gR)+Xx*gI]
(gc+gR) ∗ us = (gc+gR)*[Xx*(gc-gR)+Xp*gI] =

= Xx ∗ (gc2 − gR2) + Xp*gI*(gc+gR) =
= Xx*gI*gI+Xp*gI*(gc+gR) =
= gI*[Xp*(gc+gR)+Xx*gI]

(78)

that is the hard definition apart from a common factor: Xp*(gc+gR)+Xx*gI.

16


