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Preambolo

�Già! D'après Sophocle, dice il manifestino. Sarà l'Elettra. Ora

senta un po' che bizzarria mi viene in mente! Se nel momento

culminante, proprio quando la marionetta che rappresenta Oreste

è per vendicare la morte del padre sopra Egisto e la madre, si

facesse uno strappo nel cielo di carta del teatrino, che avverrebbe?

Dica lei. "�

�"Ma è facilissimo, signor Meis! Oreste sentirebbe ancora gl'impulsi

della vendetta, vorrebbe seguirli con smaniosa passione, ma gli oc-

chi, sul punto, gli andrebbero lì, a quello strappo, donde ora ogni

sorta di mali in�ussi penetrerebbero nella scena, e si sentirebbe

cadere le braccia. Oreste, insomma diventerebbe Amleto. Tutta

la di�erenza, signor Meis, fra la tragedia antica e la moderna

consiste in ciò, creda pure: in un buco nel cielo di carta. "�

Tratto da �"Il fu Mattia Pascal�" di Luigi Pirandello.

�" Dove sono e quali sono gli aspetti a�ascinanti della �sica? "�

Spesso la gente associa la scienza a qualcosa di freddo, lontano dalla per-
sonalità umana. Niente può essere più lontano dal vero. Al contrario in essa
riponiamo la nostra essenza, il nostro pensiero. La scienza è la proiezione
della realtà sui nostri sensi e sulla nostra personalità. Proprio per questo
motivo anche nell'ambito scienti�co è fondamentale la comunicazione tra
persone di di�erenti culture. La diversità nel concepire il mondo mette in
luce idee nuove che ci possono aiutare a svelare qualche caratteristica della
nostra realtà che �n'ora c'è sfuggita.
Quindi non solo la scienza ci permette di comprendere meglio il pensiero e
l'animo umano in ogni suo tempo, ma, aspetto ben più signi�cativo, essa ci
consente di evolverlo, di migliorare la "proiezione del mondo" in cui viviamo
e quindi apprezzare e interiorizzare nuove, fantastiche idee.
Pensiamo, per esempio, a come la scienza ci ha permesso di evolvere il
nostro giudizio su noi stessi. All'inizio della nostra storia i nostri sensi
�"primitivi"�ci hanno posto al centro del mondo, o per meglio dire, al cen-
tro dell'universo. Nei secoli, però, grazie alla nostra curiosità, al nostro
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ii PREAMBOLO

porci continuamente nuove domande e alla nostra tenacia nel tentare di
darvi risposta, il nostro pensiero e la concezione della realtà che ci cir-
conda si sono evoluti. Tanto che, nel 1543 con la pubblicazione del �"De
rivoluzionibus orbium celestium"�, Niccolò Copernico diede inizio ad una
nuova �sica ponendo al centro dell'universo non più la Terra, bensì il Sole.
Con quest'idea rivoluzionaria cominciò una nuova era, non solo per quanto
riguarda l'astronomia, ma anche per il pensiero umano. Infatti, con le prove
scienti�che fornite in seguito da Galileo, l'uomo ha dovuto fare i conti con
una nuova realtà, nella quale gli è stato negato il ruolo privilegiato di cui
aveva precedentemente goduto. Il senso di smarrimento che consegue questa
nuova consapevolezza spiazza l'animo umano che si sente costretto ad una
revisione delle proprie certezze. È geniale Pirandello che riesce ad esprimere
questo sentimento in un immagine tanto semplice quanto e�cace: lo strappo
nel cielo di carta.
Un tempo anche noi, come le marionette dell'Elettra, vivevamo impavidi,
sicuri delle nostre azioni in quanto guidate dalle nostre certezze. Ma Coper-
nico ha strappato le nostre convinzioni, rappresentate da Pirandello come
un cielo di cartapesta, obbligandoci a constatare la falsità delle nostre prece-
denti idee. Anche questo sentimento di sconforto e sconcerto ha portato,
però, i suoi frutti partecipando alla nostra crescita.
Ogni scoperta porta con sè qualcosa di nuovo: abbiamo cominciato costru-
endo castelli di sabbia e, quando li abbiamo visti distruggersi sotto l'azione
della pioggia o del mare, ne abbiamo so�erto, ma il giorno dopo abbiamo
concepito un nuovo progetto, più bello e solido del precedente. Così quando
la realtà porrà in luce nuovi difetti distruggendo il nostro lavoro, non tutto
sarà perduto. Al contrario ci arricchiremo di nuove conoscenze migliorando
sempre più la nostra creazione che così rispecchierà la nostra crescita.
Sebbene quindi l'uomo rimanga spiazzato di fronte alla rivelazione coperni-
cana, condividendo perfettamente il sentimento di confusione e di disorien-
tamento che caratterizza il personaggio shakespeariano di Amleto, essa gli
pone una fantastica occasione. Gli permette di arricchirsi di una nuova con-
sapevolezza, non più fragile sul mondo ma bensì salda, basata invece sulla
forza dell'animo umano.
Ecco, in questo trovo a�ascinante la �sica, e la scienza in generale, nella con-
sapevolezza che essa è l'interpretazione del mondo esterno ad immagine del
mondo interiore dell'uomo. Per questo la �sica, per me, è fantastica! Immag-
ino però, caro lettore, che non ti sia capitato spesso di pensare all'ambito
scienti�co come qualcosa di �"fantastico"�(bada bene che in tale aggettivo
intendo comprendere, non solo il senso di meraviglia, ma anche quella sfu-
matura di fantasia che in esso si cela). In mia opinione, però, esistono poche
parole più calzanti di questa per descriverlo.
In che altro modo lo descriveresti, tu, un mondo dove vige la relatività del
trascorrere del tempo, dove le particelle hanno una "doppia personalità"
(che, come per esempio i fotoni, ci mostrano di essere particelle ma di �"ri-
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cordarsi"�di essere pure parte di un'onda elettromagnetica), dove un gatto
in una scatola è contemporaneamente sia vivo che morto e dove è possibile
la contrazione e dilatazione, non solo degli oggetti, ma proprio dello spazio!?
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Abstract

Gravitational Waves are the key prediction of General Relativity. They are
spece-time perturbation coming from gravitational sources with some spe-
ci�c characteristics(chapter 1). In the following we are going to consider
signal coming from coalescence compact binaries (chapter 2).
At the moment the only Gravitational waves detectors are on Earth. We
are interesting on VIRGO and LIGO interferometric detectors (chapter 3),
which are the most sensitive instrumets devoted to gravitational waves de-
tections.
The analysis of the data coming from the LIGO-VIRGO detectors are di�er-
ently analyzed depending on the interested search. We are going to use the
cWB-2G pipeline for the data analysis, which concerns are speci�c for burst
waves (chapter 4). The aim of the notes is the pattern recognition of signals
coming from coalescence compact binaries. The �rst analysis concerns the
use of Art�cial Neural Networks (chapter 5). By this procedure hopeful re-
sults are obtained (chapter 6). Another di�erent approach is the use of the
�t techniques, which anyway presents some statistical di�culties (chapter
7). The future ideas mainly concern improvements and deeper studies on
the performed analysis to �nally reach a more general signal classi�cation
(chapet 8).
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Chapter 1

Introduction to Gravitational

Waves

[1] [2] [3] Eve Every night nature o�ers us the possibility to admire its power,
its fantasy, its masterpiece, simply looking at the sky. Without any instru-
ment, besides our eyes, we can see several of shiny stars coloring the deep
blue of the night, we can see the past of other worlds and an incredibly small
taste of the Universe immensity. But what other surprising astrophysical
objects are hidden in the Universe?
In this �eld a special role is played by Gravity which drives the larger scale
processes present in the Universe. The gravitational interaction makes the
aggregation of matter possible, forming planets, stars and galaxies. It drives
the motion objects and part of their evolutions. Therefore thanks to gravity
stars are born, evolve and die enriching the interstellar medium and making
possible incredible things, like life. Can the gravitational interaction make
more? Of course it can. Not only it rules the Universe and the Earth as
we know them, but also it allows us to discover part of the mysteries which
are around us. Indeed di�erent phenomena have origin in gravity, like grav-
itational lensing and Gravitational Waves (GW). The latter can be a very
useful tool non only to discover systems of di�erent nature but also to better
understand all the celestial entities. Indeed, di�erently from the electromag-
netic radiation, GWs weakly interact with matter carrying more genuine
information about their sources. Gravitational Waves are a key prediction,
not yet directly seen, of General Relativity (GR) formulated by Albert Ein-
stein in 1916. GR gives a new and very important role to the space-time,
which before was consider only as a passive frame.

In the �rst section of this chapter (Section 1.1) we will brie�y see where
the Einstein's GR equations come from and then we will focus on one of their
key prediction and solution: the Gravitational Waves (GW)(Section 1.2).
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2 CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES

1.1 Gravitational Waves: Theory

To understand the GW origin we have to start with an introduction to GR.
This theory describes gravitational phenomena starting from a new consider-
ation of the corrispondence between gravitational and inertial masses. While
for Newtonian theory it is treated as a mere coincidence, in GR this equiv-
alence is a fundamental assumption called weak equivalence principle.
The Einstein lift experiment underlines the real importance of this consid-
eration, which allows the equivalence between the lift in absence of gravity
and the one in free fall. This idea is the base of GR and is extended to the
so called strong equivalence principle. It states that: in every point of

the space-time and in presence of any gravitational �eld, it's always possible

to choose a reference frame where nature, with all its laws, behaves like in

absence of gravity.
With GR Einstein extends the space-time studies conduced in Special relativ-
ity to a more general contest, characterized by the presence of a gravitational
�eld. In Special Relativity the inertial reference frames play a preferential
role, which is now justi�ed and contextualized by GR. Indeed the e�ect of
the gravitational �eld introduction is a distortion of the Minkowski space-
time and consequently the break up of the inertial reference frame, typical
of Special Relativity, into in�nite locally inertial reference frames.

1.1.1 Geodesics

In GR the geometry of the space-time is strictly connected to the physical
phenomena. An important example of this connection is represented by
geodesics. In geometry a Geodesic is the shortest line which links two points
on any mathematically de�ned surface. In Riemann space, which is the
typical GR enviroment, this de�nition is equivalent to the generalization of
the straight line. A straight line is the curve whose tangent vector remains
parallel when transported along it.
The connection between physics and space-time structure is so strong that
we can think to trajectories as straight lines which links di�erent events.
Therefore we can �nd the geodesic equation analyzing the motion of a free
particle in a gravitational �eld. The equivalence principle allows us to start
considering the locally inertial reference frame, where the particle motion is
the one described by Special Relativity. Suppose Xµ are the coordinates of
the considered particle in this reference frame, than the equation of motions
is:

d2Xµ

ds2
= 0

where ds2 = −c2dτ2 = ηµνdX
µdXν with µ, ν = 0, 1, 2, 3. Here ds is the in-

variant interval, dτ the proper time and ηµν the Minkowski metric, for which
we adopt the signature convention (-,+,+,+). Now using a �"smooth�" func-
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tion (continuous, di�erentiable,invertible ecc..) we can de�ne the coordinates
of an arbitrary reference frame: xj = xj(Xµ) where j = 0, 1, 2, 3.
Therefore we can introduce

ajµ(X) =
∂xj(X)

∂Xµ

and its inverse

Aµj (x) =
∂Xµ(x)

∂xj

so that Akµa
µ
i = δik and A

j
µaνj = δνµ. By de�nition the interval ds is invariant

and therefore has the same value in all the reference frames:

ds2 = ηµνdX
µdXν = gijdx

idxj

from which we can write the metric tensor of an arbitrary reference frame
gij(x) as:

gij = ηµνA
µ
i A

ν
j

which equals the Minkowski metric only in inertial reference frames. In view
of these considerations the equation of motion is

0 =
d2Xµ

ds2
=

d

ds

(
Aµj (x)

dxj

ds

)
= Aµj (x)

d2xj

ds2
+
∂Aµk(x)

∂xj
dxj

ds

dxk

ds

Now, multiplying the previous equation by the A-inverse matrix aiµ we obtain
the geodesic equation

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
= 0 (1.1)

which describes also the particle trajectory. In the last equation we have in-
troduced the Christo�el symbols or Levi-Civita connections Γijk, which there-
fore are de�ned as:

Γijk = Γikj = aiν
∂Aνj
∂xk

= −Aνj
∂aiν
∂Xk

=
∂xi

∂Xν

∂2Xν

∂xj∂xk
(1.2)

The equation ( 1.1 ) shows that the formal di�erence between GR and Spe-
cial Relativity is represented by the Christo�el symbols. Therefore these
quantities are strictly connected the gravitational interaction.
Christo�el symbols are completely de�ned by the metric tensor g, indeed we
have gij(x) = ηµνA

µ
i A

ν
j and therefore:

∂gij
∂xk

= ηµν

(
Aµi

∂Aνj
∂xk

+Aνj
∂Aµi
∂xk

)
and since ηµνAνi = gija

j
µ we obtain:

∂gij
∂xk

= Γαkigαj − Γβkjgβi
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Than circularly permutating the index we �nd

∂gjk
∂xi

= Γαijgαk − Γβikgβj

∂gki
∂xj

= Γαjkgαi − Γβjigβk

Finally, through these expressions and considering the Γ symmetries we ob-
tain:

Γλik =
1

2
gjλ
(
∂gij
∂xk

+
∂gjk
∂xi

− ∂gki
∂xj

)
(1.3)

We can see that in Minkowski space, where the metric tensor is constant in
space and therefore Γ = 0, the previous equation (1.1) becomes linear.
A very nice example of this space-time distortion is represented by the Earth
motion around the Sun. Despite the ellipticity of this orbit we can say
that, in this case, the space-time distortion is minimal. This seems strange
bacause we are used to think in the 3-dimentional space, instead of in the 4-
dimensional space-time. Anyway if we take into account the time dimension
we will easily �nd that the Earth trajectory around the Sun describes a very
extended helix. Therefore in this case the Minkowski space well approximates
the geometry of the space-time perturbed by the analyzed system.[2]

1.1.2 Newtonian limit

In order to better understand the relationship between space curvature and
gravity we start considering the newtonian limit. In case of weak gravity we
can make the following approximations:

a. linear approximation:

gµν(x) ≈ ηµν + hµν +O
(
|h2
µν |
)

where |hµν | � 1 and thus we neglect higher order terms of the perturbation-
matrix h;

b. static gravitational �eld:
∂hµν
∂x0

= 0;

c. non-relativistic velocities v, i.e.

∣∣∣∣dxads
∣∣∣∣� ∣∣∣∣dx0

ds

∣∣∣∣, where a = 1, 2, 3.

In view of these considerations the geodesic equation becomes:

0 ≈ d2xk

ds2
+ Γk00

(
dx0

ds

)2

(1.4)
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To obtain the last formula we consider the c. approximation neglecting the
derivatives of the spatial coordinates. Moreover the a. point allows us to
write the remaining Christo�el coe�cients as:

Γk00 ≈ −
1

2
gkα

∂g00

∂xα
≈ −1

2
ηkα

∂h00

∂xα

For this reason using the b. consideration we �nd Γ0
00 ≈ 0 and consequently

also d2x0

ds2
≈ 0. Instead for spatial coordinates we obtain

d2xa

ds2
≈ −Γa00

(
dx0

ds

)2

=
1

2
ηaα

∂h00

∂xα

(
dx0

ds

)2

where a = 1, 2, 3 concerns to the space-coordinates. This last equation can
be set in the form:

1

c2

d2−→x
dt2

=
1

2

−→
∇h00

where we have considered c · dτ ≈ c · dt, valid in Newtonian limit. In the
analyzed situation the body satis�es also the Newtonian equation which
describes the motion of a particle in a static gravitational �eld, i.e.

d2−→x
dt2

= −
−→
∇φ

In light of this consideration we have

h00 = −2φ

c2

and therefore

g00 = −1− 2φ

c2

In conclusion, under the Newtonian limit approximations, the tensorial gravi-
atational �eld, has only a term signi�cantly di�erent from zero and therefore
here it cab be considered a scalar �eld. Only in relativistic conditions the
terms di�eret from g00 become relevant.

1.1.3 Riemann, Ricci and Einstein tensors

The previous considerations allow the introduction of the Riemann tensor

R de�ned by the formula as:

Rσµνγ = −
∂Γσµν
∂xγ

+
∂Γσµγ
∂xν

+
(

ΓλγµΓσλν − ΓλµνΓσλγ

)
(1.5)

By de�nition the Riemann tensor has 256 components, but only few of these
are independent. The reason is the presence of many symmetries, for example
it's easy to see that Rσµνγ = Rσµγν , and that Rσµνγ +Rσγµν +Rσνγµ = 0. Other
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symmetries can be found lowering the σ index and so de�ning the tensor
Rτµνγ = gτσR

σ
µνγ . Thanks to the tensor tranformation law it can be add that

verify a tensor's symmetry in a reference frame means that it is everywhere
satis�ed. Considering the Γ de�nition we can also verify that

Rτµνγ =
1

2

(
∂2gτγ
∂xµ∂xν

− ∂2gγµ
∂xτ∂xν

− ∂2gτν
∂xµ∂xγ

+
∂2gµν
∂xγ∂xτ

)
(1.6)

Two of the most evident symmetries of this object are:
Rτµνγ = −Rµτγν and Rτµνγ = Rνγτµ.
Therefore taking into account all these symmetries it can be proven that

the Riemann tensor in a n-dimentional manifold has n2(n2−1)
12 independent

components. New symmetries and physical tensors can be found contracting
two Riemann tensor's indeces. In particular we obtain the following relations:

1. contracting the �rst and the second indeces: Rσσµν = 0 because Rσσµν =
gστRτσµν = −gστRστµν = −Rττµν ;

2. contracting the �rst and the third indeces: Rγν ≡ Rµγµν = gµσRσγµν =
gµσRµνσγ = Rσνσγ = Rνγ .

3. contracting the �rst and the fourth indeces we obtain the same relation
found in the previous point. In particular, thanks to the antisymmetry
between the third and four Riemann tensor's indeces, the resulting
contracted tensor is it's opposite.

The found property, 2. in the previous list, de�nes a new symmetric tensor
of rank 2 called Ricci tensor. For better understand it's meaning we can
develop this tensor in terms of Christo�el symbols:

Rµν =
∂Γγµγ
∂xν

− ∂Γγµν
∂xγ

+ ΓσµγΓγνσ − ΓσµνΓγγσ (1.7)

Thinking of Ricci tensor as a 4x4 matrix we can calculate it's trace R =
gνµRνµ = Rνν and therefore de�ne the so called scalar curvature. Using

this scalar quantity we can de�ne the tensor family G(l)
µν = Rµν + lgµνR ,

where l is a real number. The most important element of this family is the

Einstein tensor for which l = −1

2
. This tensor has the interesting property

to be a covariant costant, i.e.

DµG
µ
ν =

∂Gµν
∂xµ

+ ΓµµλG
λ
ν − ΓλµνG

µ
λ = 0

where we have de�ne the covariant derivative Dµ. To prove this formula
we have to contract the Bianchi identity 1, obtaining DαRτµ − DµRτα +

DβR
β
τµα = 0 and than multiply this relation by gµτ .

1DαR
ν
βστ + DσR

ν
βτα + DτR

ν
βασ = 0
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1.1.4 Field equations

The Newtonian limit of the paragraph (1.1.2) shows a strong relation between
metric tensor g and gravitational potential φ:

φ ≈ −c
2 (g00 + 1)

2

In this limit, characterized by small velocities and weak gravitational �eld,
the gravitational potential is de�ned by the Poisson equation:

∇2φ = 4πGµ0 (1.8)

where µ0(x) is the matter density, G the universal gravitational constant
and whose solution is φ = −MG

r2
.

Moreover we note that the matter density can be written as

µ0 ≈
T00

c2

where the T is the energy-momentum tensor. Now we are looking for more
general equations to de�ne the gravitational potential. In light of the above,
these equations have to satisfy the following constraints:

• be tensorial equations;

• be second-order di�erential equations in the metric tensor g;

• be 10, as the independent components of the metric tensor;

• coincide to the Poisson's equation in the classical limit;

• link the metric tensor g to the matter distribution.

Starting from the Newtonian limit we can rewrite the Poisson equation (1.8)
in a di�erent form:

∇2g00 ≈ −
8πG

c4
T00 (1.9)

To generalize the right-hand side of this formula we can use the full energy-
momentum tensor 2, while the left-hand side needs some considerations. We
are looking for a tensor Wµν which cointains the second derivatives of the

metric g. The only tensor's family which satis�es all the requirements is G(l)
µν

3. The possible l factors are reduced by the continuity equation, which must
be satis�ed by the energy-momentum tensor:

DµT
µ
ν = 0

2The constant can be formally found using the Newtonian limit.
3To be precise the most general tensor which satisfy the requirements is a linear com-

bination of Rµν , Rgµν and Λgµν , where Λ is the cosmological constant. Di�erent theories
were and are developed about the generalization of the left-hand side of the (1.9). In
these notes we assume the easier ipothesis, which takes into account a linear combination
of only the �rst two tensors.
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Indeed also the left-hand side of (1.9) has to satisfy the same equation and
this limits the choise to l = 1

2 . In view of these considerations we have
Wµν = Gµν and therefore we �nd:

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.10)

which are called the Einstein equations or �eld equations. The aim of
GR is therefore to �nd general solutions of these equations and compare them
to the astrophysical sources as Black Holes, neutron stars etc.. The most
problematic di�culty is the non linearity of the equations and the consequent
invalidity of the superposition principle. This is due to the relation which
links mass and energy. The solutions of (1.10) are known in some paticular
cases:

• in presence of spherical simmetry (Schwarzschild solution);

• for the cosmologic case (Friedmann Lemaitre solutions);

• in presence of weak gravitational �elds (linear approximation) in har-
monic coordinates, also in presence of non-static gravitational �elds
(as GW).

1.2 Gravitational waves

Gravitational waves are key predictions of the Einstein �eld equations (1.10).
They represent ripples in the space-time metric which propagate at the speed
of light, in this context better called speed of gravity.
The strong non-linearity of the Einstein equations makes them hard to solve
exactly in presence of strong �elds. Nevertheless in absence of analytical
solutions, numerical methods are often developed to describe the GWs emit-
ted.
However it is always possible to analyze the space-time geometry far away
from the sources. Indeed these situations are characterized by weak gravita-
tional �elds, which allow us to treat them with a perturbative approach. In
this case it consists in the application of the linear approximation (the same
introduced in the Newtonian limit):

gµν(x) ≈ ηµν + hµν +O
(
|h2
µν |
)

(1.11)

where we neglect higher order terms of |hµν | � 1.
To simplify the expression we are going to consider harmonic coordinates.

1.2.1 Harmonic coordinates

In a Riemannian manifold a coordinate system is called harmonic if its
coordinates satisfy �xµ = 0, where � is Laplace-Beltrami operator. This
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operator consists in

� = gµν
(

∂

∂xµ
∂

∂xν
− Γσµν

∂

∂xσ

)
(1.12)

In Minkowski space it becomes

� = − ∂2

c2∂t2
+∇2

Therefore �xµ = 0 means

gµνΓσµν = 0 (1.13)

In the linear approximation (i.e when gµν = ηµν + hµν) this coordinate
property provides a useful relation between the second derivatives of the
pertubation-matrix elements:

∂2h

∂xν∂xµ
= 2

∂2hβµ
∂xν∂xβ

(1.14)

To prove this equation we start approximating the Cristo�el coe�cients :

Γσαβ =
1

2
gµσ

(
∂gµα
∂xβ

+
∂gβµ
∂xα

−
∂gαβ
∂xµ

)
≈ 1

2
ηµσ

(
∂hµα
∂xβ

+
∂hβµ
∂xα

−
∂hαβ
∂xµ

) (1.15)

Thus the harmonic condition (1.13) becomes

1

2
ηαβησµ

(
∂hµα
∂xβ

+
∂hβµ
∂xα

−
∂hαβ
∂xµ

)
= 0 (1.16)

which means

ηαβ
(
∂hµα
∂xβ

+
∂hβµ
∂xα

−
∂hαβ
∂xµ

)
= 0 (1.17)

Developing this expression we obtain the relation:

∂h

∂xµ
= 2

∂hβµ
∂xβ

(1.18)

Finally, deriving this equation in terms of xν , we �nd the desired formula
(1.14).
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1.2.2 Linearized �eld equations

In this section we are going to derive the linearized form of the �eld equations
(1.10). To provide these relations we start writing the approximations of the
Ricci-tensor and of the scalar curvature in the weak �eld limit:

Rµν = −1

2

(
�hµν +

∂2h

∂xµ∂xν
− ∂2hβν
∂xµ∂xβ

− ∂2hβµ
∂xν∂xβ

)
(1.19)

R = −�h+
∂2hνβ

∂xν∂xβ
(1.20)

In light of the relation (1.14), the (1.19) formula becomes:

Rµν = −1

2

(
�hµν +

∂2h

∂xµ∂xν
− 1

2

∂2h

∂xµ∂xν
− 1

2

∂2h

∂xν∂xµ

)
= −1

2
�hµν (1.21)

Now multiplying the (1.14) equation by the tensor ηµν we obtain:

ηµν
∂2h

∂xµ∂xν
:= �h = 2ηµν

∂2hβµ
∂xν∂xβ

(1.22)

from which we have ∂2hβν

∂xν∂xβ
= 1

2�h and thus

R = −1

2
�h (1.23)

Finally these relationships allow us to write the linearized �eld equations

in the form:

−1

2
�

(
hµν −

1

2
ηµνh

)
=

8πG

c4
Tµν (1.24)

Therefore de�ning

h′µν = hµν −
1

2
ηµνh (1.25)

in harmonic coordinates, we have

Gµν = −1

2
�h′µν (1.26)

Moreover the calculation is performed in Lorentz gauge:

∂h′µν
∂xν

= 0 (1.27)

Summarizing the describtion of the GWs, emitted by a source characterized
by an energy-momentum tensor Tµν , is perfomed by the following equations:{

�h′µν = −16πG
c4

Tµν
∂h′µν
∂xν = 0

(1.28)
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Instead the propagation of GWs in vacuum (Tµν = 0) is represented by{
�h′µν = 0
∂h′µν
∂xν = 0

(1.29)

which con�rms GWs travel with velocity c.

