REGRESSION METHOD

Regression Basics

Wiener-Kolgomorov filter (*)

- Estimating which features of h(t) can be predicted by its correlation with a set of witness channels
- Simple case: considering one auxiliary channel x(t):
 - s: predictiona: predicting filter- L: filter length $s_i = \left(\sum_{j=-L}^{L} a_j x_{i+j}\right)$ a: predicting filteri, j: time indexes
- Least square minimization of the residuals:

- N: filter
training length
$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} \left[h_i - \left(\sum_{j=-L}^{L} a_j x_{i+j} \right) \right]^2$$

* [Rev. Sci. Instrum. 83, 024501 (2012)]

Solution

• The minimization of residual $\left(\frac{\delta e^2}{\delta a_1}=0\right)$ leads to:

$$\sum_{j=-L}^{L} a_j \left(\sum_{i=1}^{N} x_{i+j} x_{i+k} \right) = \left(\sum_{i=1}^{N} x_{i+k} h_i \right)$$

In a matrix form:

$$R_{jk}^{xx}a = C^{hx}$$

Multiple witness channels

Enhance regression but add noise to prediction

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} \left[h_i - \left(\sum_{j=-L}^{L} a_j x_{i+j} \right) - \left(\sum_{j=-L}^{L} b_j y_{i+j} \right) - \dots \right]^2$$

- Minimization on each filter component $(a_k, b_k, ...)$ leads to: $\begin{pmatrix} R^{xx} & R^{yx} & ... \\ R^{xy} & R^{yy} & ... \\ ... & ... & ... \end{pmatrix} \begin{pmatrix} a \\ b \\ ... \end{pmatrix} = \begin{pmatrix} C^{hx} \\ C^{hy} \\ ... \end{pmatrix} \begin{cases} R^{jk}_{xy} = \sum_{i=1}^{N} x_{i+j} y_{i+k} \\ C^{k}_{hx} = \sum_{i=1}^{N} h_i x_{i+k} \end{cases}$
- Which is a similar form of the one-channel case, with M*(2L+1) components: Ra = C

Multi-linear correlation

- Some spectral features are described by correlation with a carrier line and low-frequencies
 - Side-bands formation

 $\sin(2\pi f_0 t)\sin(2\pi f_1 t) \propto \sin[2\pi (f_0 + f_1)t] + \sin[2\pi (f_0 - f_1)t]$

- Cross-correlation matrix R can be constructed using also the multiplication of different witness channels:
 - describe up-conversion of low frequency signals

$$x_{sideband} = x_{carrier} * x_{lowfreq}$$

Regulators

• R matrix can be written considering related eigen-values λ ($\lambda_1 > \lambda_2 > ... > \lambda_N$) and eigenvectors P

$$P^{-1}RP = \Lambda \qquad \qquad \Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix}$$

Typically, few eigenvalues are significant

• Regulators: Impose a threshold on eigen-values and select only the bigger eigen-values

Regression in cWB

- Calculation of filter in small frequency bands
 - Better description of noise features in each band
 - Reduce computational complexity
- Introduction of 90 degree phase data
 - More complete description of noise features
 - Double filter length

$$S_k = \sum_j (A_j X_{j+k}) = \sum_j (a_j + i\tilde{a}_j)(x_{j+k} + i\tilde{x}_{j+k}) \quad \begin{array}{ll} \mathrm{x} \ \text{-> 0 phase} \\ \widetilde{\mathrm{x}} \ \text{-> 90 phase} \end{array}$$

• Prediction can be constructed from only 0 or 90 degree phase, or both

Regression parameters

Filter length L -> setFilter(L)

- Regulators -> solve(th, nE, c)
 - Eigen-values thresholds
 - Select λ_k >th
 - Select th < nE
 - Regulators
 - c='h' -> hard: $\lambda' = 0$
 - c='m' -> mild: λ '=l₁
 - c='s' -> soft: $\lambda'=I_{th}$

	$(1/\lambda_1)$)
		$1/\lambda_2$	 		
$\Lambda_r^{-1} =$			 $1/\lambda_{th}$		
			 	λ'	
	(ל'א

Ranking

- channel
- It is possible to set a threshold on rank on the most contributing channels
 - apply(th,c)
 - th: threshold on the channel rank
 - c: calculate prediction from Inverse Wavelet transform starting from only 0, only 90, both phases

LPE filter

 When there are no witness channel describing spectral features, we can use target channel as "fake witness"

In this case matrix R and vector C are slightly modified (R', C'):

$$R'_{ij} = \begin{cases} 0 \quad i = j \\ R_{ij} \quad i \neq j \end{cases} \qquad \qquad C' = \begin{cases} \cdots \\ 0 \\ \cdots \\ C_L \end{cases}$$