1.2.3 Plane gravitational waves

The general solution of the equations (1.29) is a linear combination of plane
waves:

h′µν = Re

∫
Aµν(k)ei(k·x−ωt)d3k (1.30)

Here k is the wave 4-vector kµ =
(
ω
c ,−k

)
and Aµν is the polarization tensor

which only depends on the wave 4-vector k.
The Lorentz Gauge assures the transverse property of the wave kµAµν = 0,
while the equation �h′µν = 0 implies kµkµ = 0 and thus the GW propagation
at the speed of light.
Being symmetric the polarization tensor has 10 independent components,
which are further reduced to 6 by the transverse property. Anyway we have
to consider that the harmonicity of the system does not univocally de�ne
the coordinates. Indeed any transformation characterized by

h̄µν = hµν −
∂ζµ
∂xν
− ∂ζν
∂xµ

(1.31)

gives a relation between the pertubation-matrix elements di�erent from (1.18)
only for the presence of �ζµ which is zero (i.e. �ζµ = 0) if we choose ζµ
with a plane-wave behaviour. All these considerations show the tensor h′µν
has only two independent terms (h+ and h×), therefore we can choose a
reference frame in which hµν has null time components and null trace. This
coordinate frame is called Transver-Traceless Gauge (TT). Considering
the wave-propagation on the z-axis, we �nd the only non-trivial components
are hxx, hxy, hyx and hyy where x, y and z referes to the space directions.
However these h terms are linked together by the metric tensor symmetry,
hxy = hyx ≡ h×, and by the traceless property, hxx = −hyy ≡ h+. The two
de�ned quantities, h+ and h×, are the amplitudes of the two wave polar-
izations �plus�and �cross�.
Thus we can describe this situation by a wave 4-vector

k = (k0, 0, 0, kz) (1.32)

Here k0 := ω
c = c

√
(kx)2 + (ky)2 + (kz)2. Therefore in the TT gauge the

perturbation-tensor can be written as:

hTTµν =


0 0 0 0
0 h0+ h0× 0
0 h0× −h0+ 0
0 0 0 0

 e−iω(t−z/c) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (1.33)
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Figure 1.1: The picture represents the behaviour of a cicle-mass in presence of
a gravitational wave. On the top and bottom graphs are shown the evolutions
produced respectively by the plus h+ and cross polarization h×

.

1.2.4 GW radiation

In this section we will brie�y see an estimate of some phisical quantities
involved in the GW detenction. Inside GW sources the stress-energy tensor
is di�erent from zero and the �eld equations are reportened in the formula
(1.28). They are inhomogeneous di�erential equations which can be solved
introducing the Green function. When the motions inside the source are not
relativistic, the calculations show the components of the polarization tensor
can be approximated by the quadrupole formula[6]

hij (t, r) =
2G

c4

1

r

∂2Iij
∂2t

(
t− r

c

)
(1.34)

where r is the source distance and

Iij =

∫
d3xµ(t,x)

(
xixj − 1

3
r2δij

)
is the mass quadrupole moment tensor of the source (µ(t,x) is the source
mass density). In this last equation the δij is the Kronecker delta and the
intergral is calculated inside the source.
The equation (1.34) shows GWs are emitted by mass distributions of quadrupo-
lar order which vary with time. Moreover the formula (1.34) reveals that the
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GW amplitude is proportional to the quantity G/c4 ≈ 5.6× 10−42s2 · kg−1 ·
m−1 ≈ 2.8× 10−12s2 ·M⊙ ·m−1, this implies that only very massive bodies
radiate non negligible GWs.
It is also possible to obtain an expression for power P radiated by a GW
source

P =
G

5c5
<
∂3Iµν
∂t3

∂3Iµν

∂t3
> (1.35)

The impossibility to produce visible Gravitational waves in laboratories is
therefore due to the factor G/5c5, whose value is ∼ 10−53W−1.
To better understand the involved quantities as example we can consider a
rotating object with an asymmetry on the mass-distribution [5]. Assuming
that its energy lost by GW emission is EGW ≈M⊙ · c2 and that its distance
is r ≈ 15Mpc we obtain

h ≈ 10−21

According to what we will see in the following the resulting distance variation
on a length of L ≈ 103m is

∆L ≈ 1

2
h̃L ≈ 10−18m

Finally considering the quantities involved we can provide also an estimate
of the maximum frequency expected by a GW. Indeed the minimun radius
permitted is the Shwarzshild one RS = 2GM/c2 and the maximum velocity
is the speed of light. Considering orbiting celestial objects we have that the
superior limit on the GW frequency is reached under these conditions and it
is equal to

fmax =
c

2πRS
=

c3

4πGM
≈ 104M

⊙
M

Hz (1.36)

1.2.5 GW e�ects on free bodies

The goal of this section is to describe the variation on the metric tensor
in presence of a GW. In order to reach this aim we need to analyze its
trajectory with respect to another body, indeed from the point of view of
the coordinates it remains at rest. This is the reason why in this sections
we are going to describe how the distance between two particles changes in
presence of a GW.
Suppose to have two particles A and B moving on two near geodesics.The
two bodies are characterized by their proper times τ and τ + dτ and by an
initial ditance of δxµ0 . To analyze the evolution of their distance δxµ, the
choosen local reference frame is related to the A mass, thus δxµ(t) = xµB(t),
where xµB are the spatial coordinates of the B body. The distance evolution
δxµ(t) = δxµ0 + δxµ1 (t) is described by the deviation geodesic equation [4]

d2δxα

dτ2
= Rαβνµ

dxβ

dτ

dxν

dτ
δxµ (1.37)
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This relationship shows the relative acceleration between the two particles
depends on the Riemann tensor. Therefore to acquire some information
about the gravitational �eld this link can be very useful. Indeed the curvature
tensor is strictly correlated to the second derivatives of the metric tensor
and therefore, for weak gravitational �eld, of the pertubation-matrix. In
the choosen reference frame the geodesic deviation in �rst approximation
becomes:

d2δxµ1
dτ2

=
1

2c2

∂2h
µ(TT )
k

∂t2
δxk0 (1.38)

which has the following solution

δxµ(τ) = δxµ0 +
1

2
h
µ(TT )
k δxk0 (1.39)

For example if the GW propagates on the z-axis in the TT gauge we �nd the
waveform described by the equation (1.33). The only non-zero components
are hTT11 = −hTT22 = h+ and hTT12 = hTT21 = h×. Thus at time t the coordinates
of the B particle, seen by A, follow the formulas

δx0 = δx0
0 + h0

kδx
k
0/2 = δx0

0

δx1 = δx1
0 + h1

kδx
k
0/2 = δx1

0 +
(
h1

1δx
1
0 + h1

2δx
2
0

)
/2

δx2 = δx2
0 + h2

kδx
k
0/2 = δx2

0 +
(
h1

2δx
1
0 + h2

2δx
2
0

)
/2

δx3 = δx3
0 + h3

kδx
k
0/2 = δx3

0

(1.40)

where with respect to the situation described by the formula (1.33) the per-
turbation matrix elements are hµν = ηµσhσν . Therefore the equation (1.33)
shows the oscillating behaviour of these distance. Finally an adimesional
parameter can be used to measure the geodesic deviation expressed by the
relation (1.39):

h̃ = 2
∆L

L0
(1.41)

where ∆L := δxµ − δxµ0 and L0 := δxµ0 .



Chapter 2

Astrophysical sources

There are many theoretical predictions about GW emissions. The frequency
range of these phenomena can vary a lot, owing to the di�erent nature of
the possible sources. Considering the temporal evolution of the signals, GWs
can be divided in 3 main groups:

• transient signals: these signals are generally emitted during very
violent events happening in the universe. The main feature of this kind
of GWs is their short life-time, typical from few ms to some s. Their
principal progenitors are supernovae explosions and compact binary

coalescences;

• periodic signals: these GWs are characterized by a constant fre-
quency, the main sources are the neutron stars, the pulsars and the

binary systems;

• stochastic signal: this signal is created by the emissions of a large
number of unde�ned sources. It represents a stochastic background of
GWs and detect it can be useful for cosmological knowledges.

We are particularly interested in transient emissions characterized by a fre-
quency range of few 102 − 103 Hz. In the following are described the main
features of the principal topics of this category.

In the previous chapter we have seen the equations which characterize
GWs and their propagations in vacuum. Now we are looking for possible
GW sources; in particular here we will focus on core collapse supernovae
(Section 2.1) and especially on compact binary coalescences (Section 2.2).

15
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Figure 2.1: h+ (top) and h× (bottom) multiplied by distance D as seen by
observers along the equator (black) and along the pole (red) of the source
for the model S20A2B4 from [20Marco]. Note that the GW burst signal
from core bounce is purely axisymmetric, since an axisymmetric system has
vanishing h× and vanishing GW emission along the axis of symmetry.

2.1 Core collapse supernovae

2.1.1 Origin

The core collapse supernova or type II supernova is a process which
occurs in the �nal stage of a massive star. The star is characterized by
di�erent layers, some of which are still burning and therefore growing the
core mass. Owing to this mass accretion the core reaches the Chandrasekar
limit, becoming gravitationaly instable [7]. The core contracts, increasing
its density and temperature. This process feeds the photodisitengration and
the electron-capture so that even less electrons contrast the gravitaty action,
causing a further contraction. The collapse is suddenly stopped thanks to
neutrino reactions, creating a shock wave, which propagates outward the core
throwing the external layers out. Therfore the shock blows up the star and a
type II supernovae explosion happens. The resulting compact structure can
be a neutron star or a black hole depending on the stellar mass.
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2.1.2 Rate

Galacting type II supernovae are known to be rare; the estimates supported
by indirect evidence (aboundace of 26Al whose main source are supernovae
explosions) shows less than 1 event per two decades in Milky Way. Never-
theless recent review [8] recalls there may be ∼ 1 supernova event per year
between 3-5Mpc from Earth.

2.1.3 GW characteristics

The iron core collapse is one of the most energetic astrophysical processes
known. It is calcuated that ∼ 1053erg is emitted during this event, but only
∼ 1% becomes visible in the electromagnetic spectrum. The estimates of the
energy emitted on GW form was recently reduced from an initial optimistic
value of ∼ 1052erg to a more realistic ≤ 1036erg [9]. Its entity depends
also on the mechanism which takes place during the collapse. Three main
mechanisms are currently under studies: neutrino mechanism [10], magneto-
rotational mechanism [11] and acoustic mechanism [12]. Anyway in terms
of GW emission the most promising processes are the rotating collapse and
bounce, non asymmetric rotational instabilities and proto neuton star pulsa-
tion. However several processes can contribute to the overal GW signature:
anisotropic neutrino emission, global precollapse asymmetries in the iron core
and surrounding burning shells, aspherical mass ejection, magnetic stresses
and the late-time formation of black hole. Moreover the GWs emitted by
core collapse supernova are characterized by a frequency range above 1kHz.
The shape of the GWs obtained by such processes are not well de�ned. Even
if complex simulations allow the extence of some moldels, they are charac-
terized by a large uncertainity. For this reason, as generally happens for
impulsive events of unknown shape, the GW strenght is expressed in term
of �root sum squared �(rss) amplitude hrss

hrss(t) =

√∫
|h(t)|2 dt (2.1)

where h(t) is a linear combination of the two wave-polarizations (we will see
a better explanation later). Sometimes it's possible to convert this quantity
in terms of energy depending on the adopted models. For core collapse
supernova we can use this formula:

EGW =
r2c2

4π
(2πf0)2h2

rss (2.2)
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Figure 2.2: Typical strain behaviout in time for signal emitted by a compact
binary coalascence.

Figure 2.3: Typical frequency behaviout in time for signal emitted by a
compact binary coalascence.

2.2 Compact binary coalescence (CBCs)

One of the most promising sources of impulsive GWs are coalescing compact
binaries, whose recognition represents the main goal of this study.

2.2.1 Signal and phenomenon description

We are interesting in the coalescence of three types of binary sistems:

• sistems formed by two neutron stars (NS-NS);

• sistems formed by two black holes (BH-BH);

• mixed systems formed by a neutron star and a black hole (NS-BH)

NS-NS binaries are the only sistems obsevationally tested [Faber, J.A. and
Rasio, F.A., Living Rev.Relat. 15 (2012)], but the existence of the other
two classes are supported by good arguments.
Mergers of a binary sistems are generally related to the short Gamma Ray

Bursts (GRBs), which are powerful �ashes of soft (∼ MeV ) γ-rays. Since
this type of rays are principally generated by the coalescence of a neutron
star with another compact object (like a NS or a BH), they are considered a
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signature of the GW emission. Not only they represent the electromagnetic
counterpart of most promising sources of GWs, but they mark also di�erent
phenomena linked to GW radiation.
The binary sistems are characterized by several physical properties, the main
of which are:

Mtot = (m1 +m2) , µ =
m1m2

m1 +m2
, q =

m2

m1
≤ 1, (2.3)

Mchirp = µ3/5M
2/5
tot =

(m1m2)3/5

(m1 +m2)1/5
(2.4)

The coalescence of these compact objects can be divided in three di�erent
phases 1:

• the inspiral: at the beginning the distance of the two bodies is much
larger than their dimension. In this phase the system is in a non-
relativistic regime. Even though the most general orbit is elliptical the
losses of energy and angolar momentum, due to GW emission, circular-
ize it [13] . This process causes the two binary components get closer
and the consequently beginning of the early-relativistic regime. This
phase is well described by Post-Newtonian (PN) methods [14]. To the
lowest PN order in the amplitude evolution, the emitted gravitational
radiation can be written as [15]:

h+(t) =−
GMchirp

c2r

(
tc − t

5GMchirp/c3

)−1/4

×
(

1 + cos(ι)

2

)
cos [2φc + 2φ(t− tc;Mtot;µ)]

(2.5)

h×(t) =−
GMchirp

c2r

(
tc − t

5GMchirp/c3

)−1/4

× cos(ι)cos [2φc + 2φ(t− tc;Mtot;µ)]

(2.6)

where r is the source distance, ι is the angle between the the normal
to the orbit and the line-of-sight, φ(t− tc;Mtot, µ) is the orbital phase
of the binary and �nally tc and φc are respectively the coalescence
time and phase. The equations (2.5) and (2.6) show the signal ampli-
tudes increasing with bigger values of Mtot and with the orbit decay.
Moreover these formulas o�er us the possibility to �nd circularly and
linearly polarized GWs. The �rst case consists in the equivalence of
the two polarization amplitudes h+(t) = h×(t), which occurs when
ι = 0. Instead linerized polarization happens when ι = π

2 and h×
vanishes. Other physically interesting properties of the binary motion

1The following discussion conrcerns non-spinning binary components.
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concerns the �innermost stable circular orbit�(ISCO), which limits the
end of the inspiral phase and the beginning of the merger. The radius
is approximately

RISCO = 3RS =
6GMtot

c2
(2.7)

where RS is the Schwarzschild radius associated to the binary total
mass. Considering the rought approximation given by the assumption
of the Kepler-laws validity, from the equivalence between centripetal
and gravitational forces we �nd

f2
c =

GMtot

4π2R3
(2.8)

and thus for the ISCO orbit

fc|ISCO =
1

2
√

6π

c3

GMtot
(2.9)

This equation shows the fc|ISCO increasing for smaller value of the total
binary mass Mtot. The direct consequence is a longer duration of this
signal phase above a given frequency. The typical �chirping�behaviour,
which consists in the frequency and amplitude increasing with the orbit
decay.

• the merger: When the binary reaches the ISCO orbit the merger
begins. It happens under a fully-relativistic regime, where the velocities
are comparable to the one of light c and the distance between the
two components becomes similar to their dimensions. Under these
condictions the PN methods fail and the best reconstruction of this
stage is made by numerical solutions of the full �eld equations (1.10)
in a highly dynamical strong �eld regime [16].

• the ringdown: This phase describes the relaxation of the resulting
object toward a stable orbit. This process happens emitting a char-
acteristic GW given by a superposition of dumped sinusoids (quasi-
normal modes QNM) [17]. The modes are de�ned by complex angular
frequencies ωlm, whose immaginary part represents the inverse of the
damping-time and the real one the oscillating frequency. The most
deteminant mode for the signal waveform characterization is the fun-
damental mode, de�ned by l = m = 2. When the resulting object is
a black hole all its properties are de�ned by its mass and spin, due to
the no hair theorem [18]. The validity of this consideration concerns
also the GWs, whose amplitude evolution can be written as:

h(t) = A
GM

c2r
e−πf0t/Qcos (2πf0t) (2.10)

In this equation A is the amplitude of the mode, f0 = Re (ω22) /2π is
the oscillation frequency and Q = πf0/Im (ω22) is the quality factor.
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Another interesting property of these systems is the relation between the
orbital frequency ω and time t, which gives the attribute of �chirping �to
these signals.

ω(t) = ω(t0)

[
1− 256G5/3µM2/3tc

5c5ω(t0)−8/3

]−3/8

(2.11)

To �nd this equation the Kepler law validity was assumed. Considering the
initial time t0 = 0, this formula shows the breakdown of the used approxi-
mation after a time:

tc =
5c5

256G5/3µM2/3ω(t0)8/3
(2.12)

which is the coalescence time. This expression of tc can be rewritten in
terms of GWs frequency ν0 (twice the orbital frequency) which the wave has
at t = 0:

tc =
5

256

c5

G5/3

(πν0)−8/3

M
5/3
chirp

(2.13)

Due to the equation (2.11) we can estimate the inspiral duration in a �xed
frequency range [fl, fu]:

tu − tl = tc(ν0)

[(
fl
ν0

)−8/3

−
(
fu
ν0

)−8/3
]

(2.14)

2.2.2 Rate

Because of the di�erent evolution end born probability of the celestial ob-
jects which di�er in masses, we have to distinguish the rate of the three
classes of systems: NS-NS, NS-BH and BH-BH binaries. To be quantita-
tive we have to indroduce the instrument context. The �rst generation of
interferometer-detectors has stopped the data aquisition in 2010. Now they
are under developements which would, once reached the optimal operating
condition, considerably improve the sensitivity curves. Moreover other de-
tectors are insteat under construction. All these intruments will become
newly operative, starting from 2015 and they will constitute the Advanced

or second generation 2G of detectors(see chapter 2).

• NS-NS binaries: to obtain this quantity two di�erent approaches can
be applied; the theoretical one and the empirical one. The �rst is based
on models of binary star formation and evolution. The rate found with
the theoretical method can vary also of orders of magnitude, depending
on the way they are calibrated. Considering star formation assumpi-
ons, low rates are estimated, while the evaluation on supernova events
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in Milky Way gets higher rates. Di�erently the empirical method is
based on the obsevations of binary systems which are thought to col-
lide. These objects are visible only if at least a components is a pulsar.
Therefore a factor corrects the result obtained by the direct observa-
tions, reaching a rate value of Rateemp∈3 − 190Myr−1 ×MWEG−1

where MWEG means Milky Way Equivalent Galaxy. The realistic NS-
NS rate value is expeced to be Ratere ≈ 100Myr−1MWEG−1, but,
owing to the large model incertainities, we have to be careful with this
estimate.
Concerining the rate of detectable coalescences for binary systems com-
posed by two neutron stars, we can reduce its eveluation to the follow-
ing relation

ρ = VBNS ×RMW × ρgal (2.15)

where RMW is the merger rate in the �Milky Way equivalent galaxies �,
ρgal is the density of �Milky Way equivalent galaxies�and �nally VBNS
is the observable volume. The latter quantity is calculated thanking
into account the maximum distance at �xed SNR (Signal to Noise Ra-
tio) from which a GW sources can emit a detectable signal. Anyway
we have to underline that this distance depends on the GW radiation
mechanism involved and consequently on the source physical proper-
ties.
Some studies [9] suggest for the network of the new generation of de-
tectors, AdV and aLIGO, a realistic rate of NS-NS detectable coales-
cences of about 40 events/year which has to be compared with the 2
events/century of the �rst generation of interferometries.

• NS-BH binaries: any direct proof of the existence of NS-BH sys-
tems was discovered. Anyway following the current evolution theory
this is probably due to practical di�culties for the identi�cation of
such systems. Even for these source class the rate can be calculated
in two di�erent ways; theoretically or empirically. To infer the NS-
BH population through the �rst approach the same models applied
to BNS (Binary Neutron Star) systems can be used. This method
strongly depends on the assumption about the systems evolution. The
obtained values for galactic mergers are: Ratep∈ [0.06− 0.11]Myr−1

and Rateo∈ [3.2− 4.8]Myr−1. Here we report respectively the most
pessimistic and the most optimistics results.
The empirical approach is instead based on few observations of bina-
ries with very massive components. They suggest that these systems
are actually formed and that they are detectable by the second gener-
ation instruments. Anyway the predictions about the detection rates
of these events can vary a lot, depending on the chosen strategy to
performe the calculation. For what concern the �rst generation inter-
ferometries the estimated number of events per year vary from few in
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a thousand year to a more optimistic evaluation of one event every few
years. Instead the Advanced GW detectors allow much more favorable
predictions: ∼ 10 yr−1 NS-BH mergers, which in the most optimistic
case becomes ∼ 300 yr−1 .

• BH-BH binaries: also for this kind of objects does not exist any
direct proof, anyway they are supported by the majority of the the-
ories. Therefore to infer the population of these systems theoretical
assumptions are needed. Also in this case the predictions are made
starting from the observations or considering pure theoretical models.
The �rst approach is based on the data concerning the NS-BH pop-
ulations, through which the BH-BH binaries rate is inferred. For the
same reason explained for the NS-BH systems the estimates coming
from this procedure gives rise to large incertainity. Even if also for the
theoretical preditions the rate values can be very di�erent, due to the
various assumptions, we report two of these estimations about galac-
tic events: Ratep∈ [0.02− 0.03]Myr−1 and Rateo∈ [7.7− 11]Myr−1

which represent rispectively the most pessimistic and the most opti-
mist predictions.
The expected rate for the 2G intruments is ∼ 20 yr−1 BH-BH co-
alescences, but the most optimistic estimation allows ∼ 1000 yr−1

detections.

[9] Estimations of the expectation rates obtained for the second generation
of instruments are thus summarized in the following table (Tab. 2.1). [35]

System Masses Range expected detection rate for aLIGO
(Msun) (Mpc) low (yr−1) realistic (yr−1) high (yr−1)

NS-NS 1.4/1.4 200 0.4 40 400
NS-BH 1.4/10 410 0.2 10 300
BH-BH 10/10 970 0.4 20 1000

Table 2.1: Predected detection rates for aLIGO interferometers.

2.2.3 Simulations

As we said, the main purpose of these notes is the coalescence compact
binaries recognition. To reach this goal we need simulations which mimic
the expected GW signals coming from these sources. In the last years
serveral models have been developed to describe the gravitational emission of
the three stages which characterize these phenomena; they are called IMR

waveforms (Inspiral Merger Ringdown). In this study we will consider the
EOBNRv2 family [19]. The (EOBNR) is an acronym of �E�ective One Body
Numerical Relativity �, which introduces the assumptions used to model and
test these waveforms. Binary systems are described by a generalization to
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General Relativity of the center-of-mass frame provided by the E�ective One
Body (EOB) approach. These models are based on the description of the
system dynamics through a particular external space-time metric. Here the
binary can be treated as a test particle, whose motion information can be
reconducted to the PN expansion. However here the information carried by
this approach is resummed di�erently from the usual power expansion of v/c
[20].
This approach for waveform reconstruction in based on the assumption of a
negligible merger duration. Therefore the simulations consists in the inspiral
and ringdown stages. However the EOB formlism exhibits accurate approx-
imations of the both the waveforms. In view of the above, the gravitational
waves emitted by coalescence binary systems are modelled in the following
way:

hEOBNR(t) = θ(tm − t)hi,p(t) + θ(t− tm)hr (2.16)

where θ(t) is the Heaviside function, tm the matching time and hi,p , hr
are respectively the reconstructed amplitude evolutions of the inspiral-plus-
plunge and of the ringdown phases. The EOBNR waveform family can be
used to describe the emitted gravitational radiation by non-spinning binary
components and its validity is tested by numerical-relativity (NR) simula-
tions. In the following we are going to use subgroup of this family, called
EOBNRv2. Here another approximation is applied. Indeed these waveform
reconstruction includes for the ringdown phase only the foundamental mode,
where m = 2 and l = 2.
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Figure 2.4: Plus polarization evolution in time h+(t) during the three main
phases typical of the compact binary coalescence signals. Three curves are
reported relative to three di�erent combinations of the main simulation pa-
rameters: M the total mass and q the ratio between the two single compo-
nents.
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Figure 2.5: Plus polarization evolution in frequency h+(f) during the three
main phases typical of the compact binary coalscence signals. Three curves
are reported relative to three di�erent combinations of the main simulation
parameters: M the total mass and q the ratio between the two single com-
ponents.



Chapter 3

LIGO-VIRGO detectors

Gravitational waves detection

Figure 3.1: Timing results for the Hulse-Taylor binary pulsar PS1913+16.
The image shows the periastron shift caused by the decay of the orbit via
emission of gravitational radiation

No direct evidence of GWs has been measured. Nervertheless an indirect
proof of their existence was given in 1993 by R. Hulse and J. Taylor.
In 1974 the two physicists discovered the binary system PSR1913+16 com-
posed by two pulsars orbiting around each other. For about 20-years they

27
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have studied the main properties of the pulsar binary and in particular they
have measured its orbital period. Analyzing this quantity they realized that
its reduction was in in good agreement with the GW emission, as predicted
by GR. Indeed the experimental value of the time-revolution descrease is

−dP (s)

dt
= (2.4211± 0.0014) · 10−12s · s−1 (3.1)

while the GR predicts

−dP (s)

dt
= (2.402531± 0.000014) · 10−12s · s−1 (3.2)

[21] For this important contribution to the GR knowledges R. Hulse and J.
Taylor earned the Nobel Prize in 1993 .
Nevertheless direct evidences of the GW properties are needed to con�rm and
test the general relativity and other alternative branches of the gravity the-
ory. However a GW detection can bring even more interesting consequences
indeed, since due to their very low cross-section with ordinary matter, they
can carry information about the internal structure and physics of celestial
bodies.

In this chapter we will illustate the principal GW detectors (Section 3.1),
paying particular attention to the main detection principle of interferometry
(Section 3.1.1). Thus we will focus on Virgo detector (Section 3.2) and its
characteristic sensitivity (Section 3.2.1). Then we will brea�y analyse the
interferometer response (Section 3.3) and �nally we will give a short overview
on the second generation instruments (Section 3.4), speci�cally on the Virgo
improvements (Section 3.4.1).

3.1 Gravitational wave detectors

In 1957 Joseph Weber began the attempts of a GW direct measurement,
developing the �rst acoustic detector.
Nowadays two di�erent classes of based-ground GW detectors are operating:

• resonant antennas;

• interferometers.

[22] [1] In 2015-2016, a new generation of advanced interferometers will start
observations with unprecedented sensitivities. Experimental demonstrations
of the feasibility of the space-based interferometer eLISA will be completed
in the same time scale by the LISA Path�nder mission. However, the time
scale for the �rst observations by a space based gravitational wave detector
is shifted beyond 2028.
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DETECTORS f(Hz) TARGET SOURCES
Criogenic resonant bars ≈ 103 Neutron stars;

(es. AURIGA, NAUTILUS) Supernovae;
Terrestrial interferometers ≈ 30− 5 · 103 Compact binary

coalescences up to 103Msun;
(es. LIGO, VIRGO) Neutron stars;

Supernovae;
Gamma Ray Bursts;

Space interferometer ≈ 10−4 − 10−1 Binary systems;
eLISA/NGO Hypermassive

black holes;

Table 3.1: Frequency-range and the main target sources of existing and
planned of detectors.

Resonant antennas

These instruments are based on the acustic oscillations induced in a cilin-
drical bar by the interaction with a gravitational wave. The motion is then
measured and converted in eletronic signals by a transducer mounted on the
bar. Focusing on the fundamental longitudinal mode of the bar, it can be
modeled as an equivalent oscillator made by two masses linked together by a
spring. The presence of a GW opposes the internal elastic force. Consider-
ing the TT gauge and a GW with plus polarization along the bar axis with
respect to the plus one, the system can be described by the equation:

ξ̈(t) + ω2
0

ξ̇(t)

2Q
+ ω0ξ(t) =

1

2
l · ḧ+(t) (3.3)

Here ξ̈(t) is the displacement of ω0 is the bar natural frequency, and Q = τω0

is the Q-factor. For a continuous wave with amplitude h+(t) frequency equal
to the natural one this equation has an oscillating solution with amplitude
ξ0 = Qlh+

2 , where l = 4L/π2 and L is the bar lenght.
The dominating noise source close to the resonant frequency is Brownian or
thermal noise, whose Power Spectral Density scales as T/(MQ). This sets
requirements on the operating temperatures, mass and quality factor of the
oscillato. Best resonant detectors in operation are cooled to liquid Helium
temperatures, have Q ∼ 106 and masses ∼ 103kg. The detector has to be
isolated from seismic enviromental disturbances by means of mechanical sus-
pensions.
At present the best acoustic detector performances are given by AURIGA
lacated at Legnaro (Italy) [23] (see Fig. 3.2).

Its peak sensitivity, square root of the noise power spectral density, reaches
about ∼ 1.5 · 10−21Hz−1/2 while its operative frequency range is approxi-
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Figure 3.2: Auriga sensitivity 2006-2008 [24]

mately (850− 950)Hz where the sensitivity is under 6 · 10−21Hz−1/2. These
characteristics limit the detectability to GWs emitted by very strong galactic
sources which are expected to be rare (≤ 1/century). Despite the several
e�orts, the acoustic detectors are characterize by a limited sensitivity and a
narrow frequency band in comparison with their successors.

Intereferometric detectors

Figure 3.3: Ligo and Virgo sensitivity curves in the S6 run.

The second class of GW detectors are inspired by Michelson Morley in-



3.1. GRAVITATIONAL WAVE DETECTORS 31

terferometer. A laser beam is splitted in two perpendicolar optical paths, of
approximately equal lenghts L, de�ned by supended mirrors acting as free-
falling masses in the audio-frequency range (∼ (30 − 5 · 103)Hz). A GW
incoming perpendicularly to the detector plane with plarization axis along
one arm causes opposite change in the arm lenght ∆L ≈ ±h+L. Therefore
the presence of a signal shifts the interference �gure. The target signal am-
plitudes are very small ∆L

L smaller or at least ≈ 10−21, for this reason the
arm lenght is as long as possible and this characteristic is determinant for
the achieved sensitivity.
Past observations resulted in many upper limits on GW emission processes,

Figure 3.4: A GW traveling perpendicular to the plane of the diagram is
characterized by a strain amplitude h. The wave distorts a ring of test par-
ticles into an ellipse, elongated in one direction in one half-cycle of the wave,
and elongated in the orthogonal direction in the next half-cycle. This oscil-
lating distortion can be measured with a Michelson interferometer oriented
as shown. The length oscillations modulate the phase shifts accrued by the
light in each arm, which are in turn observed as light intensity modulations
at the photodetector (green semi-circle). This depicts one of the linear po-
larization modes of the GW.

and expectations are that the upcoming observation of the second generation
of LIGO and Virgo detectors (so-called Advanced detectors) will eventually
detect the �rst GWs in the next few years [25]. Virgo V1 is a instrument
placed in Cascina (Italy) and characterized by a arm lenght of ∼ 3Km.
LIGO, whose name is an acronym of Laser Interferometric Gravitational-
waves Observatory, is now composed by 2 detectors with arm lenght ∼ 4Km,
one located at Livingstone (Lousiana) L1, the other at Hanford (Washington
State) H1.

3.1.1 The basic principle of interferometry

[26]The paragraph (1.2.5) shows the necessity of a non local measurements
to obtain information on the gravitational �eld. In interferometer detectors
the test masses are the two mirrors at the end of each arm. A simple scheme
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of an interefrometer is represented in the picture (Fig. 3.5). The principal

Figure 3.5: Schematic diagram of a laser interferometer GW detector

operating idea can be summarized in the following steps:

• light injection and splitting: a laser emits a beam divided in two
perpendicular rays by a beam splitter;

• light storage: each ray is re�ected by the mirrors at the end of the
two arms, which also have the role of test masses;

• light recombination and detection: any displacement between the
two test masses are aquired by a photodetector, which connects the
interference �gure with the di�erent lenght traveled by the two rays.

Operating principle: absence of signal

We are going to discuss the behaviour of the light in a simplie�ed Michelson-
Morley interferometer whose scheme is represented in the following �gure
(Fig. 3.6). For semplicity we will analyze only the electric part of the
electromagnetic radiation. For this simple analysis we consider the beam
emitted by the laser as plane waves travelling in l2-direction

Ein(t, x) = E0e
i(kLx−ωLt)eiφin (3.4)

characterized by an angular frequency ωL, by wavelenght λL, by a wave vec-
tor kL = 2π

λL
, by an initial phase φin and by an amplitude E0.

The beam splitter divides this beam in two orthogonal rays, whose ampli-
tudes are proportinal to its amplitude transmissivity tBS ,

E1(t, y) = tBSEin

or to its amplitude re�ectivity rBS ,

E5(t, x) = irBSEin



3.1. GRAVITATIONAL WAVE DETECTORS 33

Figure 3.6: Schematic representation of the beams involved in the analysis.

depending on their direction (respectively l2 and l1). At the end of the arms
both of them have acquired a phase proportional to the respective optical
path i.e.

E2(t, y) = eikLl2E1(t, y)

E6(t, x) = eikLl1E5(t, x)
(3.5)

Than the rays are partially re�ected by the two mirros a and b becoming

E3(t, y) = iraE2(t, y)

E7(t, x) = irbE6(t, x)
(3.6)

Finally the resulting beams

E4(t, y) = eikLl2E3(t, y)

E8(t, x) = eikLl1E7(t, x)
(3.7)

again in presence of the beam splitter, generate the detected light

Eout(t, x) = irBSE4(t, x) + tBSE8(t, x) (3.8)

In view of these considerations it is possible to calculate the power of the
detected signal

Pout = Pinr
2
BSt

2
BS(r2

a + r2
b ) (1 + C · cos (2kL∆l)) (3.9)

Here Pin is the power of the incident beam Ein while ∆l = l1 − l2 is the
di�erence between the leghts of the two arms, which also corresponds to the
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di�erence between the optical paths. Finally the costant C is the contrast of
the interference �gure, de�ned as

C =
2rarb
r2
a + r2

b

(3.10)

As the useful light part for the detection is the output one Eout, we desire
the mirror re�ection coe�cients ra and rb as possible near to one, to reduce
the power losses. Therefore the closer C gets to 1, the better perfmances are
reached by the interferometer.
Taking into account the formula (3.9) we can see that the phase which makes
the detection possible is

∆φLnoS = 2kL∆l = 2
2π

λL
∆l (3.11)

The working points of the LIGO-Virgo interfereomters are set to the dark

fringe condition i.e the two beams interfer destructively. This con�gura-
tion, which assure the maximun Signal to Noise Ration, is reached when
cos (∆φLnoS ) = −1 which means:

∆φLnoS = (2n+ 1)π (3.12)

Operating principle: presence of a signal with λGW � l̄

This section concernes the e�ects produced on a interferometer by a GW.
For this dimostrative exposition we consider the simplest case: a monocro-
matic plane wave, characteried by an angular frequency ωGW and by a wave
vector kGW = 2π

λGW
, travelling orthogonally (z-direction) with respect to the

inteferometer plane. l1 and l2 are the arm lenghts respectively in x and y

direction. To visualize this system look at the picture (Fig. 3.6). We assume
also that the GW has only the plus-polarization, therefore the interested
waves can be described by the equation:

h+(t, z) = h+0e
i(kGW z−ωGW t) = h0(z)e−iωGW t (3.13)

As described in the previus chapter, we are applying the linear approximation
which substantially consist in the consideration of gµν = ηµν+hµν . Therefore
the space-time interval ful�lls the equation

ds2 = gµνdx
µdxν

= [ηµν + hµν(t)] dxµdxν

= −c2dt2 + (1 + h+(t, z)) dx2 + (1− h+(t, z)) dy2

(3.14)

Considering two light-rays travelling respectively along the x-direction and
the y-direction we obtain:

ds2 = −c2dt2 + (1 + h+0e
i(kGW z−ωGW t))dx2 = 0

ds2 = −c2dt2 + (1− h+0e
i(kGW z−ωGW t))dy2 = 0

(3.15)
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In the following we will analyze in details the beam moving along the x-axis.
In view of the previous equations we can calculate the time ∆τx used by the
light to complete its optical path, which consist in arrive at the mirror b and
come back to the beam splitter.

∆τx = τ1 + τ2

=

∫ τ1

0
dt+

∫ τ2

0
dt

=
1

c

∫ l1

0

√
1 + h(z, t) dt− 1

c

∫ 0

l1

√
1 + h(z, t) dt

(3.16)

Considering weak �elds h(t, z)� 1 the integrals can be approximated taking
into account only the �rst two terms of Taylor expansion:

∆τx ≈
1

c

∫ l1

0

(
1 +

1

2
h(z, t)

)
dt− 1

c

∫ 0

l1

(
1 +

1

2
h(z, t)

)
dt (3.17)

Now we focus on GWs characterized by wavelenghts far greater than the
arm lenghts, which consequently have a period much longer than the time
needed to travel the arms. Under this condition the wave amplitude can be
approximized as constant, therefore we consider h(t, z) = h+. In view of this
assumptions solving the integrals we �nd:

∆τx ≈
2

c

(
l1 +

1

2
h+l1

)
≈ 2l1

c
+
h+l1
c

(3.18)

Similarly for the ray travelling along the arm in the y-direction we obtain

∆τy ≈
2

c

(
l2 −

1

2
h+l2

)
≈ 2l2

c
− h+l2

c

(3.19)

where the minus sign underlines that if in the x-direction (y-direction)the
GW increases the arm lenght, in the orthogonal y-direction (x-direction)
it is descreased. In light of these results the phase shift between the two
perpendicular rays can be calculated. In order to obtain this quantity we
have to �nd the temporal shift between the two beams when they come back
to the beam splitter.

∆τ = ∆τx −∆τy

=
2

c
(l1 − l2) +

1

c
(l1 + l2)h+

(3.20)
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From this equation we obtain the total di�erence between the two optical
paths (concering the round-trip of both the beams):

∆ltot(r−t) = c ·∆τ
= 2 (l1 − l2) + (l1 + l2)h+

(3.21)

Therefore the resulting phase shift, from which depend the detected power,
is

∆φLS = ωL ·∆τ
= kL ·∆ltot(r−t)

=
2π

λL
[2 (l1 − l2) + (l1 + l2)h+]

(3.22)

Refering to the formula (3.11) we can note that the presence of a GW adds
to the original ∆l = l1 − l2 an equivalence distance of

∆lGW =
1

2
(l1 + l2)h+ (3.23)

indeed

∆φLS =
4π

λL

[
l1 − l2 +

1

2
(l+l2)h+

]
=

4π

λL
(∆l + ∆lGW )

= ∆φLnoS + 2kLh+ l̄

(3.24)

where we have introduced the arm lenght average l̄ = l1+l2
2 . This equation

clearly shows that longer arms cause greater phase shifts. These considera-
tions allow us to calculate the expected power detected by the photodiode
in presence of gravitational signals

Pout = a
[
1 + C · cos

(
∆φLnoS + 2kLh+ l̄

)]
= a

{
1 + C

[
cos (∆φLnoS ) cos

(
2kLh+ l̄

)
+ sin (∆φLnoS ) sin

(
2kLh+ l̄

)]}
≈ a

[
1 + C · cos (∆φLnoS ) + C · 2kLh+ l̄sin (∆φLnoS )

]
(3.25)

Here we have introduced the constant a = Pinr
2
BSt

2
BS(r2

a + r2
b ).

The last relationship arises from the Taylor expansion of sin(α) ∼ α and
cos(α) ∼ 1 in the limit of α → 0. Indeed we have considered the case of
h+ � 1, such that 2kLh+ l̄� 1.

Operating principle: presence of a general signal

In this section we will �nd the interferometer behaviour in function of the
frequency through the describtion of a general gravitational signal, i.e. with-
out making any assumption on its feature. To analyze this situation we have
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to consider the GW shape dependence on the x and y coordinates. Before
the two rays re�ect at the mirrors a b, the GW phase is determined by the
times:

t(x) =
x

c
+ t0

t(y) =
y

c
+ t0

(3.26)

where tx and ty are the time used by the beams to reach the respective
mirror, while t0 is the time at the beginning of the measurements. Instead
during the each travel from the respective mirror to the beam splitter, the
GW phase is determined by the times:

t(x) =
l1 − x
c

+
l1
c

+ t0

=
2l1 − x
c

+ t0

(3.27)

t(y) =
l2 − y
c

+
l2
c

+ t0

=
2l2 − y
c

+ t0

(3.28)

Thus the time necessary for the two beams to follow their respective optical
paths until their composition at the beam splitter are:

∆τx =
1

c

∫ l1

0

(
1 +

1

2
h0e
−iωGW t(x)

)
dx− 1

c

∫ 0

l1

(
1 +

1

2
h0e
−iωGW t(x)

)
dx

(3.29)

∆τy =
1

c

∫ l2

0

(
1− 1

2
h0e
−iωGW t(y)

)
dy − 1

c

∫ 0

l2

(
1− 1

2
h0e
−iωGW t(y)

)
dy

(3.30)
In view of the previous relations (3.26), (3.27) and (3.28) the integrals become

∆τx =
1

c

∫ l1

0

(
1 +

1

2
h0e
−iωGW (xc+t0)

)
dx−1

c

∫ 0

l1

(
1 +

1

2
h0e
−iωGW

(
2l1−x
c

+t0
))

dx

(3.31)

∆τy =
1

c

∫ l2

0

(
1 +

1

2
h0e
−iωGW ( yc+t0)

)
dy−1

c

∫ 0

l2

(
1 +

1

2
h0e
−iωGW

(
2l2−y
c

+t0
))

dy

(3.32)
Therefore, solving the integrals, we obtain

∆τx =
2l1
c

+
1

2

h0

iωGW
e−iωGW t0

(
1− e−iωGW

2l1
c

)
(3.33)

∆τy =
2l2
c

+
1

2

h0

iωGW
e−iωGW t0

(
1− e−iωGW

2l2
c

)
(3.34)
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Thus the temporal shift between the two rays is

∆τ = ∆τx −∆τy

=
2

c
(l1 − l2) +

1

2

h0

iωGW
e−iωGW t0

(
2− e−iωGW

2l1
c − e−iωGW

2l2
c

) (3.35)

From this equation we cam calculate the total di�erence in the optical paths
of the two beams

∆ltot(r−t) = c ·∆τ

= 2∆l +
1

2

h0c

iωGW

(
2− e−iωGW

2l1
c − e−iωGW

2l2
c

) (3.36)

Assuming now the initial equality between the two arm lenghts l2 = l1 = l0
the previous equation becoms:

∆ltot(r−t) =
h0c

iωGW
e−iωGW t0

(
1− e−iωGW

2l0
c

)
= 2

h0c

ωGW
e
−iωGW

(
t0+

l0
c

)
sin

(
ωGW l0
c

) (3.37)

From which we can easily obtain the total phase shift in presence of a general
signal

∆φLS = kL ·∆ltot(r−t)

=
4π

λL
h0l0e

−iωGW
(
t0+

l0
c

) sin(ωGW l0
c

)
ωGW l0

c

(3.38)

Finally under this assumption of equality between the two arm lenghts we
�nd the power detected at the output of the interferometer

Pout = a

1 + C · cos

2kLh0l0e
−iωGW

(
t0+

l0
c

) sin(ωGW l0
c

)
ωGW l0

c

 (3.39)

Taking into account this last relation we can understand that the instru-
ment response depends on the signal frequency. Indeed there exist a cuto�
frequency, given by the equation

ωcutoff =
2πc

l0
(3.40)

As shown by the relation (3.40) this critical frequency correspond to the
time needed by the light to follow each arm. Signals with frequency greater
than this value provoke an attenuate instrument response. Moreover from
(3.38) we can also note that the interferometer is blind for signals which are
characterized by an angular frequency multiple to this cuto� value, due to
the null phase shift. This behaviour is well shown by the picture (Fig. 3.7).
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Figure 3.7: Frequency responce of an interfermoter characterized by arm
lenghts of 3 km and by a laser wavelenght of λL = 1064 nm

Necessary improvements

The simple con�guration explained in this paragraph is very di�erent with
respect to the real one. Several external devices are introduced to improve
the performances and reduce the noises. In particular all the most performing
interferometric detectors have:

• Fabry-Perot cavities
As showed in the previous paragraphs, a GW provokes a displacement
between the two test masses dependent on their initial distance. This
is the reason why the physical arms of these detectors are as long as
possible. Anyway the arm lenghts are limited by physical constrains,
like the Earth curvature,(nature, human activity and so on). There-
fore to increase the optical path between the two test masses, and thus
to improve the instrument sensitivity, Fabry-Perot cavities are intro-
duced.
A Fabry-Perot cavity is composed by two mirrors set at l0 distance and
characterized by re�ecting coe�cients r1 and r2. Through the intro-
duction of this device the e�ective lenght of the arms are ampli�ed by
a factor 2F

π , i.e.

leff =
2F
π
l0 (3.41)

where

F ≈ π
( √

r1r2

1− r1r2

)
(3.42)

is the Finesse of the Fabry-Perot cavity. Consequently also the ra-
tio between the phase shift produced by the interferometer with and
without the Fabry-Perot cavities is equal to 2F

π . For the Virgo case
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r1 ∼ 0.88 and r2 ∼ 0.99 therefore, for the equation (3.42), the �nesse
is equal to F ∼ 140 and the increasing sensitivity factor is 2F

π ∼ 90.
Considering an initial distance between each of the test masses and
the beam splitter of 3 km the resulting e�ective lenght of each arm is
leff ∼ 270 km.

Figure 3.8: Light in a Fabry Perot cavity

• Power Recycling mirror
As we will see the optimal incident power is greater than the one of the
interferometer. To mitigate the consequences of this choice (also im-
posed by practical limits) a recycling cavity is used in order to amplify
the incident power. Indeed set the distructive interference as working
point provokes a big lost in terms of light, due to its almost totally
re�ection to the laser. This expedient consists in the introduction of
a semire�ective mirror, the power recycling mirror, between the laser
and the beam splitter. In this way the incident power is increased by
a gain GPR

GPR ≈
t2rm

(1− rrmrint)2 (3.43)

This equation shows the dependence of the gain on the optical charac-
teristics re�ectivity and transmissivity, of the recycling mirror rrm and
trm and of the total inereferometer rint. Obviously addictional limits
on the gain value are due to the optical losses, anyway if they are less
than 2% the resulting gain is GPR ≈ 50 [27].

• Super attenuator
Another important noise source is the the seismic noise produced by
geology and human activity. To reduce the movements of the test
masses provoked by these phenomena is introduced the super attenua-
tor. It is composed by 5 mechanic standard �lters ( see the paragraph
3.2.1) and its aim is to lessen the test masses vertical, horizontal and
torsional movements of the test masses due to the soil motion. The
�lters consist on steel cilinders linked together by di�erent cables, spe-
cial springs and systems of antisprings. In this way the vibrations are
weaked by a chain of oscillators. The superattenuator is hung on a
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system composed by three bars and is called inverted pendulum

3.2 Virgo

Virgo is a project designed and developed by an Italian-French collaboration
and its name is inspired by the nearest rich galaxy cluster. Indeed the Virgo
Cluster is about ∼ 15 Mpc from the Earth and is composed by ∼ (1.5−2)·103

galaxies. Taking into account the probably best known GW source, the coa-
lescence of nuetron star binary system, we desire to have a sensitivity of about
10−21Hz−1/2 to detect these kind of signals coming from the Virgo Cluster.
Indeed they would have a strain of the order h ≈

(
10−21 − 10−22

)
Hz−1/2

in a range of about 30− 5 · 103 kHz, which is exactly the interested range of
frequency of the interferometric detectors.

Virgo detector

The main components of the three detectors are previously described in the
paragraph (3.1.1). Here we focus on the main properties and working prin-
ciple of the Virgo interferometry.
The laser light is shifted in frequency by modulation-demodulation tech-

λL (nm) Pin (W) l0(Km) GPR parms (mbar)
∼ 1064 ∼ 20 ∼ 3 ∼ 50 ∼ 10−10

Table 3.2: Main property of Virgo interferometry: λL is the laser wavelenght,
Pin is the light power, l0 is the arm lenght, GPR is the Power Recycling gain
and �nally parms is the vacuum preseny in the arms.

niques at 6 MHz and 14 MHz. Then the beam enters in the arm cavities,
where the pressure is lowered to ∼ 10−10 mbar, forming the largest vacuum
chamber in Europe [29]. Before the light is transmetted and re�ected by the
Beam Splitter its foundamental mode is selected by a mode cleaner. After
these stabilization techniques, the light passes through the Power Recycling
mirror and �nally through the Beam splitter. This element splits the light
in two perpendicular rays which follows the interferometer West and North
arms. Here they enter in the Fabry Perot cavities which extend both the
optical paths, increasing the sensitivity. The expedients adopted provide a
circulating power in the instrument of few tens of kW.
This operating principle, with the main devices, is summarized by the pic-
ture Fig. 3.9.
To maintain the Virgo detector in the dark fringe working point, it is nec-
essary to precisely control the test masses and the interferometer motion.
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Figure 3.9: Virgo optical scheme

To reach this supervision and to consequently regulate the devices position
a dumping active procedure is used. Some accelerators are located on the
superattenuator system and on the ring which collect the three legs of the in-
verted pendulum. These devices measure the test masses horizontal, vertical
and torsional acceleration. This information is used to move the suspension
point with a low frequency movements, applying a small force on the joints.
Finally with the superattenuator system a last suspesion step is introduced
to reduce the seismic noise and mainly to command the mirror position. The
main component of this phase is the marionetta which is connected to the
attenuator system by a a steel cable. It is composed by a central body and
four arms endowed with magnets and with coils. This system allows the
mirror movements and alignment.

3.2.1 Virgo noise

In the following we describe the noise sources of the Virgo detector, which
limit the GWs detection.
In an interferometer any noise can be described as real or apparent displace-
ments of the mirror, which causes a non-null signal to the photodetector. In
this section we treat the noise as a stationary and gaussian stochastic pro-
cess. These assumptions allow us to describe the involved processes with low
order approximations (gaussianity) and using the frequency domain (station-
ary). Therfore the noise phenomena can be usefully studied through their
spectral density. Indeed this rapresentation underlines their roles in the in-
terferometer sensitivity.
Considering h(t) the temporal series provided by the detector, we can de�ne
the following quantity

A(f) = lim
T→∞

∣∣∣∣∣ 1

T

∫ T/2

−T/2
h(t)e−i2πft dt

∣∣∣∣∣ (3.44)
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Therfore the resulting one-sided power spectral density can be written as

Sh(f) = |A(f)|2 + |A(−f)|2 = 2 |A(f)|2 (3.45)

Therfore we can call amplitude spectral density h(f) the square root of this
quantity (Fig. 3.3):

h(f) =
√
Sh(f) (3.46)

[28]

Seismic noise

At low frequency the data capture is perturbed by several noise sources due
to human activities and to natural phenomena. In the range≈ (1−10) Hz the
main measurements perturbations are related to tra�c, train passagge, winds
ecc.. [30]. These processes can be represented in the seismic noise spectrum
as a descreasing power law, describing the frequency range ≈ (1 − 10) Hz.
Anyway the main picks are produced by the ocean wave period (12s-24s).
In Virgo the seismic noise behaviour, at the very low frequency, can be
described through the plot displacements xseis(f):

|xseis(f)|
[
m/
√
Hz
]

=


10−10f−3, if f<0.05 Hz

10−6, if 0.05 Hz <f <0.3 Hz

10−7f−2, f>0.3 Hz

(3.47)

This value would correspond to an equivalent amplitude spectral density of

hseis(f) =
10−9

f2
Hz−1/2 (3.48)

However this noisy e�ect is lowered by the superattenuator introduction.
Indeed the impact of seismic vibrations on the measurements can be drasti-
cally descrease hanging the test mass to a pendolum by a steel cable lc long.
Considering the superattenuator transfer function H(f), the sensitivity can
be described by the following relation

hseis(f) =
2

l0
H(f)σ |xseis(f)| (3.49)

where σ is the coupling constant between the horizontal and vertical no-
tions of the superattenuator, whose value is around ∼ 10−2. This formula
shows that hseis(f) strongly depends on the superattenuator transfer func-
tion, which in the frequency range f � f0 can be approximized by

H(f) ≈
(
f0

f

)2N

(3.50)
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where N is the number of �lters and f0 = 1
2π

√
g
lc
is the resonance frequency.

It was decided N = 5 to reach the desidered sensitivity h(f) = 10−21Hz−1/2

at a frequency of f = 10Hz starting from an initial value (in absence of the
super�lter) of h(f = 10Hz) ≈ 10−11Hz−1/2 (in agreement with the formula
(3.48)).

Thermal noise

The thermal noise is the main limit for the GWs detection in the frequency
interval ≈ (5− 300) Hz. This is due to the operating conditions of the inter-
ferometer components, which indeed work at the enviromental temperature.
The consequently �uctuation properties of the system are strictly liked to
the its dissipative processes. Under the assumptions of the system linear-
ity and of its thermodinamic equilibrium this relation is described by the
Fluctuation and dissipation theorem. Thanks to this theorem we are able to
describe the macroscopic thermal noise without analyzing any microscopic
prosses involved in the dissipation, but simply describing it through a macro-
scopic impedance Z(f).
Indeed the �uctuation-dissipation theorem stats that the power spectrum of
a force F 2

therm(f) is

F 2
therm(f) = 4KBTRe(Z(f)) (3.51)

Here KB is the Boltzmann constant, T the enviromental temperature and
Re(Z(f)) the real part of the system impedance.
Adopting an adeguate model, this theorem permits to �nd a relationship
between the mirror movements and the amplitude spectral density due to
the thermal noise [32]

htherm(f) =
1

l0

√
xp(f)2 + xm(f)2 + xvm(f)2 (3.52)

where the terms x(f) are power spectral density related to the mirror dis-
placement, whose main causes are:

xp: thermal pendulum motion;

xm: normal modes provoked by the thermal noise of the mirrors;

xvm: violin mode, associated to the vibrational modes of the suspension
wires which link the marionetta to the mirror.

Shot noise

The GWs detection is realized measuring the power variations at the photo-
diode provoked by the optical path di�erence along the North and the West
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arms. For this reason any phenomenum which in�uences the light power can
increase the noise on the data. Therefore to optimize the intrument sensitiv-
ity we have to minimize the power variations caused by processes di�erent
from the GW transit.
The power measured in a temporal interval τ at the interferometer output
can be described in terms of averge energy Ē carried by the photons and
therefore as function of the laser physical properties

Pout =
Ē

τ
η =

N̄~ωL
τ

η (3.53)

where N̄ is the averge of the photon number detected by the photodiode and
η its quantum e�ciency.
Because of the Poisson distribution of the photon number, the standard
deviation of this quantity can be written as:

∆Nshot = σN =
√
N̄ =

√
Poutτ

~ωLη
(3.54)

where the last equation arises from the formula (3.53). In view of the above
(3.53) and (3.54), the power �uctuation results

∆Pshot :=

∣∣∣∣∂Pout∂N̄

∣∣∣∣ =

√
Pout~ωL

τ
η (3.55)

Assuming an interferometer characterized by a beam splitter with rBS =
tBS = 1/

√
2, and by mirrors with r1 = r2 = 1 we �nd

Pout =
Pin
2

(1 + cos∆φnoS) (3.56)

Under these conditions a GW produces a change in the detected power of

Pout (∆φnoS + ∆φS) = P (∆φnoS) +
∂Pout
∂∆φnoS

∆φS

= P (∆φnoS)− Pin
2
sin(∆φnoS)∆φS

= P (∆φnoS) + ∆PGW

(3.57)

Therefore considering the best instrument con�guration, given by the dark-
fringe condition (∆φnoS = π), the value at which the signal metches the
noise (SNR=1):∣∣∣∣∆PGW∆Pshot

∣∣∣∣ =
Pin
2√

Pin
2

~ωL
τ η

sin (∆φnoS)√
1 + cos(∆φnoS)

∆φS = 1 (3.58)
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From this equation we can infer that the phase shift for SNR equal to one is

∆φS (∆φnoS = π) = ∆φSmin

=

√
2~ωL
Pinτ

η
1√
2

=

√
~ωL
Pinτ

η

(3.59)

Indeed the phase shift between two orthogonal light beams is a key physical
quantity in an interferometric GW detector. Moreover it o�ers the possibility
to make a comparison between this result and the limit imposed by the
Heisenberg indetermination principle

∆φ∆N ≤ 1

2
(3.60)

where N is the number of photons detected by the phodiode. Now using the
previous equations (3.54) and assumption (3.56) we obtain the indetermina-
tion on the ∆φ

∆φ >
1

2

√
2~ωL

Pinτ (1 + cos(∆φnoS))
η =

1

2

√
~ωL
Pinτ

η := φH (3.61)

Therefore
∆φSmin ∼ 2φH (3.62)

This equation shows that the phase shift, at SNR equal to one, is just twice
the limit phase shift imposed by the Heisenberg indetermination principle.
The previous analysis can be used to �nd the amplitude spectral density due
to the shot noise. Indeed a GW produces a phase shift of

∆φS =
4π

λL
∆lGW (3.63)

with ∆lGW = hl0. In view of these considerations we have

∆φSmin =
4π

λL

hshot√
τ
l0 (3.64)

and �nally

hshot

[
Hz−1/2

]
=

λL
l04π

√
~ωL
Pin

η (3.65)

This relation reveals an indirect proportionality between the hshot and the
product l0

√
Pin, thus increasing this latter quantity the shot noise can be

reduced.
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Radiation Pressure Noise

Also the Radiation Pressure noise has origin in the photon statistical �uctu-
ations. Indeed when the laser light hits a mirror, it produces a force which
moves the test mass in a new position. Anyway the main source of noise
coming from this mechanism remains the �uctuations, because they can not
be easily opposed. Considering an incident power Pin and a mirror with
mass m, the spectrum of the test mass displacement is given by the formula

xrad (ω) =
2

ω2m

√
2π~Pin
cλLτ

η (3.66)

Thus the amplitude spectral density becomes:

hrad (ω) =
2

ω2ml0

√
2π~Pin
cλL

η (3.67)

Therefore also in this case the noise can be reduced increasing the arm length
l0, but in opposite to the shot noise behaviour an improvement on the in-
strument sensitivity can be obtained lowering the input power.

Quantum noise limit

The last two paragraphs illustrate the di�erent dependence on the input
power of the noises originated by photon �uctuations. Therefore an optimal
power value has to be provided. This would represent a compromise between
the two involved processes, and therefore can be found equaling the two
amplitude spectral density (3.65) and (3.67). The result obtained is:

Popt =
πcλLmf

2

2
(3.68)

Substituting this equation in one of the previous relationships (3.65) or (3.67)
we obtain the corrispondent sensitivity:

hql =
1

2πfl0

√
~
m
η (3.69)

When this condiction is satas�ed the, so called, quantum limit is reached. In
Virgo case λL ≈ 1µm, therefore the optimal value of the laser power is

Popt(f) ≈ 104f2W (3.70)

This relation shows that the optimal power can not be reached in determined
frequency ranges, indeed Popt(f = 10Hz) ≈ 1 MW.
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Figure 3.10: Di�erent noise impacts predected for AdvVirgo.

3.3 Detector directional sensitivity

In presence of a GW the responce of an interferometer X(t) is composed by
the noise n(t) and the signal ξ(t) contributes:

X(t) = ξ(t) + n(t) (3.71)

Assuming the equality between the arm lenghts of the detector l0, the in-
strument response produced by the GW transit can be written in terms of
the test mass displacements δlx and δly as:

ξ(t) =
(δlx − δly)

l0
(3.72)

The relation which linkes this quantity to the GW tensor hµν(t) is obtained
with the indroduction of the detector tensor Dµν

ξ(t) = Dµνhµν(t) (3.73)

We can semplify this equation adopting the TT gauge, where the GW tensor
is reduce to have only two independet components h+(t) and h×(t). Indeed
this choice permits to obtain a reduced formulation of the previous equation

ξ(t) = F+h+(t) + F×h×(t) (3.74)

Here we have introduced the Antenna Pattern functions F+ and F× for
the two polarizations, which are linear combinations of some detector tensor
components. These quantities depend only on the source direction with
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Figure 3.11: Relationship between TT wave frame and detector frame. For
an interferometer, the arms are located at the x, y-axis. The angle (θ, φ, ψ)
are the Euler Angle of the transformation between detector frame and wave
frame.

respect to the interferometer orientation. Considering the system visualized
by the picture (Fig. 3.11), the antenna pattern are functions of the Eulero
Angles (θ, φ, ψ). The interferometer plane is represented by the two arms
which determine the unit vectors (êx,êy); the GW direction is de�ned by the
spherical coordinates θ and φ relative to the detector axes, while the two
GW polatization components are along the x-y directions in the plane of the
sky, rotated by the angle ψ with respect the interferometer plane. In these
coordinate systems the antenna pattern functions are [33]{

F+ (θ, φ, ψ) =
[(

1 + cos2θ
)
cos2φcos2ψ

]
/2− cosθsin2φsin2ψ

F× (θ, φ, ψ) =
[(

1 + cos2θ
)
cos2φsin2ψ

]
/2 + cosθsin2φcos2ψ

(3.75)

As shown by these last equations the sensitivity of each detector to the
di�erent signal directions depends on its arm orientation. In paricular the
best GW detections happen when the signal direction of propagation is or-
thogonal to the detector plane (cosθ = 1), whereas the interferometer is
blind for directions whose component on the detector plane is one of its
bisectors(cos2φ = 0, φ = nπ/4 with n odd). In the picture (Fig 3.12) is
shown how the antenna pattern functions change their value in relation with
the sky location from which the GW source emits. Speci�cally the graphs
represent, for each interferometer of the interested network (Virgo, L1,H1),

the quantity
√
F 2

+ + F 2
× on varying the direction angles θ and φ.
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Figure 3.12: Variation of
√
F 2

+ + F 2
× quantity following earth coordinate.

On x-axis is reported the longitude, and on y-axis the latitude. Coloured
axis reports valued of antenna patterns. From top to bottom the detectors
are: V1, L1, H1.
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3.4 Advanced detectors

In 2011 the �rst generation of interferometric GW detectors completed the
data acquisition. The observing time lasted some years during which the
interferometry networks achieved the design sensitivity and surpassed the
scienti�c goals, despite the many di�culties. Indeed, even if the several
noises described in the previous section had a�icted the instrument measure,
in a wide range of frequences the mirror position had been located with
a precision better than 10−18 m. Althought no signal was detected, the
sensitivity reached allowed the setting of upper limits on many possible GW
sources and the achievement of the necessary requirements for the detection
of a neutron star binary coalescence at about ∼ 20 Mpc with a noise to ratio
of 8.
From 2015 the second instrument generation (2G) will progressively start
the new science runs. Improvements on the Virgo and LIGO detectors are
currently under development, whereas the new KAGRA interferometer is
now under construction. With respect to the other, the latter will present
two main dissimilarities: its location will be underground, to reduce the
seismic noise, and the its principal optics will be cooled down to ∼ 20 K, to
decrease the thermal e�ets on the measurements.
The major goal of the new generation intruments will be an improvement
by a factor ∼ 10 over a large frequency range. This means an increasing
on the observable volume by a factor ∼ 1000. Consequently a the chances
of detections are expected to drastically increasing: by a factor ∼ 100 for
continuous signals and cosmological stochastic background; by a factor ∼
1000 for the impulsive events. [9]

3.4.1 Advanced Virgo detector

Virgo is one of the best performing GW detector whose infrastructure is now
under development. The planned improvements are:

• introduce a new mirror between the beam splitter and the detection
bench, in order to improve the sensitivity at speci�c frequency bands
[34] (signal recycling);

• increase the laser power, which will reach ∼ 250 W, to reduce the shot
noise;

• double the mirror weight (∼ 42 Kg), to mitigate the growing e�ets of
the radiation preassure produced by the increased input power;
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• improve the Thermal Compensation System, which is used to mitigate
the problems caused by the mirror assorbtion of the light power (ther-
mal lensing);

• the new �nesse will reach the value of 450 so that the optical path will
increase to an e�ective lenght of 860 km.

These changes are expected to improve sensitivity by an order of magnitude
in the frequency width ∼ (10 − 1000) Hz. Once this goal will be achieved,
the coalescence of a neutron star binary system would be detected by Virgo
from a source distance of ∼ 155 Mpc [9], to compare with the ∼ 11 Mpc

reached by the previous con�guration.

Figure 3.13: Comparison between Virgo sensitivity during the science run

VSR4 and the design sensitivity of Advanced Virgo.



Chapter 4

Coherent Waveburst Analysis

For the development of this project I become a member of the LIGO-Virgo
collaboration. The real data utilized were collected during the last operating
period by the GW observatory network: Virgo (V1), LIGO-Hanford (H1)
and LIGO-Livingston (L1). To reach the main topic of the thesis I focus on
data-analysis which starts from the time-frequency representation of candi-
dates provided by the coherent Waveburst pipeline.

Burst GWs are signals characterized by a short time duration. This
general de�nition permits the inclusion on this class of a large variety of
gravitational emissions. The best known expected waveforms arise from Su-
pernova explosions and from compact binary coalescences. There are two
main approaches for the detection of these kind of signals: the Template-
based methods and the unmodelled searches.
? The template-based methods are set up starting from the recognition
of GW classes theoretically well modelled. The aim of this kind of analysis is
the identi�cation of determinate waveforms. This approach is advantageous
when the interested signals have well known properties, which noises mimic
with di�culty.
? The unmodelled searches instead are based on the individuation of en-
ergy excesses. Therefore, to discriminate the noise events, more e�orts are
needed. On the other hand the resulting algorithm is extremely more robust
with respect to the signal shapes. This characteristic increase the possibility
of the detection of GWs with unknown waveforms. The lack of detected
signals makes this robustness a really important quality.
The coherent Waveburst (cWB) pipeline is based on the unmodelled
searches, anyway some polarization constrains on the interested signals can
easily be introduced. The analysis applied to the data does not consider any
prior about the signal (no assumption on waveform, arriving time, source
direction ecc... ). Anyway this algorithm is equipped by the possibility to
choose a partially di�erent analysis in presence of external triggers, generally

53
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constitued by knowledge of the sky location and of the event time. Usually
the signal information are provided by di�erent astrophysical searches, but
also the GW observatories will have the possibility to broadcast notices on
celestial sources. Indeed in the last years joint collaboration between di�er-
ent detector types (neutrinos, gamma rays, ecc... ) have been started.
The collaboration internal the gravitational-wave community is ruled by sev-
eral formal agreements to improve the information �owing between the dif-
ferent GW observatories. Indeed a signal detection would probably happen
in a very noisy environment, thus, in order to reduce the impact of these
measurement perturbations, coincidence studies are performed. Indeed if a
real emission is detected it will appear in each of the operative instruments
equipped with the necessary sensitivity. Two main approaches are developed
to take into account the detector networks and their data correlation in GW
presence(sets):

incoherent analysis : the candidates of each detector which survive at
all the decision rules are selected for the composition of a trigger list
related to the considered intrument. Then all the lists belonging to the
interested detector set are compared and analyzed to �nd the network
events. The individuation of the emission direction is implemented
with an angular accuracy (typically of few degrees) which depends on
the source position with respect to the detector arm orientation. At the
moment this strategy is applied for data analysis based on templates.
[36]

coherent analysis : a direct unique list of triggers is performed by the
network adopting di�erent selection rules. This method permits to
connect the data acquired by the di�erent detectors with more inci-
sive relations, which allow better con�dence in the detection and bet-
ter performances in source localizations and waveform reconstructions
with respect to the incoherent analysis.

The Waveburst pipeline, �rst based on incoherent approach, is now devel-
oped adopting a coherent analysis and therefore it needs data streams pro-
vided by a set of detectors. The basic idea of this algorithm consists on
the identi�cation of the most energetic data and the main problem is the
rejection of the noisy events. For this reason the joined analysis of the in-
formation provided by di�erent intruments represents a basilar tools for this
kind of unmodelled searches. Anyway estimating the coincidence of a can-
didate is not an easy task. Indeed the inteferometers must detect the same
GW during di�erent times, due to their various locations on the Earth. Take
into account these temporal displacements is even complicated by the depen-
dence of their value on the source direction. Finally also the amplitude of the
possible signal has to be di�erent in the involved detectors, because of their
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antenna pattern function. However consider several instrument outputs not
only help in the discrimination process but it also allow a the source loca-
tion [37] (more involved detectors means more precision) in the sky and a
better coverage of the possible emission directions. Anyway a large statistic
permits the occurrence of events with the signal expected characteristics but
generated by noisy processes.
The cWB algorithm analizes candidates classi�ng them as background events
or as signals.
Applying this procedure two kinds of errors are possible: the false dis-

Signal presence Signal absence
Hypothesis of presence True Alarm False Alarm
Hypothesis of absence False Dismissal True Dismissal

Table 4.1: Possible cases derived by decision rules.

missals and the false alarms. The former represents the fraction of sim-
ulated waveforms wrongly evaluated, whereas the latter refers to the ex-
changed noisy events (glitches) with signals. The other two quantities writ-
ten in the table Tab. 4.1 are associated to the correct classi�ed events, the
false dismissal refers the glitches and the true alarm to the signal. Any-
way the most used parameters for evaluate the analysis performances are the
e�ciency and the false alarm. The former is a quanti�cation of the signal
identi�ed and it is associated to true alarms. Sometimes this information is
summarized in the Receiver Operating Characteristic (ROC) curves. These
graphs usually have on ordinate the e�ciency rate and on the x-axis the false
alarm rate (with rate we indicate the ratio between the event number and
the live-time in which they occur).
Because of the signal lack the e�ciency is predicted considering injected
waveforms, which follow di�erent models depending on what we are in-
terested in. The target signals for Waveburst algorithm are bursts whose
maximum duration lasts few seconds. Generally to evaluate the pipeline
performances generic signal are used, such as Gaussian and Sine-Gaussian
bursts which can easily test all the available frequency range. A key quantity
which describes the injected waveforms is their hrss (rss: root square sum)

hrss

[
Hz−1/2

]
=

√∫ +∞

−∞
h(t)2 dt (4.1)

This signal property is the root mean square of the GW energy and, how
shown by it unit of measurement, it can be directly compareted to the sen-
sitivity of the instruments.
A new version of the cWB pipeline, called cWB 2G, was recently imple-
mented and improvements on its algorithm are currently under developing.
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In this chapter are brie�y shown the 2 main sections of the Waveburst anal-
ysis: the production and the postproduction stages.

In this chapter we will see how data are selected according to their quality
(Section 4.1), the likelihood method which is on the basis of the cWB analysis
(Section 4.2), the main steps included in the pipeline (Section 4.3) and then
how the data are �nally rated (Section 4.4).

4.1 Data Quality Flags

For Waveburst algorithm one of the most important goal is to perform an
e�cient glitch rejection. In the previous chapter (Sec. 3.2.1) we have seen
some of the noisy processes which generate these disturbing triggers. To
reduce their impact on the analysis the quality of the data are tagged through
data-quality-�ags (DQFs) [38]. Indeed there are strong correlation between
gravitational channel and the enviromental disturbances recorded by the
auxiliary channels, which allow the identi�cation of some glitches. Therefore
we can discard some of the data segments considered not relaiable. The DQFs
are assigned to the temporal series by di�erent analysis from the Waveburst
one. The data quality �ags can be divided in three main classes:

• Cathegory 1 (CAT1): the analysis of the data tagged by this DQF is
substantially unfeasible. This cathegory also includes periods during
which the interferometer does not collect data or the noise sources
cause important corruption on them.

• Cathegory 2 (CAT2): this cathegory de�ne data in�uenced by de-
tector multifunctions which are well understood. Thus the events re-
constructed in periods belonging to this data-quality class probably
arise from these disturbances, and so usually disregarded. This kind
of DQFs are applied or data surviving the CAT1 and typically last few
seconds.

• Cathegory 3 (CAT3): the purpose of this cathegory is to limited the
data acquired when the instruments have reached its optimal operating
regime. To reach this aim this cathegory de�nes aquirements weakly
related to the present noises. Therefore a GW candidate, found in data
classi�ed as CAT3, has to be evaluated carefully. Only data passing
CAT1 and CAT2 DQFs are subject to CAT3 evaluation. The discard
of all the periods tagged by this class of DQFs means a lost of about
∼ 20% of the observating time. For this reason Waveburst algorithm
usually does not apply this cathegory of DQFs.

Another veto class is applied for the rejection of glitches: theHVETO �ags

[39]. This kind of tag is given to the triggers which present an excess of coin-
cidence between the GW channel and the interferometric and environmental
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auxiliary channels. This correlation means that probably the same source
have produced the tagged event in both the lists and therefore that it is
caused by a noisy process. In view of the above and because the time lost
with the application of this vetos is negligible, the labeled data are normally
disregarded.

4.2 Likelihood method

The likelihood function is a powerful tool used to statistically test two dif-
ferent models. For the implementation of this method all the available infor-
mation about the involved processes are collected: both from the observed
data and from the probability mechanism of the phenomenum. The general
idea is to compare two di�erent hypotheses, characterized by two distinct
parameter spaces, and to decide by the ratio between the respective likeli-
hood functions which best interprete the available observations.
Likelihood function [40]: Given a statistical model (XI , fI (xI ; θ) , θ∈Θ)
for a random sample XI of I observations, the likelihood function associated
to x is the function

Lxo(θ) = fI(xo; θ) =
I∏
i=1

fX(xo[i], θ) (4.2)

where xo = (xo[1], xo[2], ..., xo[I]) represents the achieved data.
The implementation of the test consist in considering the ratio of the like-
lihood functions related to two di�erent hypotheses, θ′ and θ′′ , to infer
which model more likily describes the data. Therefore ths method consists
in evaluating the function

Λ(xo) =
Lxo(θ′)
Lxo(θ′′)

(4.3)

Find Λ(xo) > 1 means θ′ is more reliable than θ′′.

The cWB pipeline adopts a coherent method to analyze the data stream
of detector network based on a Constrained Likelihood process.

4.2.1 Single detector

To better understand the Likelihood method we start analyzing the data
provided by a sigle detector. For the development of the procedure we use
the notation expressed in the following.

Complex notation

Considering the detector response to a GW ξ(t)

ξ(t) = F+h+(t) + F×h×(t) (4.4)
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we can simplify the formalism introducing a complex representation (i im-
maginary unit) for the antenna pattern fuctions and for the waveforms

ζ(t) = h+(t) + ih×(t) (4.5)

A =
1

2
(F+ + iF×) (4.6)

Calling z∗ the complex conjugate of the quantity z, the previous notation
allows a new formulation of the detector response

ξ(t) = ζ(t) ·A∗ + ζ∗ ·A (4.7)

In this coordinate frame a system rotation in agreement with the wave plane
is performed by the transformation

A′ = A · e2iψ (4.8)

ζ ′ = ζ · e2iψ (4.9)

The last formula shows that a change of the coordinate frame has no e�ect
on the detector response.

Likelihood analysis

The analysis aims to recognize GW signal from the noisy glitches present
in the interferometer data stream xo = xo[1], xo[2]..., xo[I]. To achieve this
result a decision rule is needed and it is performed by the Likelihood test. It
explore the two mutually exclusive hypotheses of presence (H1, alternative)
or absence (H0, null) of signals. The variable x is characterized by the
probability densities f(x|H1) and f(x|H0) which di�ers in the parameter
spaces used for the de�nition of the statistical model. The collected data
can be respresented as the sum of the noise n(t) and the detector response
to an eventual gravitational signal ξ(t), i.e.

x(t) = n(t) + ξ(t) (4.10)

Assuming the disturbances as Gaussian white noise with 0-mean we can
de�ne the two likelihood functions, in agreement with the de�nition (4.2):

Lxo |H0 = f(xo|H0) =
I∏
i=1

1√
2πσ

exp

(
−x

2
o[i]

2σ2

)
(4.11)

Lxo |H1 = f(xo|H1) =

I∏
i=1

1√
2πσ

exp

(
−(xo[i]− ξ[i])2

2σ2

)
(4.12)

where σ is the noise standard deviation. Through these functions it is possi-
ble to choose the desired false alarm probability and thus de�ne the decision
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rule. The selection happens applying a threshold (correspondent to a speci�c
false alarm probability) on the Likelihood ratio, which is de�ned as followed

Λ(xo) :=
Lxo |H1

Lxo |H0

=
Lxo(~ξ 6= 0)

Lxo(~ξ = 0)
=
fI(xo|H1)

fI(xo|H0)
(4.13)

where xo = (xo[1], xo[2], ..xo[I]) are the observed data, ~ξ = (ξ[1], ξ[2]..., ξ[I])
and Lxo |H1(0) is the likelihood function for the hypothesis of presence (ab-
sence) of signal. The Neymann-Pearson criterion assures that the optimal
decision rule can be found �xing the false alarm probability and lowering the
false dismissal to �nd its minimum value. Anyway this appoach is e�ective
when H1 is a symple hypothesis.
To simplify the formulation of the likelihood ratio in function of the data
(noise and signal) parameters we can introduce likelihood functional (or sim-
ply likelihood), i.e. the logarithm of the likelihood ratio:

L = ln (Λ(xo)) =
I∑
i=1

1

σ2

(
xo[i]ξ[i]−

1

2
ξ2[i]

)
(4.14)

where we used the equations (4.11) and (4.12). For the analysis both the like-
lihood ratio and the likelihood functional can be used almost independently
because of the monotonicity of the logarithmic function.

4.2.2 Detector network

The treatment of the likelihood functions in presence of more intruments
has not been developed through criterions similar to the Neyman-Pearson
one. Anyway the cWB algorithm starts its analysis from the likelihood
method, whose formalism is extented by the single detector case to a set of
N interferometers.

Notation

To describe the relevant quantities we de�ne an N-dimensional space, in
which each dimension refers to a speci�c detector k:

σ = (σ1, σ2, ...σk, ...σN )

ζ = (ζ1, ζ2, ...ζk, ...ζN )

A = (A1, A2, ...Ak, ...AN )

F+ = (F1+, F2+, ...Fk+, ...FN+)

F× = (F1×, F2×, ...Fk×, ...FN×)

(4.15)

where we have extended the relation introduced in the previous section to
any k instrument

ξk = ζk ·A∗k + ζ∗k ·Ak (4.16)
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Also normalized vectors can be de�ned in the N-detector space

X = (xo1/σ1, xo2/σ2, ...xok/σk, ...xoN/σN )

ξσ = (ξ1/σ1, ξ2/σ2, ...ξk/σk, ...ξN/σN )

f+ = (F1+/σ1, F2+/σ2, ...Fk+/σk, ...FN+/σN )

f× = (F1+/σ1, F2+/σ2, ...Fk+/σk, ...FN+/σN )

(4.17)

and �nally

Aσ = (A1/σ1, A2/σ2, ...Ak/σk, ...AN/σN )

=
1

2
(f1+ + if1×, f2+ + if2×, ...fk+ + ifk×, ...fN+ + ifN×)

(4.18)

Normalized Antenna Patterns

To develope the analysis we can introduce the real gr an the complex gc
network antenna patterns

gr = AσA
∗
σ =

N∑
k=1

Ak ·A∗k
σ2
k

=
1

4

N∑
k=1

(
f2
k+ + f2

k×
)

(4.19)

gc = A2
σ =

N∑
k=1

A2
k

σ2
k

=
1

4

N∑
k=1

(
f2
k+ + 2ifk+fk× − f2

k×
)

(4.20)

To simplify some expressions we compute a coordinate transformation. We
focus on the trasformation to which correspond a null immaginary part of the
complex network antenna pattern g′c = |gc| e−2iγ . Therefore A′k = Ake

−iγ =(
F ′k+ + iF ′k×

)
/2, which means

F ′k+ = Fk+cosγ + Fk×sinγ

F ′k× = −Fk+sinγ + Fk×cosγ
(4.21)

in analogy we �nd for the normalized vectors A′σk = Aσke
iγ and consequently

f ′k+ = fk+cosγ + fk×sinγ

f ′k× = −fk+sinγ + fk×cosγ
(4.22)

In this new frame the complex antenna patter becomes

A′2σ =
1

2

(
f ′+ + if ′×

)
· 1

2

(
f ′+ + if ′×

)
=

1

4

(
f ′2+ − f ′2×

)
+
i
(
f ′+ · f ′×

)
2

(4.23)

The last equation shows that the requirement of a null g′c immaginary part
is equivalent to the othogonality between the normalized antenna pattern
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vectors f ′+ and f ′×. The satisfaction of this property, f ′+ · f ′× = 0 , de�nes
the Dominant Polarization Frame (DPF).
Developing the previous considerations we can �nd the relation which tran-
forms any frame (f+,f×) to the DPF frame (f ′+,f

′
×). The only parameter

of the transformation A′k = Ake
−iγ is the angle γ, therefore we are looking

for a relationship which links γ to the normalized antenna patterns of the
starting frame.
Considering the inverse transformation Ak = A′ke

iγ we �nd

1

4

(
f2

+ − f2
×
)

+
i (f+ · f×)

2
= A2

σ =
(
A′σe

iγ
)2

= =
∣∣A2

σ

∣∣ e2iγ

=
∣∣A2

σ

∣∣ (cos2γ + isin2γ)

(4.24)

where we have considered the equality
∣∣A′2σ ∣∣ =

∣∣A2
σ

∣∣. Elaborating these
equations we obtain

∣∣A2
σ

∣∣ cos2γ =
(
f2

+ − f2
×
)
/4∣∣A2

σ

∣∣ sin2γ = (f+ · f×) /2
(4.25)

from which we can easily calculate the γ angle

γ =
1

2
arctan

(
f2

+ − f2
×

2f+ · f×

)
(4.26)

Now to test the transformation and verify it leads to the DPF frame, we can
check the ortogonality between the two vectors f+ and f×

f ′+ · f ′× = (f+cosγ + f×sinγ) · (−f+sinγ + f×cosγ)

= −
(
f2

+ − f2
×
)
cosγsinγ + (f+ · f×)

(
cos2γ − sin2γ

)
= −sin2γ

(
f2

+ − f2
×
)
/2 + (f+ · f×) cos2γ

= 0

(4.27)
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Moreover it is useful to discover the relation which connects the normalized
antenna patterns of the DPF frame to the ones de�ned in a generic frame∣∣f ′+∣∣2 = |f+cosγ + f×sinγ|2

= f2
+cos

2γ + f2
×sin

2γ + 2 (f+ · f×) cosγsinγ

= f2
x

1 + cos2γ

2
+ f2
×

1− cos2γ
2

+ (f+ · f×) sin2γ

=
1

2

(
f2

+ + f2
×
)

+ 2 ·
(

1

4
cos2γ

(
f2

+ − f2
×
)

+
1

2
sin2γ (f+ · f×)

)
=

1

2

(
f2

+ + f2
×
)

+ 2
(∣∣A2

σ

∣∣ cos22γ +
∣∣A2

σ

∣∣ sin22γ
)

= 2

(
1

4

(
f2

+ + f2
×
)

+
∣∣A2

σ

∣∣)
= 2

(
|Aσ|2 +

∣∣A2
σ

∣∣)
= 2 (gr + |gc|)

(4.28)

in analogy we obtain for
∣∣f ′×∣∣∣∣f ′×∣∣ = 2
(
|Aσ|2 −

∣∣A2
σ

∣∣) = 2 (gr − |gc|) (4.29)

Through these equation we discover an important property of the normalized
antenna patterns in the DPF frame∣∣f ′+∣∣2 ≥ ∣∣f ′×∣∣2 (4.30)

Two interesting cases can be studied by these equations:

1.
∣∣f ′+∣∣ =

∣∣f ′×∣∣
When this condition is satis�ed we �nd

∣∣A2
σ

∣∣ = 0 and thus by the
equations (4.28) and (4.29) we obtain for any general frame

f2
+ = f2

×

f× · f+ = 0
(4.31)

because to verify
∣∣A2

σ

∣∣ = 0 both the real and the complex part have to
be null. The relation (4.31) reveals that under the condition

∣∣f ′+∣∣ =∣∣f ′×∣∣ the normalized antenna patterns in a generic frame have the same
value and are othogonal.

2.
∣∣f ′×∣∣ = 0

This assumption requires

fk+ = f ′k+cosγ

fk× = f ′k+sinγ
(4.32)
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due to the equation (4.23). These relations shows that in this case each
detector of the network gives the same response to a GW, indeed the
ratio between the two normalized antenna patterns is equal for all the
intruments. Therefore all the interferometers of the set have parallel
arms.

The property
∣∣f ′+∣∣ ≥ ∣∣f ′×∣∣ is well illustrated by the image (Fig. 4.1) where is

represented the quantity
∣∣f ′×∣∣ / ∣∣f ′+∣∣ related to the full network V1L1H1. We

note that it always satis�es the inequality of the relation (4.30) and that in
a big region of the sky the cross component is almost negligible with respect
the plus one (blue color).

Figure 4.1: Variation of L1H1V1 network antenna pattern
∣∣f ′×∣∣ / ∣∣f ′+∣∣ in the

DPF following earth coordinates.On x-axis is reported the longitude, and on
y-axis the latitude. Coloured axis reports valued of the plus componet of
antenna pattern.

For this thesis we analyze the data stream collected by the detectors network
V1, L1, H1. We are interested in the advantageous carried by the instrument
set in comparison with a unique interferometer. In the picture (Fig. 4.2)
are represented the plus components of the antenna pattern for the interfer-
ometer couples H1L1, H1V1, L1V1. Finally the same quantity is shown by
the image (Fig. 4.3) for the complete network V1L1H1. We focus on the
plus polarization because of the discovered relation between the two antenna
pattern components

∣∣f ′+∣∣ ≥ ∣∣f ′×∣∣ (Fig. 4.1).
Likelihood analysis

In presence of data collected by a network of N detectors, coherently with
the adopted notation, we can write the total likelihood

L =

N∑
k=1

I∑
i=1

1

σ2
k

(
xok[i]ξk[i]−

1

2
ξ2
k[i]

)
(4.33)
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Figure 4.2: Variation of plus component of antenna patterns following earth
coordinate for a network of two detectors. On x-axis is reported the longi-
tude, and on y-axis the latitude. Coloured axis reports valued of antenna
patterns. From top to bottom the networks are: H1L1, H1V1, L1V1.

To simplify the notation we omit the sum over the I data acquired and use
the vector notation

L =

(
X · ξσ −

1

2
ξσ · ξσ

)
=

[
X ·

(
f ′+h+ + f ′×h×

)
− 1

2

(
f ′+h+ + f ′×h×

)
·
(
f ′+h+ + f ′×h×

)]
=

[
X · f ′+h+ +X · f ′×h× −

1

2

(
f ′2+h

2
+ + f ′2×h

2
×
)]

(4.34)
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Figure 4.3: Variation of L1H1V1 network antenna pattern
∣∣f ′+∣∣ in the DPF

following earth coordinates.On x-axis is reported the longitude, and on y-axis
the latitude. Coloured axis reports valued of the plus componet of antenna
pattern.

where the last equality we have assumed f ′× · f ′+ = 0 wich is veri�ed only in
the DPF.
To �nd the most likely estimates of the plus and cross GW polarizations we
maximize the likelihood functional with respect these unknown variables

δL

δh+
= X · f ′+ −

∣∣f ′+∣∣2 h+ = 0 (4.35)

δL

δh×
= X · f ′× −

∣∣f ′×∣∣2 h× = 0 (4.36)

whose solutions are

h+ =
X · f ′+∣∣f ′+∣∣2 (4.37)

h× =
X · f ′×∣∣f ′×∣∣2 (4.38)

The maximum reached by the Likelihood functional is therefore obtained
by inserting these two values into the equation (4.34). The result of this
operation is

Lmax =

[
X · f ′+h+ +X · f ′×h× −

1

2

(
f ′2+h

2
+ + f ′2×h

2
×
)]

=

[
X · f ′+

X · f ′+∣∣f ′+∣∣2 +X · f ′×
X · f ′×∣∣f ′×∣∣2 − 1

2

(
f ′2+

(
X · f ′+

)2∣∣f ′+∣∣4 + f ′2×

(
X · f ′×

)2∣∣f ′×∣∣4
)]

=
1

2

((
X · f ′+

)2∣∣f ′+∣∣2 +

(
X · f ′×

)2∣∣f ′×∣∣2
)

(4.39)
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The GW polarizations obtained by the likelihood maximization procedure
can be used to �nd what would be the factorail detector response in presence
of such signal

ξσ = h+f
′
+ + h×f

′
×

=
X · f ′+
|f ′+|2

f ′+ +
X · f ′×
|f ′×|2

f ′×

=
X · f ′+
|f ′+|

e′+ +
X · f ′×
|f ′×|

e′×

(4.40)

where we have introduced the unitary vectors e′+ = f ′+/|f ′+| and e′× =
f ′×/|f ′×|. The above relation proves that the detector response is the projec-
tion of the data vector on the DPF antenna pattern plane (e′+,e

′
×), as the

picture (4.4) illustrates, and that the maximum likelihood is the square of
its module

Lmax =
(X · ξσ)2

|ξσ|2
(4.41)

Figure 4.4: Dominant Polarization Frame

Maximum Likelihood and SNR

The Null vector is de�ned in the DPF by the relation Null = X − ξ, where
all the involved quantities are N-dimensional vectors. For an interferometer
k characterized by a detector responce ξk and in presence of white Gaussian
noise, whose standard deviation is σk, an appropriate Signal Noise Ratio
SNRk can be de�ned by the formula

SNR2
k = ξ2

k/σ
2
k (4.42)



4.2. LIKELIHOOD METHOD 67

For a networks of N detector and adopting the notation previously explained
we �nd

N∑
k=1

SNR2
k =

N∑
k=1

ξ2
k

σ2
k

=
N∑
k=1

ξ2
σk = ξσ · ξσ (4.43)

We can refer to this quantity as to the maximum Likelihood. Indeed the
data vector X is related to the normalized detector response ξσ by

X = ξσ + n (4.44)

Here n represents the noisy part of the data. In the DPF (where Null = n)
this relation allow us to obtain the following equation

X · ξσ = ξσ · ξσ + n · ξσ = ξσ · ξσ (4.45)

To perform this result we have considered the othogonality between the
detector response ξσ and the Null stream n, shown by the picture (Fig. 4.4).
Using the last relationship we can easily prove the equality between the
likelihood and the sum of the SNR2

k

N∑
k=1

SNR2
k = ξσ · ξσ =

(ξσ · ξσ)2

|ξσ|2
=

(X · ξσ)2

|ξσ|2
= 2Lmax = L̂ (4.46)

Here we have introduced the quantity L̂, double of the maximum likelihood.

4.2.3 Regulators

To �nd the maximum likelihood we started from the assumption of the or-
thogonality between the detector response and the noise. In reality this is
not properly true; the noise could partially be in the plane de�ned by the
normalized antenna patterns of the DPF (f ′+, f

′
×).

To mitigate this problem new tools are introduced: the Regulators. The
data analysis depends on the chosen regulator, whose mechanism is based
on assumptions concerning the instrument response. To be aware on the in-
troduced procedures we can test the detector responses simulating a uniform
distribution in the polarization angle of GW sources.
The results is non uniform distribution in the angle between the projection of
the intrument response in the axes of the normalized antenna pattern plane.
In particular in the DPF the detector response is preferably near the f ′+ axis.
This is due to the antenna pattern in�unce on the detection. Indeed even if
signals can assume indi�erently any location in the sky in the collected data
they are weighted by the antenna pattern functions. This is clearly shown
in the following image (Fig. 4.5), where is simulated a GW with circular
polarization. Here is reported an example: given an angle of π/4, the cir-
cularly polarized wave projections have both the same module h+ and h×,
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while the corresponding antenna patterns are unbalanced in favor of the plus
component.
Therefore the basic idea of regulators is to introduce di�erent treatments

Figure 4.5: Visualization of a circularly polarized signal (red) and of the
related detector response (brown) in the Dominant Polarization Frame. Plus
component is greater because of the de�nition of DPF.

of the cross polarization: consider it normally (weak), consider it softly (soft
or mild) or neglect it (hard). Unfortunately a compromise between the ef-
�ciency and the glitches rejection is always present. Normally the weak
regulator better reconstruct and recognize the injected waveforms, but, for
the same reason, it collects more noisy events. Instead the hard regulator is
characterized by more selective constrains. Therefore its glitches detection
is lower, but on the other hand also the e�ciency descreases.
Moreover the performances of the chosen regulator strongly depends on the
GW direction in the sky. Indeed the regions characterize by a negligible f ′+
do not su�er the application of the hard regulator, as instead happens for
locations where the two antenna pattern components have almost the same
value. Thus the most suitable regulator is selected principally depending on
the sky direction, but also considering the kind of analysis desidered.
Anyway a particular case exist: when the network is composed by only two
detectors. In this situation the Null space does not exit and the most e�ective
way to treat the data is to impose the hard regulator.

4.2.4 Energy disbalance

The Coherent Waveburst pipeline starts from a combined analysis of data
stream through a costrained likelihood approach. The regulators are one of
the costrains added to the standard application of the likelihood method. A
further implemented quantity which can be used in cWB to reduce the glitch
detection is the Energy disbalance. To perform its de�nition we start from
the introduction of the k-detector energy disbalance

∆k := Xkξσk − ξ2
σk (4.47)
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This quantity appears developing the squared null stream

n2
k = (Xk − ξσk)2 = X2

k − ξ2
k − 2

(
Xkξσk − ξ2

σk

)
(4.48)

A useful property of the detector energy disbalance can be discovered taking
into account the maximum likelihood. Indeed ideally we have

L̂ =
N∑
k=1

Xkξσk =
N∑
k=1

ξ2
σk (4.49)

from which

N∑
k=1

Xkξσk − ξ2
σk =

N∑
k=1

∆k = (X − ξσ) · ξσ = n · ξσ = 0 (4.50)

This result is due to the likelihood maximization which imposes the null
stream minimization. Anyway this relation concerns the sum over the N-
instruments of the detector energy disbalance. So this does not imply that
for the single interferometer the equation ∆k = 0 holds. For this reason we
can help the correct glitch individuation evaluating these quantities: ∆k � 0
is an unphysical solution.
The explained idea is practically applied minimizing the quantity

N∑
k=1

(
Xkξσk − ξ2

σk

)2
=

N∑
k=1

∆2
k (4.51)

To perform this calulation the key quantity is in e�ect the energy disbalance,
which in the DPF is de�ned by the relation

qk =
Xkξσk
|ξσk|

= Xkuk − u2
k|ξσk| (4.52)

where uk is the direction choosen by the regulator applied.
Substantially this procedure, based on the energy disbalance evaluation, has
the goal to �nd the best direction for the likelihood analysis in the plane
of the normalized antenna patterns (usually the DPF). This means �nd the
unit vector which minimizes the energy disbalance. Compute this analysis
step seems to be an e�cient approach to reduce the impact of the noises.

4.2.5 Polarization constrains

The Waveburst algorithm allow the possibility to introduce signal assump-
tion in the maximum likelihood procedure. In particular some contrains on
the polarization can be add to the analysis. Indeed the search can be fo-
cused on signals with random, elliptical, circular or linear polarizations, here
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expressed with increasing limits. The introduction of these particular wave-
form properties makes the algorithm more selective (how much depends on
the choosen constrain), lowering the surviving glitches but losing generality
on the targeted signals.
In the algorithm the decision of the target signals happens selecting on of the
following labels, to which correspond a speci�c constrain on the GW polar-
ization. This table shows the addiction of the mark i, a further restriction on

Polarization label

unmodelled r
elliptical e
circular g, c
linear l

�xed chirality (all sky search) i

Table 4.2: Principal constrains used in Choerent Waveburst and their relative
label. g refers searches of inspirals, c of generic circularly polarized signals.
A further kind of constrain is introduced: a �xed chirality, i.

the 2G pipeline which �xes the chirality. It represents an interesting physical
constrain used for the analyses presented in the following chapters. The idea
can be easier explained focusing on signals with circular or elliptical polariza-
tion, from which also emission compatible with compact binary coalescences
(target signal of the thesis) belogs. The main idea of this search restriction
consists in the consideration that a GW during its time evolution mantains
the same chiralty, property aquired by its astrophisical source. Two di�er-
ent values of chirality are de�ned relatively to the clockwise or anticlockwise
manner of two polarization evolution. In the DPF this property can be rap-
resented as shown by the picture (Fig. 4.6).
The chirality, so de�ned, is thus an important characteristic of physical GWs
which can help to distinguish them from the glitches. Indeed the events pro-
duced by noises do not have aby physical reason to obey at the same kind of
time evolution, therefore the pixels, throgh which they are described, prob-
ably show an angle between the two polarization which randomly varies in
time. All these constrains are applied at the end of the Production Stage

(see Sec. 4.3).

4.3 Production stage

The cWB pipeline analyzes periods of detection limited in time. Thus the
data provided by the detector network are divided in segments whose du-
ration is normally between the 300 s and 600 s. The constrains on their
minimum and maximum lenghts are respectively due to the approximation
procedures applied on the data, which become dangerous for short time pe-
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Figure 4.6: Chirality as discriminant parameter (the independence of the
two polarizations are represented by orthogonal axes). The red and blu lines
concern signals elliptically polarized with respectively anticlockwise (right-
handed)/clockwise (left-handed) chirality. For both the GWs the chirality
value remains constant in time. The green line refers to a glitch and describes
its random behaviour. Note: in real signals, di�erent features would appear
on this shematic polarization evolutions.

riods, and to the computational demanding. Indeed the implementation of
the likelihood method, on which is based the cWB analysis (Sec. 4.2), needs
a wide memory usege and high computational load. Moreover some approx-
imations are introduced for the same reason and thus to speed the analysis.
The time necessary to process the data is further reduced by the possibilty
to run simultaneously several jobs, i.e. to applied the pipeline on di�erent
segments making use of various machines. The �rst version of the pipeline
(cWB1G) was focused on signal duration of ∼ 1 s, while now we are inter-
esting in events which can also last an order of magnitude more. For this
reason in the future the segments will probabily include longer periods.
The new pipeline structure is divided in two parts:

• the �rst consists in a closed analysis, performed for any tests, and
which contains a preliminary event selection based on the likelihood
evaluation;

• whereas the second concerns a more �exible structure, which can be
partially modifyed by Plugins in consideration of the analysis aim.

The implementation of the cWB algorithm exploits ROOT, an informatic
program and library written in C++ and developed for the particle physics
data analysis by CERN. The results of the Waveburst search is reported, for
each job, in a ROOT output �le, which can be collected with the others in
unique merge �le.
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In the following are reported the main steps of the production stage in
the cWB analysis: the data conditioning (Sec. 4.3.1), the time-frequency
data representation (Sec. 4.3.2), the enhancement of background statistics
(Sec. 4.3.3) and �nally the waveform parameter recostruction (Sec. 4.3.4).

4.3.1 Data conditioning

The cWB pipeline is perfomed to achieve the best results in presence of
data previously treated by a data-conditionig stage. In cWB this procedure
includes the implementation of three main processes:

Linear prediction error (LPE) �lter : the main e�ect of this �lter ap-
plication is the suppression of the lines produced by stationary noises,
which are recognized by controls on the GW channel. The LPE �lter is
applied on each level of the time frequency decomposition (Sec. 4.3.2)
and thus the time serie cleaned by these disturbances can be obtained
performing the inverse transformation.

Regression : in the new version of the pipeline (cWB2G) is implemented
the regression stage. This consists on the recognition of noisy lines
through the analysis of the data collected by the ausiliary channels.
Actually this tool in not applied by default, tests on it are in progress.

Whitening : this procees is applied to take into account the detector be-
haviour in frequency and to consequently normalize the energy of the
collected data. Indeed, even if the previous stages mitigate the in�u-
ence of some known noisy components on the time series, the data still
follow the sensitivity curve, whose value varys in frequency. To per-
form the whitening process, taking into account the non stationarity
of the intereferometer noises, PSD estimates are evaluating every ∼ 20
s.

4.3.2 TF data representation

Unmodelled searches are normally equipped by the data representation on
the time-frequency plane (TF) to make the analysis more e�ective. This
transformation allows the use of the most reliable collected information about
the signal: its time duration and its frequency extension. Indeed the strenght
measurement is often ruin by the noise presence. Anyway the e�ecacy of this
strategy depends on the signal reconstructed properties: more limited is its
representation on the TF plane more e�ective is the application of this ap-
proach.
One of the main improvement on the cWB2G pipeline concern the data
transformation on the TF plane.
1G The previous version computes this process using the Wavelet Trans-

form [41], which completely characterizes the signal in time and frequency.
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The resolutions of the two componets de�ne the considered level of the de-
composition, anyway the two quantities are connected: improving one means
worsen the other. Then the 1G analysis performes the likelihood on the
level which better describes the event, called the optimal level. This pro-
cedure is still available in the 2G analysis, because it seems better recognize
some particular waveforms. The new version of the pipeline make use of the
Wilson-Daubechies-Meyer (WDM) TF transformation. This new
decomposition lowers the computational demanding and better represents
the signal in the TF plane: its energy is more con�ned in the TF plane.
Also in this case the representation can happens in di�erent levels, which
completely and independently describe the event and are characterized by
di�erent time and frequency resolution liked by a �xed relation. The WDM
TF tranformation also introduces two complete representations of the event.
Di�erently from the 1G analysis the likelihood is applyed on the best rep-
resentation of the data, which can include components of di�erent levels.
This approach is particularly e�ective to describe signals compatible with
compact binary mergers, which are on of the most promising GW sources.

For both the versions the likelihood methods is applied on pixels result-
ing by the data decomposition on the TF plane. This process is particularly
complex and computing demanding thus this step, with the data condition-
ing, requires the majority of the analysis time ∼ 90%.

Wilson-Daubechies-Meyer TF transformation

[42] To perform the data rapresentation in the TF plane a new tool is in-
troduced in the 2G pipeline version: Fast Wilson-Daubechies-Meyer

transform (WDM).
The WDM transform consists in the application of a set of band-pass �lters,
similarly to the wavelet case. Considering a data serie x[k] collected with a
sample rate rs a TF rapresentation of the signal can be obtained introducing
the discrete Wilson-Daubechies-Meyer �lters fnm[k]

wnm =
∑
k

fnm[k]x[k] (4.53)

In the Fourier domain the functions which describe the WDM basis are

g̃n0(ω) = einωT φ̃(ω)

g̃nm(ω) =
1√
2
e−inωT/2ψ̃nm(ω)

(4.54)

where T de�nes the resolution in time, φ̃ is the generalized Meyer scaling
function and ψ̃ is a linear combination of φ̃. The explicit formulations of
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these functions are

φ̃(ω) =

{
1/
√

∆Ω, |ω| < A

cos [νn(|ω| −A)π/(2B)] /
√

∆Ω, A ≤ |ω| < A+B
(4.55)

ψ̃(ω) = C∗m+nφ̃(ω +m∆Ω) + Cm+nφ̃(ω −m∆Ω), m > 0 (4.56)

Here we have introduce the following quantities:

• the coe�cients: C2k = 1, C2k+1 = i (i: immaginary unit);

• the nominal band width: ∆Ω = 2A+B where A and B are two positive
parameters (Fig. 4.7);

• the monotonically increasing function νn:

νn =
B(x;n, n)

B(1;n, n)
, B(x, a, b) =

∫ x

0
ta−1(1− t)b−1 dt (4.57)

where B(x, a, b) is the Beta function and the n parameter determins
the shape of the scaling function.

rs sampling rate
∆Ω nominal band width
T time resolution
Ω maximum angular frequency detected
L level number

∆F ∆Ω/(2π)

∆f frequency resolution ∆F/2

Table 4.3: Adopted notation.

The basis functions useful for the data transformation on the TF plane are
characterized by frequency-bands included in the frequency interval [−Ω,Ω].
Here Ω = πrs and, due to the Sampling theorem, is the maximum angular
frequency of the signal that can be represented by the data. Thus de�ning
the parameter

M =
Ω

∆Ω
=

T

2τ
=
Trs
2

(4.58)

we can rede�ne the functions g̃nM as

g̃nM = e−iMωτ(2n+q)
[
φ̃(ω + Ω) + φ̃(ω − Ω)

]
, |ω| < Ω (4.59)

where q = 0 if M is even, q = 1 otherwise.
Through these new g̃nm with (0 ≤ m ≤ M), two orthonormal and comple-
mentary (time shift di�erence of T/2) bases on [−Ω,Ω] can be introduced
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Figure 4.7: The plots show (φ(ω)) and highlight the de�ning parameters:
the width of the top at region (black) is 2A, the transition regions (blue) are
de�ned by B, and the red line spans the nominal band width 2A+B. The
shape of the transition region depends on the parameter n in νn; n = 4 for
the left plot and n = 2 for the right plot.

and therefore the WDM expansions become

wn0 = τ
∑
k∈Z

x[2nM + k]φ[k]

wnm = τ
√

2ReCm+n

∑
k∈Z

eiπkm/Mx[nM + k]φ[k] , 0 < m < M

wnM = τ
∑
k∈Z

(−1)kx[2nM + qM + k]φ[k]

(4.60)

and

ŵn0 = τ
∑
k∈Z

x[(2n+ 1)M + k]φ[k]

ŵnm = τ
√

2ImCm+n

∑
k∈Z

eiπkm/Mx[nM + k]φ[k] , 0 < m < M

ŵnM = τ
∑
k∈Z

(−1)kx[2nM + (1− q)M + k]φ[k]

(4.61)

These transformations are approximately orthonormal, because of the �l-
ter φ[k] needed truncation. Anyway the error introduced by this process is
practically insigni�cant.
Therefore the WDM tranform naturally introduces two complete representa-
tions of the data in the TF plane, thus ideally they carry redundant informa-
tion. In reality this double data transformation can be used to have better
describtions of signals whose amplitude, in one of the two representation, is
divided in two adjoining pixels, becoming too low to be selected.
The practical advantages of this new representation are:

• the implementation of a faster transformation;

• the introduction of shorter transformation �lters, which implies a bet-
ter time localization of the event;
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Figure 4.8: Spectral Fourier amplitudes of the basis functions for WDM
transform (top) and binary Meyer wavelet (bottom).

• the application of a transform characterized by more limited spectral
leakage, which entails a better frequency localization of the GW can-
didate.

∆F · T = 1

∆f · T = 1/2

T = 2L/rs
2M = (rs/2) · 1/∆f

2M = 2L

Table 4.4: Useful relations, for notation see the table 4.3.

Multi-resolution analysis and principal component extraction

The cWB algorithm decomposes the available data streams in di�erent levels
to obtain the best representation of the signal. Then in the 1G version, and
also for the 2G pipeline when wavelet analysis is selected, the pipeline ac-
cording to the signal characteristics decides the optimal level. Di�erently
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after the data decompositions determined by the WDM tranform, a new
process is applied: the principal component selection. Instead of selected
one levels the algorithm chooses the most energetic pixels which decribe the
signal. This procedure requires to be very carefull to mantain the indepen-
dence of the collected information. The procedure is conducted following
a catalogue which decribes how, after the selection of a pixel, remove its
relative information from all the remaining levels. Actually the principal
component selection does not perform a perfectly complete and independent
characterization of the events. The introduced new representation of the
GW candidate on the TF plane is very useful to describe compact binary
coalescences, which are characterized by shapes better represented by pixels
of di�erent levels. The improvements on the event description are very im-
portant because they imply the selection of less pixels. This means that the
energy is better divided between the pixels so the selection and the conse-
quent event represention are more reliable.

Trigger selection

Any detector data stream are separately converted in the TF plane, where
they are represented by pixels whose time-frequency widths are de�ned by
the level (Tab. 4.4). For any analyzed level and for any involved detector the
pipeline selects the most energetic pixels, called black pixels. The number
of these on-pixels depends on their amplitude indeed they correspond to a
�xed tail of energy distribiuton. The remaining pixels are the white pixels.
After this �rst process a coincidence study is performed for each level, so
that only the pixels appeared on the data stream provided by all the detec-
tors surviving this stage. The procedure is applied considering the possible
detection delays. The remaining black pixels determines, in each level, the
de�ntion of clusters. They are composed by the selected pixels and the ones
around them, which can be both black (core pixels) and white (halo pix-
els). Then the information so obtained in the di�erent levels is collected in
structures called super clusters. In the 2G analysis an updating on the
selection procedure is introduced to better indentify chirping signals. This
consists in labelling as black if it is satis�ed a particular condition concern-
ing its time frequency position. This new process is applied only for pixels
near original black ones and allows the selection of data standardly rejected
(relative low energy excess). Other two addictional parameters are also intro-
duced to implemented the union of clusters di�erent for default. These two
quantitites represent the maximum pixel distances, in time and frequency,
allowed to consider them belonging from the same event. The �nal process of
the pipeline consists in the individuation of the pixels which better describe
the recostructed event. As shown in the previous paragraph, depending on
the chosen analysis and on the target signals two possibility for last pixels
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selection are implemented: the optimal level and the principal component
extraction. Here the likelihood method are newly applied. The likelihood is
calculated at di�erent steps of the analysis: pixel, cluster and multi-cluster,
to perform several checks.

Figure 4.9: On the left: acceptance and rejection of the black TF pixels. In
the �rst column, the black pixel in the above TF layer is accepted if the black
pixels identi�ed within a desired TF coincidence window in the lower layer
show a combined strength above some threshold. In the second, the black
pixel is rejected as no black pixels were identied within the TF coincidence
window. On the right: pictorial representation of a TF cluster. Original
image in [43].

4.3.3 Enhancement of background statistics

To increase the available data and therefore to analyze the statistical proper-
ties of the glitches (background events), a tricky was found: the application
of time shifts on data sets. This procedure incredibly increases the available
independent triggers without an excessively growing of the computationl
load required. First we want to assure the noisy origin of the triggered
events, for this reason the shift is much greater than the time needed by the
a GW to travel the distances between the detectors (tmaxH1L1 ∼ 10.0 ms,
tmaxV 1L1 ∼ 26.4 ms, tmaxV 1H1 ∼ 27.3 ms). Indeed we have to consider also
the signal durations. A second limit on the available shift values is that they
must be multiple of the maximum time resolution of the analysys in TF in
order to avoid strange situations. In the 2G analysis two kind of temporal
shifts can be applied:

LAGS (Fig. 4.10): to increase the available background events the pipeline
applys to each processed period a serie of shifts which can be repre-
sented by vectors

vshifts = (0, j2Ts, ..jkTs, ...jNTs)

where each components refers to the segment (relative to the same pe-
riod) provided by a speci�c detector, 0 corresponds to the reference
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detector, Ts is the value of the minimum temporal shift available for
the considerations expressed before (generally Ts ∼ 1 s) and ji∈N with
i=2,...,N are the lag numbers. Each segment, because of its limited
lenght for any involved detector, has maximum values of possible tem-
poral shits due to its length. The desire to detect signal with some
seconds of livetime causes the use of greater time resolutin in the TF
plane with respect the 1G version. This will probably provoke an ex-
tension of the time Ts, and thus the reduction of the feasible statistics
provided by this procedure sice the segment maximum duration re-
mains 600 s.

Figure 4.10: LAGS: circular time shifts are performed within the detector
segments.

SUPERLAGS (Fig. 4.11): in 2G pipeline another kind of shifts is im-
plemented: the superlags. These involve segments of di�erent periods
whith the exchanging of their order for data stream collected by N −1
instruments (for the reference detector the segment order is the origi-
nal). Then the lag-mechanism is newly performed: temporal shifts is
applied to the time series provided by interferometers.

Figure 4.11: SUPER LAGS: time shifts are performed between di�erent
segments.
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To estimate some of the background properties a very useful quantity is the
live time. This time, also called the observation time and it is the total
analyzed time determined by the coincidence periods between all the intru-
ments of the network. Therefore it increases with the introduction of the
time-shifts because with the application of this startegy new data combina-
tions are provided.

4.3.4 Waveform parameter reconstruction

The cWB algorithm has also the purpose to characterized as well as possible
the detected events. The main features of a GW candidate which can be
estimated by the data are: hrss, SNR, central-time, central-frequency and
source coordinates. All of them constitute the parameter recostruction (esti-
mates) provided by cWB analysis. These parameters describe two di�erent
source aspects: its location (Estimate of the source sky location) and the
main properties of the GW emitted (Waveform recostruction).

Waveform recostruction

Ideally the aim of this study, performed for each cluster, would be the total
characterization of the event. A waveform is completely characterized by the
time evolution of both its polarizations h+(t) and h×(t). Anyway this is a
very ambitious goal because it requires the inverse solution of the likelihood
equation. The strategy adopted by cWB is to compute a characterization
of the candidate for each the involved detectors. Thus at the end of the
analysis N representations for any event are available, each one showing the
single detector response. To obtain these features the pipeline collects the
TF pixels surviving the several selected and cuts by the likelihood analysis,
and then applies to them the inverse transformation. In this manner cWB
isolates the part of the collected data which decribes the detected excess of
energy, and thus the event.

Figure 4.12: Comparison between whitened recostructed (red) and injected
(black) waveforms. The sensitivity curves used are the ones designed for the
2G intruments. The left picture refers to L1, the right one to V1.
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Source sky location

To evaluate the most reliable direction for the emission of each the GW
candidate, the pipeline calculates the likelihood relative to any sky position.
This process is performed taking into account the dependence on the source
location of the antenna pattern functions and the time delays on the signal
acquisition between the di�erent detectors. Therefore the likelihood calcu-
lation implies the necessity of a procedure which applies time shifts on the
data. These shifts have to be compatible with the delays induced by di�erent
source sky positions.
To simplify the implementation of the combined likelihood method these
temporal-o�sets are added in the TF plane. A temporal shift of τ applied on
data provided by the k-detector and represented in a �xed layer, provokes
in a pixel with (i, j) position in the TF plane the transformation:

xk(i, j, τ) =
∑
pl

Dpl(τ, j)xi+l,j+p (4.62)

where Dpl are the delay time �lters.
The process allows to evaluate for each sky position the likelihood value.
Anyway this parameter is normally considered not su�cient for a correct
estimate of the source location. Therefore to better evaluate the most reliable
GW direction for each sky position is introduced a new quantity: the Sky
Statistic. It is de�ned as follow:

Si =
Li · Ec

E (E − Li + |Ec|)
(4.63)

where E is the totally normalyzed energy of the signal and noise, Li is the
likelihood calculated for the i position and Ec is the coherent energy (Sec
4.4.1), which is expected to better suggest the right coordinates. Concern-
ing the source location an important progress has been achieved with the
implementation of the 2G analysis (WDM and Principal component extrac-
tion): the direction individuation is improved by a factor 2-3 with respect
the results obtained by the 1G pipeline [44].

4.4 Post-Production stage

The maximum likelihood approach well discriminate the glitches from the
signal in the assumption of Gaussian and stationary noises. Unfortunately
the real data are a�ected by disturbances which often do not exibit these
qualities. Consequently the e�ectiveness of the likelihood method in the re-
jection of background events reduces. The post-production is an addictional
stage introduced to mitigate this problem and so to enhance the pipeline
performances. It consists in a new evaluation of the analyzed data and of
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Figure 4.13: Example of the likelihood behaviour as a function of sky coor-
dinates for an event reconstructed from a background analysis.

their statistical properties, indeed all the available information about the
events are collected in the output �les produced in the production stage.
Therfore the application of this further procedure do not need the re-run
of the data by the cWB analysis. With this �nal stage new cuts are intro-
duced to improve the event selections. However the relatives thresholds on
the involved quantities depend on the available detector network and on the
desired search. For these reasons they are di�erently chosen according to the
speci�c situation. The main cuts are applied on the network correlation

coe�cient and on the e�ective correled SNR.

4.4.1 Network correlation coe�cient

In the DPF the maximum likelihood (4.39) can be written in a N×N matrix.
Indeed

L̂ =
(
X · e′+

)2
+
(
X · e′×

)2
=

N∑
n=1

N∑
m=1

(
Xme

′
+mXne

′
+n +Xme

′
×mXne

′
n×
)

=

N∑
n,m=1

L̂mn

(4.64)

where e′+ and e′× are the unitary vectors.
This quadratic form includes terms which relate the di�erent detectors, and
thus we can de�ne the coherent energy Ec as the sum of the o�-diagonals
matrix elements

Ec =
∑
n6=m

L̂mn (4.65)
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We can exploit this quantity to de�ne the network correlation coe�cient

cc =
Ec

Ec + Enull
(4.66)

where Enull = |X − ξσ|2 which represent the recostructed noise energy in
terms of its RMS.
This represent one on the most important parameter de�ned by cWB algo-
rithm and used for the background-signal discrimination. It is a measure of
the coherent energy in comparison with the noise one.

4.4.2 E�ective Correlated SNR

The coherent energy is also used to de�ne another well discriminant quantity:
the e�ective correlated SNR, which represents a sort of coherent SNR
[45]

ρ =

√
〈Ec · cc〉
N − 1

(4.67)

This parameter can help in the signal recognition. This important property
can be understood considering a completely coherent signal. These kind of
events are characterized by a network correlation coe�cient equal to one
(cc = 1) for each pixels and by a coherent energy equals to the sum of the
likelihood diagonal terms. Indeed a coherent energy greater then the un-
correlated one represents an unphysical condition. Therefore for completed
correlated signals we �nd

ρ =

√
〈Ec · cc〉
N − 1

=

√
L̂ · 1

2(N − 1)

=

√∑N
k=1 ξ

2
k/σ

2
k

2(N − 1)

=

√∑N
k=1 SNR

2
k

2(N − 1)

(4.68)

This last equation shows how the e�ective correlated energy is related to the
likelihood and consequently network SNR. In view of the above the discrim-
ination between signal and background events is performed considering that

for the formers ρ ≈
√∑N

k=1 SNR
2
k/(2N − 2) while for the latters hold the

disugualianceρ <
√∑N

k=1 SNR
2
k/(2N − 2).
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4.4.3 Post Production e�ects

The introduction of cuts on the key quantities the network correlation coe�-
cient cc and the e�ective correlated SNR ρ are particularly e�ective. Indeed
they represent two characteristics of the events which di�er a lot between
background and signal populations. Indeed we expect excesses of noise char-
acterized by low values of cc and thus rejected with a cc cut application.
Viceversa for signals the cc value expected is near to one, and therefore they
should survive to the cut procedure. Moreover also the ρ helps the signal-
background discrimination, indeed in presence of events with a large value
of cc, but due to noise �ucutations, excesses of energy are rare. Thus the
selection of events with ρ greater then a thershold saves the majority of the
signals loosing a lot of glitches.

Figure 4.14: ∼ 8000 simulated waveforms (red) and ∼ 8000 glitches (blue)
represented in the cc-rho plane.



Chapter 5

Arti�cial Neural Networks for

signal recognition

Going into the problem ...

In 2015 the second generation of interferometers will progressively become
operative, starting the new data acquisition. The achievement of the design
sensitivity curves will incredibly enhance the chances of a GW detection and
the introduction on the �nal intrument con�guration of the KAGRA obser-
vatory will considerably improve the performances of the analyses.
Unfortunately the measurements will probably begin with the only LIGO ob-
servatories, and this will considerably lower the e�ectiveness of the searches
based on a coherent analysis. Particularly problematic can be the detection
of unmodelled signals which are in e�ect based on the correlation analysis.
Also the performances of the Waveburst algorithm will therefore be initially
compromised. In the TF plane, the pixels selection will decrease its e�cacy,
particularly the pixels rejection will become harder. Moreover even the net-
work correlation coe�cient, which is one of the most important feature for
the signal-background discrimination (see Sec. 4.4.1), will loose e�ectiveness
in comparison with the analyses performed on three detector data streams.
The cWB pipeline was therefore improved to perform an analysis competitive
also under the expected hard initial conditions. According to this scenario,
though remaining robust for unknown waveforms, the algorithm was mod-
i�ed also with the introduction of some tricks aimed at the detection of
chirp-like signals. The chirping behaviour is the main feature of the GWs
predicted by models for the compact binary coalscences, which represent the
most promising GW sources.
In this context, a new idea arisis in the cWB group to improve the signals-
glitches discrimination. The basic concept is to recognize di�erent signal
classes and assign them speci�c subset of False Alarm Rate instead of rank-
ing any candidate against all the False Alarms. The development of this
signal classication starts from the easiest case of waveforms compatible with

85
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compact binary coalescences. According to the models, this kind signals
are described by well known signatures which are also really peculiar (see
equation 2.11). For these characteristics the expected GWs emitted by co-
alescences of binary systems are extremely di�cut to mimic. Therefore we
foresee a �nal better glitches rejection: the achievement of signi�cant im-
provements on this discrimination substantially constitutes the main pur-
pose of this project.
The implementation of speci�c signal searches on an unmodeled pipeline,
like cWB, allows a comparison between the two di�erent strategies adopted.
Adding astrophysical constrains in Waveburst analysis means the reduction
of the parameter space. On the contrary for approaches based on the tem-
plate matching the introduction of new limits (like spin, eccentricity ecc..)
complicate the template constraction with an increasing of the parameter
space.
Two main di�erent approaches are applied by cWB Burst group to the iden-
tify chirp-like signals on the data: a chirp-mass estimation and a TF

pattern recognition perfomed by arti�cial neural networks.
In this chapter we will introduce machine learning tecniques (Section 5.1)
and arti�cial neural networks (ANNs) (Section 5.2). The we will focus on
algorithm of multilayer perceptrons (MLPs) (Section 5.3)

5.1 Machine learning tecniques and GW detection

The emissions of GW transients, for the majority of the dragged phenomena,
are provoked by poorly understood physical conditions and consequently are
characterized by unknown features. For this reason and for the lack of ob-
servations the search results will strongly depend on the capability of the
analyses to distinguish GW in any form from glitches produced by non sta-
tionaty and non Gaussian noise tails.
In the last science run (S6) the expected rate of detectable GWs was ex-
tremely low, ∼ 10−9 Hz, in comparison with the one referred to the glitches,
∼ 0.1 Hz [46]. Also in the advanced detector era this di�culty, even if low-
ered by the several innovations on noise attenuation, will probably persist for
burst signals and, as for the previous analyses, it will be particularly marked
for poorly modeled searches. It is thus a common goal to reduce the glitch
impact on the GW searches.
According to this context several e�orts have been made by the GW de-
tection comunity to individuate the most distriminant characteristcs of the
signals with respect the glitches. Some of them also concern the applica-
tions of Machine Learning techniques. In e�ect one of the most important
purpose of this kind of informatic structures is the discovering of hidden
relations between the quantities used as inputs.
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5.1.1 Machine Learning

[47] Machine learning is a process through which the implemented system
improves the data interpretation. Referring to informatic tools an algorithm
is learning whenever a transformation happens on its structure or program
in favour of a better representation of the input information. Many of the
approaches dragged to this topic are inspired by theories about human and
animal capability acquition. However develoments of the machine learnig
techniques have also helped the psycologists and the zoologists in the com-
prehension of some mechanisms adopted by living creatures.
The main tasks of machine learning algorithms are associated to �intelli-
gent�decisions, data interpretation and behaviour, as can be: recognition,
regression, planning, prediction and classi�cation. Moreover, as annunced,
the �rst eveluation step can be oriented in action execution (robot control).
One of the most important mechanism at the basis of these informatic struc-
tures is the learning by examples. This represents the introduction of algo-
rithms not completely determined and thus opens the possibility of taking
into account also relations not yet and not only discovered. Concerning the
data-analysis the principal reasons for the introduction of maschine learning
approaches are:

• the implementation of mechanisms able to analyze a moltitude of in-
formation, which is di�culty treated by explicit procedures;

• the possibility to extract some non-trivial relations which links the data
(data miming);

• the possibility to implement algorithms able to represent unknown con-
nections between the data. Speci�cally the informatic-tool structure
changes to accurately interpret also input/output couples of data in-
describable by coincise relations (data interpretation).

These general purposes makes these informatic tools very attractive in sev-
eral disciplines, which therefore have contributed in their developments and
branches. In the following are reported the main �elds interested in machine
learning.

Statistics In statistics one of the most challenging task is understand the
optimal manner to exploit available samples of unknown probability
distribution to create algorithms able to decide the distribution from
which new samples belong. The same optimization problem can be
reported in case of unknown function, only described by some points,
which should be used for the interpretation of new data. The meth-
ods implemented to treat these issues can be interpreted as machine
learning because they are based on a set of examples.
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Adaptive Control Theory The adaptive controls are techniques whose
aim during their operating period, is to estimate some parameters and
so to adjust, according to the enviroment changes. Thus the robot
control present some aspects of the input interpretation problem.

Psycological Models Many psychological studies are performed on human
learning processes. On this �eld particularly interesting searches con-
cern the associative memory, the schematic representation of the infor-
mation by the human mind and the mechanism activated for decisions.
They have respectively stimulated the implementation of associative
algorithm, semantic networks and early decision trees.

Evolutionary Models Inspired by animal evolution some researchers have
implemented algorithms which mimic this process for computer pro-
grams and have proposed these strategies of improvements as learning
methods.

Arti�cial Intelligence Arti�cial intelligence is interested in machine learn-
ing from its �rst developement. Its purpose is to mimic some human
behaviours and to achieve this goal two main processes are needed:
parameter estimation and learning by examples. Particularly investi-
gations have been made on analogy learning and on rules on the basis
of decisions and selections.

Brain Models The topic of brain models have inspired Art�cial Neural

Network implementation. This topic have developed theories about
the operations of biological neurons. One simpli�ed representation of
the basic mechanism associates the neurons to non linear elements,
which are stimulated by the input data.

Many algorithms have been realized to satisfy all these requests. Indeed these
kinds of problems have motivated the development of strategies, from which
several �exible and powerful devices arise. In the following we focus on three
of the most popular machines which apply the learning analysis: decision
trees forming a random forest (RFs), support vector machines (SVM)and
arti�cial neural networks (ANNs). All of them have been exploited also
in gravity, and speci�cally all of them have been tested in GW analyses to
improve the glitch rejection.

Boosted Decision Trees

[48] A boosted decision tree (BDT) is a collection of decision trees developed
by the same training set but characterized by di�erent weights, whose �nal
judgment on an event is determined by the kind of output more voted.
This approach has the same goal of SVM method: discriminate signal from
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background events, but the strategy is however very di�erent. These device
are composed by several nodes where a single variable is considered and the
best cut on its value is applied. The de�nition of the decision tree structure
starts from the so called root node, which, according to the properties of the
full training set, selects the most di�erent feature between the two cathe-
gories. It is used by the algorithm to perform, with the implementation of a
discriminant throshold, the �rst separation on the considered events. After
this training sample split, one discriminant node for each the new subset is
de�ned. Then the process in analogous to those described for the root node:
a variable is selected according to the training set characteristics and a cut
is applied. The procedure is iterated untill one of the following two condic-
tions is satis�ed: the achievement of a too small subset for the introduction
further nodes or the reaching of maximum/minimum signal purity.
To more e�ectively separate the events belonging from two the classes sev-
eral decision trees are constructed starting from the same training set. The
two main manners to perform these �forests�are boosting and bagging.

Boosting Bigger weights are applied to wrongly classi�ed training events.
In such manner the multiple applications of this boosting process gen-
erate a forest of di�erent tree set and the performances are improved.

Bagging The creation of a decision tree forest happens without taking into
account the previous performances. The de�nition of the set of deci-
sion trees is based on a stochastic resampling (bootstrap) of the given
training set. Each of the new subsets is used to built a single decision
tree.

In light of the previous description the main task provided by this kind of
analysis is the event classi�cation.
[49] Recently some algorithm have begin tested BDTs to improve the signals-
glitches discrimination. Speci�cally the analysis performed concerns data
provided by Virgo and LIGO observatories triggered by GRBs. The signal
events are constructed by the injections of four classes of waveforms: circu-
lar sine-gaussian (CSGs), binary neutron star inspirals (BNS), chirplets and
white noise bursts (WNBs). Several tests are performed varying the classes
included in the training test and checking the variables widest used by nodes.
The results are quite interesting: the performances of the basilar analysis,
provided by the X-PIPELINE [49], are improved or at least unchanged by
the introduction of this further evaluation stage. Even training the BDTs
on only CSG and BNS the algorithm is able to recognize some of the wave-
forms belonging to the other two classes. In this manner the robustness
of this method is tested. Moreover the results are compatible and generally
more promising then the ones provided by the only X-PIPELINE. The minor
changes concern the BNS cathegory, for which no signi�cant improvement
on sensitivity has been recorded. On the contrary the CGS class has shown



90 CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

improvements on the detection of ∼ (35 − 55)%. For other two types of
waveforms the the performances increase di�erently from their treatement.
More surprising is the result of the studies concerning the quantities most
exploited by the decison tree nodes. This analysis shows that the cluster
energy of the single detector, the bandwidth and the signal duration play
very important roles, that the only X-PIPELINE does not value.

Arti�cial Neural Networks

The arti�cial neural networks (ANNs) are algorithms inspired to the operat-
ing principle of brains (for more details see Sec. 5.2). // The generalism at
the basis of this approach allow the use of these informatic instruments to
perform di�erent tasks as regression, classi�cation, pattern recognition and
so on. This �exibility attracts several �elds, including gravitation. Concern-
ing the GW detection, the most popular applications of this analysis have
again the aim to discriminate noisy events from signal. usually the approch
to this problem is focusing on the glitch identi�cation, and sometimes on
their classi�cation. The motivation of this choice lies in the lack of detected
GWs. Di�erent studies, more or less recent, develope the treatment of ANNs
to achieve the recognition of events produced by noise (for examples [50]
[51] [52]). They show an important improving in the glitch idividuation in
comparison with the standard deterministic analyses. Moreover these works
suggest that the application of this models do not reduce signi�cantly the
signal detection and that the gliches can be partially categorize in di�erent
classes related to their noise origins.

Suport Vector Machines

[53] [48] Support vector machines are algorithms whose aim is to �nd the
best separating hyperplane. They were introduced in 1960s to discriminate
linearly separable ensambles however now their developments are general-
ized to perform non linear separating functions. SVMs are exploited to solve
classi�cation and regression problems and thus can be useful in many �elds,
for example: face detection, character recognition, bioinformatic and text
categorization.
The operating idea of SVM algorithms is to de�ne the best hyperplane which
separates background and signal events. To perform this task the distance
between the separating hyperplanes and the nearest examples support vec-
tors is maximized. In presence of non linear separating problems the data
are mapped in a higher dimensional space, where the events can be newly
distinguished with the implementation of hyperplanes (see Fig. 5.1). To
reduce the computational demanding Kernel functions are used. [46] A re-
cent study of the LIGO collaboration has shown the capability of these tree
approaches (ANN, RF, SVM) to individuate glitches from the data analysis
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Figure 5.1: SVM operating principle: example of 1D-data non linearly sep-
arable mapped in a bidimensional space for the construction of a separating
hyperplane.

of some quantities provided by the auxiliary channels. The main idea of
this work is to classify di�erently the time series containing noises detected
by the auxiliary channels. All the three structures can be usefully adoped
to control the information carried by the several auxiliary channels, even if
some of them are redoundant or irrilevant. The introduction of such multi-
variate analysis are particularly interesting also for the form through which
the results are provided. Indeed the output of these algorithms is a contin-
uous variable which allow a more reliable approach to its treatement: this
further information can be use to �softly�characterize the GW candidates.
Moreover these algorithms, thanks to their �exibility, will probably permit
to discover unknown relations with the addiction of new inputs, as for exam-
ple an index of the interferometer alignment quality. On the other hand the
results obtained by this study shows a quite low e�ciencies in glitch recog-
nition of single detectors for a �xed false alarm probability of ∼ 1%: from
∼ 30% to ∼ 56%. The performaces of these multivariate analyses (MVA)
are compared to the one of the Ordered Veto List (OVL), an algorithm used
for the glitch identi�cation based on comparisons between the gravitational
channel and a single auxiliary channel. The results are similar, showing the
poor correlation between di�erent auxiliary channels.

5.2 Arti�cial Neural Network

1cite47 [55] The main functions of human nervous system are primarly real-
ized in three stages:

1. receptors associate to the external stimuli electrical impluses which then
are send to the neural network;

2. the neural netwok elaborates the information and consequently chooses
the best decision;

3. actuators convert the electrical impulses belonging to the neural network
in actions.
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Figure 5.2: The uniserve structure is incredibly similar to the neural network
one.

Therefore the neural network play a foundamental rule in learning processes,
elaborating the data provided by the external enviroment.

5.2.1 Biological neural networks vs arti�cial neural networks

The biological neural network is composed by a moltitude of nervous cells,
called neurons, all connected to each other with nervous �bers.
The dendrides receive the information from other neurons, inputs, and drive
them to the soma, which consitutes the cell nucleous. Here the inputs are
evaluated and elaborated: the soma calculates a weighted sum of the electri-
cal impulses coming from the dendrides. Indeed the amount of the carried
information depends on several factors: strenght of the inputs signals, im-
portance of the dragged connections, weights, and above all the activation
threshold of the speci�c neuron. This data analysis made by the soma deter-
mines two di�erent behaviours: the passive and the active one. The passive
behaviour consists on the non-generation of impulses by the soma; instead
the active behaviour takes place in presence of inputs whose weighted sum
reaches a su�cient value for the production of an electric signal, called spike.
The result of the calculation unit operation, ouptut, is transmitted by the
axon to the synapses, which represent the connectors between di�erent
nervous cells. Through the presynaptic process the electrical impulses are
associated to the release of a chimical substance (neurontransmitters) which
allow the passage of the information from the axon of the pre-synaptic neu-
ron to the dendrides of the post-psynaptic neuron. Then the chimical sub-
stance is newly related to electrical impulses by the post-spynaptic process.
The arti�cial neural networks are informatic algorithms based on the same
mechanism. They are composed by calculation units (neurons) which eva-
lute weighted sum of the inputs applying to it an activation function. The
analogy between the biological and the informatic structures of these neural
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Figure 5.3: Schematic representation of a biological neuron.

networks is illustrated by Fig. 5.4. These systems are particularly interest-

Figure 5.4: Schematic representation of an arti�cial neuron and a biological
one in presence of n inputs xi, whose corresponding synapses are weighted
by wi. The calculation unit performs the weighted sum ξ and evaluates it
with a threshold b and an activation function σ, which gives y as output.

ing because of their capability to learn the �right �behaviour by examples.
The learning processes is provided by changing the weight values associated
to the connections (synapses) according to an optimization procedure.
The main properties of an arti�cial neural network ready for the evalua-
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tion of input signals derive from the network structure and from the neuron
characterization.

Network structure Chosen the number of the neurons of the network and
their organization, the network structure is principally determined by
the strenghts of the synapses (weights) and by the type of connections
between neurons. Two kinds of networks can be de�ned distinguish-
ing the directions of the data propagation: the feedforward and the
recursive neural networks. In the �rst case the structure can be rep-
resented by an oriented graph, while in the latter the architecture is
characterized by the presence of some feed-back connections between
the neurons, which therefore need to be dynamic (see the next step
Neuron).

Neuron The neuron are characterized by di�erent properties:

• threshold: each neuron applies a di�erent o�set (the threshold)
on the weighted sum on the inputs;

• activation functions: di�erent functions can be used in the calcu-
lation unit to obtain the output. They can be linear or non linear
with di�erent complexity. The most popular activation functions
are the sign one and the sigmoid;

• consideration/no consideration of the input time evolution: the
two possibilities de�ne respectively dynamic and static networks.

5.2.2 Learning procedures

[56] The main idea on the basis of these algorithms is to de�ne, usins a set
of examples called training set, an informatic structure ables to exactly
interprete the input data. One important characteristic to evaluate in these
devices is their ability to generalize the learning to samples excluded by the
training set.
The learning procedures train the neural networks mody�ng the weights of
the connections and thus miming the natural process which changes in time
the synapsis thickness, weaking or reinforcing the links between neurons.
The learning algorithms can be divided in two categories:

unsupervised learning , where the outputs of the training set are not
available or the output neurons are not de�ned; here the network pa-
rameter are de�ned by clustering techiques applied on the input train-
ing sample;

supervised learning , where the weights are calculated taking into account
the desired output of the network with the inplementation of a process
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which minimizes on the training set the error (or cost) function.
This is usualy de�ned for each ANN output y by two di�erent relations:

E(w) =
1

2

P∑
p=1

(||y(xp, w)− tp||2)

E(w) = −
P∑
p=1

(tplog [y(xp, w)] + (1− tp)log [1− y(xp, w)])

(5.1)

where the label p refers to the training set composed by P examples, t is
the target vector,i.e. the vector desired at the network output, w and x are
respectivly the netwok weight the input vctors. A further distinction in the
learning strategies concerns the temporal use or acquisition of the training
set.

On line learning : this approach is generally used when the training events
are acquired in progression during the learning process. The strategy
is to updates the network parameters after the evaluation of each single
example provided by the training set.

Batch or o�-line learning : to implement this kind of algorithms the full
training set has to be available before the learning starts. All the events
belonging from the training set are considered for each upgrades of the
network weights.

5.2.3 Applications

[57] For these characteristics the arti�cial neural networks are widely used
for two main purposes: the association of di�erent information and the in-
terpretation of the inputs by a function.
Concerning the memory association a distinction can be performed between
auto-associators and pair associators. The former class is composed by sys-
tems whose aim is reaching the association of patterns. Input con�gurations
of the training sample are stored in the �memory �of the so implemented
network. In this manner the responce of these algorithms to patterns similar
to the train ones (changed for example by noise introduction or by a cut)
is their recovery or completion. Instead a pair-associator relates an input
con�guration (es. A) to another (es. B), so that, after the train, the ANN
is able to recognize a pattern (∼ A), also slightly di�erent form the training
examples, and to return the other which corrisponds to (B). Instead we
are particularly interesting in solving classi�cation and regression problems,
which belong from the class of data intepretation by a function. For these
kinds of problems the aim of the ANN is to conform its parameters to mimic
such function with an adequate approximation. The performances achieved
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depend above all on the choice of the learning variables.

Anyway ANNs are extremely suitable for several applications, including:
image compression, stock market prediction, signal �ltering, controls and
diagnoses.
In the following chapter is instead illustated a branch of another interesting
application: the character recognition. Indeed we will use these devices
to recognize the time-frequency trace of a GW compatible with the emission
of compact binary coalescences and thus to mitigate for them the problem
of signal-glitch discrimination.

5.3 Multilayer perceptron

Multilayer perceptrons are particular architectures of neurons which de�ne
a subset of ANNs (Sec. 5.3.2). In these devices the neurons are grouped in
structures called layers. Here we focus on feedforward networks composed
by static neurons and trained by supervised learning algorithms.
We are interested in a function approximation; in this �eld the ANNs perfor-
mances are ruled by the approximation theory. ANNs are characterized by
the consideration of a discrete serie of data in the structure de�nition and by
the choice of the function class exploited for the approximation task, which
usually depends on the weights in a non-linear manner. These properties
make the application of ANNs very useful, for example for their capability
to construct a link between the input-output quantities not yet discovered,
but introduce some problems and topics which need to be developed. We
can start from the discretization of the data, which causes the existence of
an in�nite number of functions able to correctly interpret the input-output
couples of the training set. Another issue linked to the data is the possi-
ble presence of noise, which can a�ect them and thus the resulting network
parameters. Finally other questions arise concerning the characterization of
the approximation degree in function of the input number and of the ANN
structure and other approximation properties. However a result seems to be
clear: the multilayer perceptrons are universal approximators, namely any
limited function can be approximated with an arbitrary precision by an ANN
with a �nite number of hidden layers [58] (see 5.3.2).

The learning problem can be summarized in the de�nition of the best
process which describes the training data, building an algorithm able to rec-
ognize the general properties of the inputs. A fragile equilibrium is therefore
needed between the correct training events interpretation and the capability
of generalization: too complex models can be limited at the right evelua-
tion of the only training set, while too simple models de�ne coarse relations
between inputs and outputs.
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5.3.1 Perceptron

The perceptron is the informatic equivalence of the biological neuron. The
main properties of a percetron are illustated in the following; in particular
we focus on its capability to linearly classify the data by solving, under
determined conditions, a system of linear inequalities. Finally the main
limits of single perceptrons are shown.

Stucture

A neural network is composed by elementary units of calculation called neu-
rons. One of the simplest structure of this algorithm was proposed by Mc-
Culloch and Pitts [60] in 1943 and then developed by Rosemblatt [61]. In this
model the neuron elaborates a vector of input quantities multiplying them
by weights (see Fig. 5.4), computing the weighted sum ad �nally comparing
it to a threshold value in order to return the scalar response. The neuron
provides an output equals to 1 if the sum is greater than the threshold, −1
otherwise.
Formally we can de�ne the neuron operation as follows.
Given an input vector x∈Rn, the corrisponding weight vector w∈Rn and a
threshold θ the neuron output y is provided by the the equation:

y(x) = g

(
N∑
i=1

wixi − θ

)
≡ g

(
wTx− θ

)
(5.2)

where g represent the activation function of the neuron and in this case in
can be described by the sign-function:

g(t) ≡ sgn(t) =

{
1, if t ≥ 0

−1, if t < 0
(5.3)

Other activation functions often used are:

• the Heaviside function:

g1(t) =


1, t > 0

1/2, t = 0

0, t < 0

(5.4)

• sigmoidal functions:

lim
t→−∞

g(t) = −1 , lim
t→∞

g(t) = 1

g2(t) =
1

1 + e−t
g3(t) ≡ tanh(t) =

et − e−t

et + e−t

(5.5)

where the �rst row expresses the meanig of sigmoidal function, and
the second describes two important examples: respectively the logistic
function and the hyperbolic tangent.
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Considering for semplicity a bidimensional plane, we can easily prove that
the algorithm is able to implement elementary logic operations (and, or ,
not) and thus to realize any logic function through an opportune connection
between neurons. Given an activation function

f(t) =

{
1, if t ≥ 0

0, if t < 0
(5.6)

in the bidimensional space the sign-evaluation of the weighted sum consists
on a inequality limited by the implicit equation of a straight line:

n∑
i=0

wixi − θ = w1x1 + w2x2 − θ > 0 (5.7)

This equation shows the opportunity to determine various separation lines
by de�ning di�erent values for the n+ 1 (in this case: w1, w2, θ) parameters
dragged. Moreover the formula (5.7) and the picture (Fig. 5.5) illustrate the

Figure 5.5: Schematic representation of the neuron operation in a bidimen-
sional space (consider f(t) as activation function). The system is imposed
to obtain the or function but the image shows also the neuron capability of
correctly classify the red and blue points as beloging to two di�erent classes.

ability of a neuron to compute classi�cations of linearly separable examples.
For sets of point linearly separable in a n dimensional space the classi�ca-
tion can alway be performed by the introduction of an n − 1 dimensional
hyperplane H = {x∈Rn : wTx = θ} and thus discriminating the events be-
longing to the two di�erent categories S and B, evaluating the sign of the
discriminant function, i.e of wTx − θ. Formally we have that the elements
belonging to the S and B classes are linearly separable and thus can be cor-
rectly categorized by the neurons if exists an n+ 1 vectors of parameters for
which is satis�ed the system:

wTx− θ > 0 for x∈S 7−→ wTx > 0 for x∈S
wTx− θ < 0 for x∈B 7−→ wTx > 0 for x∈B

(5.8)
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where to built the relations on the right we have introduced a new dimension
in both the input and the weight vectors to take into account the threshold:

x = (x0, x1, ...xn)T , w = (θ, w1, ...wn)T , x0 = −1 (5.9)

Therefore now x∈Rn+1 and w∈Rn+1. As we have announced before, the most
characteristic property of the neurons, and more in general of all the ANNs,
is the parameter estimation by a learning process based on the consideration
of a training set of events. Given again the sign-function to obtain the ouput
value, we can describe the training set as p couples of inputs-output:

T = {(xp, tp), xp∈Rn, tp∈{−1, 1}, p = 1, ..., P} (5.10)

where t is the desired output of the neuron (target). The trained neuron,
i.e. the neuron characterized by precise weights and threshold, in now able
to classify also events not included in the training set (if linearly separable).
This ability shows the generalization property of this kind of algorithm and
de�nes a new tool for the event classi�cations called Perceptron.

Learning algorithms for perceptrons

For a single perceptron, as for all the ANNs, the learning process consists in
updates of the n+1 dimensional weight vector. In 1962 Rosenblatt proposed
an algorithm able to infer network parameters which interpret correctly the
training data and which are based on their evaluation.
In the following there is described the implementation of this learning method
for a perceptron characterized by a sign function (correspondind to its acti-
vation function). The main idea is to consider each of the example included
in the training set and to update the weight vector every time an event is
wrongly classi�ed. In the picture (Fig. 5.6) is represented the implemen-
tation of this algorithm where we have considered, without lost of general-
ization, ‖xp‖ = 1. There the counter nclass has been introduced to control
that all the examples are correctly classi�ed. During the iteration this updat-
ing procedure can cause wrong categorization of events previously correctly
evaluated. Nevertheless if the subsets S = {xp : (xp, tp)∈T, tp = 1} and
B = {xp : (xp, tp)∈T, tp = −1} of T are linearly separable, it can be
proven that with a �nite number of iteration this algorithm is able to �nd
the hyperplane which divides in an appropriate manner S an B.
The operating principle of this algorithm can be described as a procedure to
solve the following system:

Aw ≥ b (5.11)

where the vector b∈Rp, w is always the weight vector with n+1 components
and A is a matrix of dimension P × (n+ 1) de�ned by

AT = (a1, ...ap) = (t1x1, ...tnxn) (5.12)
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Figure 5.6: Algorithm proposed by Rosenblatt to train a perceptron.

In 1954 Agmon [62], Motzkin and Shoenberg [63] introduced an iterative
method to perform adequate weights wi for the satisfaction of the equation
(5.11), which is analogous to the one proposed by Rosenblatt:

w(k + 1) = w(k) + η
(bk − aTw(k))

‖ak‖2
(5.13)

where η is a scalar parameter. When the S and B are linearly separable
subset of T and η∈(0, 1) it is assured the achievement of a weight vector
which satis�es the system or the de�nition of a succession convergent to one
of them. To lower the computational time required all the training set can
be considered simultaneously, computing a batch learning method.

A generalization and developement of these methods is called delta rule

and, similarly to the previous algorithms, it can be used only for supervised
learning. The main idea is to follow the gradient decreasing, searching the
minimum of the error function (5.1). For the learning processes it is real-
ized starting from a random point of the space and descending along the
opposite direction of the gradient. This approach allow the achievement of
the convergence to the nearest local minimum, if the procedure is correctly
implemented. The gradient rule for the weight updates can be summarized
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as follow:

∆wi = −η∂E(w)

∂wi
, wk+1

i = wi + ∆wi (5.14)

where k and k + 1 are indexes which describe the iteration step, ∆wi is the
applied changing on the weight wi thus i = 0, 1, ...n, and �nally 0 < η < 1
is the learning rate which represents the velocity used to reach the local
minimum. The learing rate is a very important parameter to choose; indeed

Figure 5.7: Error surface, according to the de�ntion on the �rst equation of
(5.1), for a perceptron characterized by a linear activation function.

with η too large the algorithm can jump from one side to the other of the
error function without converging on the local minimum, while with η too
small for the neuron can be necessary a long training procedure.

Limits

The perceptron is an e�ective tool to perform classi�cation of linearly sepa-
rable subset of events. This condiction on the subsets considerably limits the
application of the percepion, indeed for example it is not able to perform the
XOR logic function. This problem can be mitigated by the introduction of
a set of functions which determines a transformation of the data in a space
where they are newly linearly separable. This approach was �rstly proposed
by Rosenblatt but it presents several limitations due to the restriction on
the used functions.

5.3.2 Multilayer perceptron

, structures, hidden input end ptput The percepron limits have stimulated
the implementation of new informatic instruments, aimed to solve more com-
plicated problems, as the classi�cation of sets non linearly separable. One
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succesful idea is the building of new devices starting from a set of percep-
trons divided in ordered stuctures, this procedure generates theMultilayer

perceptron.
For this project we apply the toolkit for multivariate analysis (TMVA) pro-
vided by ROOT, a program and library developed by particle physics comu-
nity of CERN.[59]

Structure

The architecture of multilayer perceptrons is de�ned by a set of neurons
grouped in di�erent classes, called layers:

Input layer The input layer is composed by n nodes associated to the n
inputs and characterized by a transfer function equal to 1, thus any
calculation is performed. The aim of this class is to weight each input
quantity di�erently for the perceptons of the following layer.

Hidden layers From the hidden layers the data analysis starts. They are
composed by calculation units organized in di�erent successive classes.
The aim of the neurons dragged is the elaboration of the output-input
couples in order to �nd and test di�erent relations between the inputs
and their functions.

Output layer The output layer is the neuron class which return the K out-
puts yi∈R of the network. They perform the �nal output calculations
on the weighted sums of outputs of the last hidden layer.

This kind of neural networks present a particular kind of synapses: the
connections are exclusively between neurons of two succesive layers. No
links are considered between neurons belonging from the same class and
the information travels in a single direction (no feedback connections). The
connection can be identi�ed determining the calculation-unit j belonging
from the layer l = 1, ..L and the neuron or node i of the previous layer. To
de�ne L we have considered a subclass of L ≥ 2 layers, which includes only
the hidden and the output neuron. These neurons are characterized by an
activation function g

(l)
j : R 7→ R used to evaluate the weighted sum of its

inputs. Therefore the performed calculations become:

a
(1)
j =

n∑
i=0

w
(1)
ji xi, z

(1)
j = g

(1)
j

(
a

(1)
j

)
, wj0 = θj , x0 = −1, l = 1

(5.15)

a
(l)
j =

N(l−1)∑
i=0

w
(l)
ji z

(l−1)
i , z

(l)
j = g

(1)
j

(
a

(l)
j

)
, wj0 = θj , z

(l−1)
0 = −1, l > 1

(5.16)
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where we have introduced the number of neurons in the l layer: N l. Generally
this kind of algorithms are characterized by di�erentiable activation functions
with a sinusoidal shape:

• the logistic function wich provides for hydden (output) layer a value
zj(yj)∈(0, 1):

g2(t) =
1

1 + e−ct
, c > 0 (5.17)

• the hyperbolic tangent function wich provides for hydden (output)
layer a value zj(yj)∈(−1, 1):

g3(t) ≡ tanh(t/2) =
1− e−t

1 + e−t
(5.18)

Anyway the activation function can vary for di�erent neuron (usually the
output layer can have a di�erent activation function with respect the hidden
layers).
An example of the resulting architecture for a multilayer perceptron is in the
image (Fig. 5.8).

Figure 5.8: Multilayer perceptron characterized by 3 layers (L = 2) and by
a single output y.

Approximation properties

Several studies have been performed about Multilayer perceptron, specially
for ANNs with a single hidden layer and output. In that case we are going
to use the following notation:

• number of neurons in the hidden layer: N ;

• threshold of the hidden neuron j: θj
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• weights between the inputs and the �rst hidden layer: wij

• weights netween the hidden layer and the output: vj

Considering an activation function: linear for the output neuron and g for
the hidden perceptrons, the output is performed by the equation

y(x) =
N∑
j=1

vjg

(
n∑
i=1

wjixi − θj

)
=

N∑
j=1

vjg
(
wTj x− θj

)
(5.19)

These studies suggest that a neural network, characterized by a single hidden
layer, is a universal approximator for continuous functions on compact sets
of Rn for a wide class of activation functions, speci�cally for non-polinomial
continuos functions on R [64]. Formally this result stats that: given a func-
tion f(x)∈C(Rn), a compact Ω∈Rn and a ε > 0 we can built a multilayer
perceptron with a single hidden layer, chracterized by a continuous non-
polinomial activation function, which satisfy:

maxx∈Ω |f(x)− y(x)| < ε (5.20)

More recent studies show improvements on the determination of weights
which link the inputs to the �rst hidden layer, restrincting their choice.
Another interesting result on the multilayer perceptrons, characterized by
a single hidden layer, concerns their capability to correctly interpret the
available data. Formalizing this concept [65]:

Theorem (Pinkus 1999): Consider a non polinomial function g∈C(R). For
any k distinct points {xi}ki=1 ⊂ Rn and their associated k data {αi}ki=1 ⊂ R,
there exist k vectors {wj}kj=1 ⊂ Rn and 2k numbers {vj}kj=1, {θj}kj=1 ⊂
R such that

k∑
j=1

vjg
(
wTj x

i − θj
)

= αi, i = 1, ...k (5.21)

This theorem explicits the relation found by Hung and Babri (1998) between
the k-points available for the interpolatation and the number of neurons in
the hidden layer. Other results have been performed also concerning the
degree of approximation [65].
The theory approximation for MLPs with more than one hidden layer is not
well known and thus it is a di�cult task to evaluate the advantages and
disadvantages which this structure o�ers in comparison with the MLPs with
a single hidden layer. Anyway the majority of the authors seem to support
the neural networks characterized by more than one hidden layer. Indeed for
structures with a single hidden layer the degree of approximation is limited
to a lower bound, which depends on the number of neurons used. This does
not hold any more for models of MLPs characterized by 2 hidden layers as
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we will see in the following theorem. Consider the output for these kind of
algorithms given by:

y =

N2∑
q=0

uqg

 N1∑
j=1

vqjg
(
wTqjx− θqj

)
− γq

 (5.22)

where N1 and N2 are rispectively the neuron number of the �rst and the
second hidden layers. For MLPs characterized by two hidden layers it is
demonstrated the following result:

Theorem (Mayrov and Pincus): There exists an activation function g∈C∞
sigmoidal and strictly increasing which satis�es the following property.
For any function f∈C ([0, 1]n) and any ε > 0, there exist constants ui,
vij , θij , γi and vectors wij∈Rn which satisfy the inequality:∣∣∣∣∣∣f(x)−

4n+3∑
q=1

uqg

2n+1∑
j=1

vqjg
(
wTqjx− θqj

)
− γq

∣∣∣∣∣∣ < ε (5.23)

for any x∈[0, 1]n.

The last theorem is based on the Kolmogorov Superposition Theorem which
stats that any continuous function of n variables can be represented (and
not only approximated) as a superposition of functions of a single variable.
For this topic the most convenient form of this theorem is:

Theorem : There exist n constants λj > 0, j = 1, ...n such that
∑n

j=1 λj ≤ 1

and 2n + 1 strictly increasing continuous functions φq : [0, 1] → [0, 1],
q = 1, ..2n+ 1, such that every continuous function f∈C ([0, 1]n) of n
variables can be represented in the form:

f(x1, ...xn) =
2n+1∑
q=0

g

 n∑
j=1

λjφq(xj)

 (5.24)

for some g∈C[0, 1] depending on f .

This theorem has di�erent interpretation concerning its application for MLPs
algorithms. Anyways recent studies suggest its utility for function approxi-
mation for models of multilayer network.

Learning approaches

The capability of data interpretation of a MLP characterized by n inputs
and K outputs is determined by its architecture, i.e. the number of layers
L + 1 and of calculation units for each layer (N (l), l = 1, ..L), and by
the learning method. Both are essential for the correct evaluation of the
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weight vectors: speci�cally the former determines the quantities of these
parameters wlij , while the latter concerns the ability of the algorithm to
reach �optimal�values. To choose these parameters we have also to take into
account the dimension of the training set, i.e. the number of the examples
in base on which the weights are calculated:

T = {(xp, tp), xp∈Rn, tp∈RK , p = 1, ...P} (5.25)

The weight vectors are obtained by a procedure whose aim is to �nd the
minimum of the error function, also called objective function. In our case
this means solving on optimation problem:

minw∈RnE(w) =

P∑
p=1

Ep(w) =

P∑
p=1

1

2
‖yp − tp‖2 (5.26)

where yp is the vector of network outputs yp = y(xp, w); anyway di�erent
error functions have been implemented (5.1).
Find the minimum of these error fuctions is not an easy task; the most
common di�culties are:

• non linearity of the error function which generates depth holes and/or
�at zones on the error surface;

• great dimension of the training set and of the total unknown parame-
ters;

• presence of local minima;

• for many algorithms it is not possible to assure the global convergence;
however this problem can be solved introducing a regolarization term.

We can partially understand some of these points looking at Fig. 5.9. We
remember that the major aim of this kind of structures is not to interpret
at best the training data, although it is to model the algorithm parameters
miming the process which has generated them.
To de�ne the architecture some theories have been developed searching the
minimum number of events necessary to the correct de�nition of the weights.
Anyway they are often restricted to particular cases and in practice di�er-
ent techniques are adopted. The main idea at the basis of these approaches
is to use di�erent sets of events to evaluate the architecture and then to
train the algorithm. To choose the number of neurons for each layer, the
process consists on testing stuctures characyterized by an increasing or de-
screasing number of perceptrons. This procedure is reasonably employed
if the tested structures have only one single hidden layer, while for more
complex structure follow this strategy seems computationally expencive and
time-consuming.
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Figure 5.9: Example of error function surface.

Another popular method is performed adding an addictional term, which de-
pend on the weight vector norm Γ ‖w‖2 , Γ > 0 to the error function. This
techinque is called regularization technique and the aim of this procedure is
to limit the possible values of the parameters. The results are compatible
to proccesses which impose regularity conditions on the functions approxi-
mated by the network.
The learning process ends when the error function on the training set reaches
an adequate value or when the error on an independent set of examples starts
to increase.

5.3.3 Back propagation

As previously seen to train MLP algorithms a training set of examples is
generally used. Giving to the network the couples input-output it can learn
the right way to classify the imputs. Initially the synapses are randomly
weighted (in TMVA by default though uniform distribution between -0.5
and 0.5) and during the training they are update minimizing the obiective

function. To reach the best con�guration di�erent strategies can be adopted.
These strategies are called learning methods and generally contain at least
the �rst derivative of the error function with respect to the weights. To
calculte the derivatives the back-propagation (BP) algorithm is commonly
used. Two di�erent version are available:

BP batch the weights are updated after the consideration of all the training

set; in this case the function to minimize is E(wk) =
(∑P

p=1 ‖yp − tp‖
2
)
/2;

Bp on-line the weights are updated every time an example of the training
set is con�dered and thus the function to minimize is Ep(k)(w

k) =

‖yp − tp‖2 /2;
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We are considering a MLP chracterized by L layer, where x∈Rn is the input
vector and y∈RK is the output vector. To simplify the notation we de�ne
the vectors z

z
(0)
i = xi, i = 1, ...n z

(L)
i = yi, i = 1, ...K (5.27)

and in the following we omit the layer label. The back-propagation algorithm
consists in the application of the derivative rules for composed functions

∂Ep
∂wij

=
∂Ep
∂aj

∂aj
∂wji

(5.28)

and therefore in the devision of the problem in two parts, as shown in the
following.

1. The evaluation of the term δj =
∂Ep
∂aj

. δj calculated considering two
di�erent cases:

• the j-neuron belongs to the output layer

δj ≡
∂Ep
∂aj

= g(aj)
′∂Ep
∂yj

(5.29)

where yj = g(aj) (see Fig. 5.10).

Figure 5.10: The picture shows the propagation of the information when BP
is used and the analysed j-neuron belongs to the output layer.

• the j-neuron belongs from one hidden layer

δj ≡
∂Ep
∂aj

=
∑
k

∂Ep
∂ak

∂ak
∂aj

(5.30)

where ∂ak/∂aj = g(aj)
′wkj (see Fig. 5.11).

Because of the neuron output utility the calculation of this second term
is called back-propagation.

2. The calculation of the term ∂aj
∂wji

= zi, where we have considered aj =∑
hwjhzh. The quantity zi is the i-neuron output, which in case of

inactive nodes (input layer) is equivalent to the i-input. The process
used to calculate ∂aj/∂wji is called forward propagation.
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Figure 5.11: The picture shows the propagation of the information when BP
is used and the analysed j-neuron belongs to a hidden layer.

Thus we can write
∂Ep
∂wji

= δjzi (5.31)

Therefore through the BP it is possible to calculate the gradient coming from
the sum over the gradients of each example used for the training. Therefore
the evaluation of the total gradient computationally costs O(PxW ) where
P is the total number of the events contained in the training set and W is
the number of weights.
The ability of BP method to approximate functions can be described by the
backpropagation theorem.

Theorem (backprogation Network Function Approximation) [66]: Given
any ε > 0 and any L2 function f : [0, 1]n → RK here exists a three-
layer (with two hidden layers) backpropagation network that can ap-
proximate f to within ε mean squared error accuracy.

The convergence speed can be improved modifying the searching direction.
To reach this purpose a new term proportional to the di�erence between
the weight values of the previous two updates is introduced in the weight
iterative formula. This stategy, used to accelerate the achievement of the
error function minimum, is called momentum method.

5.3.4 Learning methods and conjugate gradients

Di�erent strategies have been adopted to perform the training process. Some
of them require a monotonicity on the error function evaluation in correspon-
dence of each weight update. However they often present computational
disadvantages and thus a new approach has been recently introduced. It is
based on an iterative process which allows momentary increasing of the error
function, though assuring the same property of global convergence. Di�erent
developments of this method are available and promising.
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The center of the issue is how updating the synapses stranghts between neu-
rons of di�erent layers, i.e. in the equation

wk+1
ij = wkij + ∆wkij (5.32)

how to determine ∆wkij . Di�erent learning methods have been developed:
the most of them are based on two di�erent approaches: the gradient meth-

ods and the conjugate gradients methods. In this subsection we will mainly
consider (if not explicited) the batch, also called o�-line, approach.

Gradient methods

Let start with the �rst class of learning methods proposed: the gradient

methods (see also its de�nition/application for one perceptron: Sec. 5.3.1).
One of the easiest version is de�ned by the following iterative process for the
weight update:

wk+1 = wk − ηk∇E(wk) (5.33)

Here each iteration is labelled by the index k and corresponds to an epoch.If
the learning rate is supposed constant during the iteration ηk = η, ∀k,
under some conditions on the error function and on the value of η, the con-
vergence is assured. Anyway the process for the determination of the param-
eters necessary for the η estimation can be complicated and thus a di�erent
technique is usually applied. It concern the determination of a learning rate
whose value depends on the iteration index k. The di�erent techniques de-
�ne the values avaialble by ηk to su�ciently move and to reduce adequately
the objective function.
The basic idea of this kind of methods is to achieve the minimum of the error
function following the direction opposite to the gradient, but, as announced,
the �nal performances depend a lot on the learning rate. Indeed appropri-
ate values of this parameter can help the algorithm to overcome some of its
di�culties, for example it can be useful to excape from local minima.
The most trivial learning method implemented on the ROOT toolkit (TMVA)
is based on the gradient study and is called the Robbins-Monro stochastic
minimization [67]. It is a version of an on-line approach and its updating
rule is given by:

∆wkij = −η
(
∂Ep
∂wij

+ δ

)
+ ε∆wk−1

ij (5.34)

The search of the error function minimum is therefore along the gradient, but
an addictional factor δ for the �at-spot elimination is introduced. Moreover
the process consider also the �rst history of the weight evolution by the
term ∆wk−1

ij . We can note that for the application of this algorithm three
parameters have to be de�ned; anyway some reasonable values for these
variables are suggested by ROOT.
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Conjugate gradients methods

[68] [69] Another approach at the basis of several learning methods (2 in
TMVA) is the conjugate gradients methods.
The conjugate gradients is an algorithm aimed to numerically solve sparse
systems of linear equations. This is an e�ective method to treat linear sys-
tems of the form:

Ãx̃ = b̃ (5.35)

Here x̃ is the unkwnow vector, while the known Ã and b̃ are respectively
a known symmetric, positive de�nite (x̃T Ãx̃ > 0 for any x̃ 6= 0) and real
W ×W matrix and another vector. The conjugate gradient method is also
useful for solving some optimization problems, this is our case.
Let start with the general idea of this algorithm.
First we de�ne a quadratic form as a scalar quadratic function of a vector x̃:

f(x̃) =
1

2
x̃T Ãx̃− b̃T x̃ (5.36)

It can be proven that, if Ã is symmetric and positive-de�nite, this function
has a minimum on the solution of the system (5.35) x∗. This can therefore
be very interesting for us, indeed it can be use to solve our problem of �nding
a rule for the weight update which minimize the error function:

f(x̃) = E(w + v) ≈ E(w) + E′(w)T v +
1

2
vTE′′(w)v (5.37)

where we have associated the formalism introduced for the study of the
conjugate gradient to the one of the learning process for neural networks. To
obtain the relation (5.37) we use the Taylor expansion. To �nd the minimum
of the function f(x̃) it is necessary to calculate the gradient of this quadratic
form and thus to impose its equality to zero:

f ′(x̃) =
1

2
ÃT x̃+

1

2
Ãx̃− b̃ = Ãx̃− b̃ = 0 (5.38)

The second equality is valid for simmetric Ã and shows that �nd the mini-
mum of f(x̃) is in e�ect the same of solve the system (5.35). Anyway without
imposing any condition on Ã the critical point x∗ can be a minimum, a max-
imum or a saddle point.
The basic concept of the method illustrated in the following is the gener-
alization of an algorithm able to solve the system (5.35) through updating
on orthogonal direction (Fig. 5.12). A brief explanation is reported; we
construct the solution:

x̃k+1 = x̃k + αkdk (5.39)

where αk is determined by the orthogonality condition on the new direction
of x̃(ek+1):

dTk e
k+1 = dTk

(
ek + αkdk

)
= 0 (5.40)
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From this equation we obtain

αk = −
dTk e

k

dTk dk
(5.41)

Here the problem is that ek is unknown. The conjugate gradient method

Figure 5.12: The Method of Orthogonal Directions. Unfortunately, this
method only works if you already know the answer.

generalizes this idea de�ning x∗ on a basis of conjugate vectors, i.e. through
a set

D̃ = {dk : ∀u 6= k∈[1,W ] ⊂ N, 〈du, dk〉Ã=0}

where we have de�ned

〈g, h〉Ã := 〈Ãg, h〉 = 〈g, ÃTh〉 = 〈g, Ãh〉 = gT Ãh (5.42)

The meaning of the set D̃ is shown in the �gure (Fig. 5.13). Therefore we
have:

x∗ =

W∑
i=1

αidi

b̃ = Ãx∗ =

W∑
i=1

αiÃdi

(5.43)

Thus the coe�ecients αi can be found considering the orthogonality of the
vectors di with respect the product de�ned by Ã. For any k∈D̃ we have

dTk b̃ = dTk Ãx
∗ =

W∑
i=1

αid
T
k Ãdi = αkd

T
k Ãdk (5.44)

and �nally

αk =
dTk b̃

dTk Ãdk
(5.45)
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Figure 5.13: In the left picture: pairs of vectors are Ã-orthogonal. In the
right picture: the same pairs of vectors after the ellipses has been �stretched
�till appearing circular.

For these approach the problem consists on determining the set D̃. Therefore
to practical implement this algorithm an iterative method was developed. At
each iteration a new vector of the set D̃ is de�ned, indeed this procedure
is based on the concept that a good approximation of the solution x∗ can
be obtained with a subset of the vectors di. Starting from a point x̃0 the
minimization procedure suggests to take d0 = b̃− Ãx0. It is the negative of
the gradient calculated in x̃0 of the function f(x̃). The name of the algorithm
conjugate gradients method, arises from the contruction of the solution x∗ on
vectors conjugate to the gradient. At each k iteration step (epochs) it is also
calculated the distance between the actual representation of the solution and
the desired one:

rk =
(
b̃− Ãx̃k

)
−
(
b̃− Ãx∗

)
= b̃− Ãx̃k (5.46)

where the vectors rk are called residuals. As shown by this de�nition they
also represent the negative gradient of f(x̃) at the k-step (x = xk). Therefore
the gradient descent method will follow this direction to search the minimum.
To generate the other Ã-orthonormal and conjugate vectors the conjugate

Gram-Schmidt process is adopted:

dk = rk +
∑
i<k

βikdi = rk −
∑
i<k

dTi Ãrk

dTi Ãdi
pi (5.47)

where the coe�cients βik are evaluated by the Ã-orthogonal condition be-
tween di and dk with i 6= k. Therefore the updating rule becomes:

x̃k+1 = x̃k + αkdk (5.48)
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The value of αk can be obtained considering the Ã-orthogonality of the
directions dk∈D̃ (5.45) in analogy with (5.40):

αk =
dTk b

dTk Ãdk
=
dTk (rk−1 + Ãx̃k−1)

dTk Ãdk
=
dTk rk−1

dTk Ãdk
(5.49)

where in the last equality we have exploited the Ã-orthogonality between dk
and x̃k+1.

The approch explained before can be summarized (paartially elaborated
using the relation between the vectors) in the following iterative algorithm:

initialization :

r0 := b̃− Ãx̃0

d0 := r0

k := 0

(5.50)

iterative process

αk :=
rTk rk

dTk Ãdk

x̃k+1 = x̃k + αkdk

rk+1 = rk − αkÃdk

βk+1 =
rTk+1rk+1

rTk rk

dk+1 = rk+1 + βk+1dk

k = k + 1

(5.51)

results : xk+1

This method converges to the optimal solution in a number of iteration ktot ≤
W . The conjugate gradient algorithm needs less time for the convergence
than other approaches, like the gradient methods, and it can be performed
also without using the Hessian matrix and the algebra related to it. In the
iterating procedure described before the formula used to determine the βk+1

coe�cients was provided by the Fletcher and Reeves and in the context of
the error function minimizaion it becomes:

βFRk+1 =
‖∇E(wk+1)‖2

‖∇E(wk)‖2
(5.52)

The conjugate gradient method with the Fletcher-Reeves updating formula is
the learning method used during the developement of this project. Another



5.3. MULTILAYER PERCEPTRON 115

Figure 5.14: Optimality of the Method of Conjugate Directions. (a) A two-
dimensional problem. Lines that appear perpendicular are orthogonal. (b)
The same problem in a �stretched�space. Lines that appear perpendicular
are Ãorthogonal.

popular startegy used to calculate the β coe�cients without the Hessian is
known as Polak-Ribiere (PR) updating formula:

βPRk+1 =
rTk+1 (rk+1 − rk)

rTk rk
(5.53)

For our minimization problem results:

βPRk+1 =
∇E(wk+1)T

(
∇E(wk+1)−∇E(wk)

)
‖∇E(wk)‖

(5.54)
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Chapter 6

Implementation and results

Approach: recognition of GWs consistent with compact binary

mergers by time-frequency signatures

Noise glitches vs GWs: the main goal of the experimental gravitational astro-
physics is a GW detection which implies the implementation of a performant
discriminant between the background and the signal events. As shown in the
previous chapter, several approaches have been tested to mitigate this prob-
lem. In this project we develope a procedure based on the classi�cation of
the time-frequency signatures traced by the candidates. To build this tool we
start from the cWB analysis and in particular from the reconstruction of the
events in the TF plane. Our target signals are GW emitted from compact bi-
nary coalescences, which, according to theoretical models, are characterized
by the following particular behaviour of the frequency evolution:

ω(t) = ω(t0)

1−
256G5/3M

5/3
chirpt

5c5ω(t0)−8/3

−3/8

(6.1)

Here t0 represents the time at the measurement start, G the universal grav-
itational constant, c the speed of light and ω the angular frequency. Since
now we will refer to the noisy glitches as background and to waveforms radi-
ated by mergers of two compact objects with the word signals.

The goal of this project is performing an algorithm able to identify the
shape signal in the time-frequency (TF) plane. For this reason in this �rst
step we neglect the information about the signature temporal and frequency
position, rescaling the interesting part of the TF plane in arbitrary units.
The central time and frequency and the candidate widths in these variables
will be hopefully used in a next step. We take inspiration from the character
recognition procedure, which can be summarized in the following steps:

1. the visual imge of a character is converted in an image charaterized by
on-o� pixels;

117
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2. the resulting image is reported in a reduced frame;

3. the analysis of the selected pixels starts; if it is available also a third
dimension -amplitude- is considered.

The performances reached by the applied method obviously depend on the
implemented analysis of the resulting frame. Anyway the �rst two steps are
shared by the majority of the processes.

Figure 6.1: Schematic visualization of the procedure for the character recog-
nition.

In this work we adopt this three step procedure in this adapting each step
to the TF recognition of cWB events. The �rst two stages are implemented
in a single procedure: we convert the interested image, delimited by the se-
lected WDM-pixels, in a square matrix. In our case also the third dimension
are available, it represts the likelihood of the cWB analysis. In our project
the resulting matrix is analyzed (third step) by an Arti�cial Neural Network
(see chapter 4.). In this thesis we investigate the performances reached by
this analysis applying the TMVA toolkit (MultiVariate Analysis) provided
by ROOT program.

Initially in this chapter we will address the process which converts the
selected WDM-pixels in a matrix (Section 6.1) and some tests on the ANN
parameters aimed to the decision of the its best con�guration (Section 6.2).
Then we will see some results of the analysis implemented. First we choose
as signals chirp-like waveforms injected on gaussian noise and as background
respectively some detected glitches and a di�erent kind of simulations (Sec-
tion 6.4). Then we consider the S6D glitches recolored according to the
advanced detector sensitivities and used them as background and as base for
injecting waveforms (Section 6.5).

6.1 Matrix implementation

The conversion of the TF traces in a matrix is implemented analyzing the
pixels selected by the cwb analysis.
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Figure 6.2: Rapresentation of the TF trace compatible with GW emitted by
a CBC. The notation is the same used in the Sec. 4.3.2.

The entire process, aimed to the TF plane trasformation in a matrix, is based
on shapes and positions of the core pixels extracted by the principal compo-
nent analysis. The conversion procedure begins with the determination of the
maximum and the minimum levels used to describe the candidate in the TF
plane. Then to compute the frame reduction also the start and stop time of
the event and its frequency limits are required and therefore retrieved by the
output �le produced by cWB pipeline. The matrix is built starting from the
costruction of a bi-dimensional histogram delimited by the time coordinates
previously found and by the frequency range considered in for the analysis.
Generally the cWB pipeline provides the possibility to choose three frequency
ranges because of the di�erent impact of the noise on the collected data. In
this project we focus on the band-width Frange = (64−2048)Hz−1 and thus
the ordinate of the initial hystogram varies on the same frequency range.
The bin numbers are chosen according to the maximum and minimum levels
dragged (notation explained in Sec. 4.3.2). The frequency band is divided in
intervals whose width is ∆fmin/2 (half the frequency-resolution of the level)
according to the natural division provided by the WDM transformation. We
can introduce a new variable to describe how many ∆f are necessary to built
the entire frequency range considered: layer− 1 = 2M = (rs/2) · 1/∆f . We
remember that the WDM transform provides a division of the frequency
range moved on the axis of ∆f/2, thus the number of ∆f needed to built
the full scale in the number of the divisions (layer) less 1. The event du-
ration is instead divided by the minimum time resolution resulted by the
multi-resolution analysis on the selected pixels. The hystogram is �lled by
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the pixel amplitude which is the likelihood calculated taking into account
the double representation provided by the WDM transform (see Fig. 6.2),
and then for each event the third coordinate is normalized to the sum.
This histogram is then converted to a matrix of NDIMxNDIM dimension. If
the number of bins of the histograms is not perfectly a multiple of NDIM,
we add white pixels at the edge, taking more white pixels to the right (top)
part of the histogram in case of odd pixels to be added. Finally the matrix is
constructed �lling its elements de�ned by the last mentioned �gurative grid.
This means that when more bins of the hystogram are collected in a sigle
matrix element their amplitudes are sum up.

Figure 6.3: Example of TF-trace consistent with GW emitted by CBCs.
On the left: signal representation in the TF plane provided by a standard
analysis; on the right: corrispondent conversion on a 8x8 matrix.

6.2 Train and Test ANNs varying the parameters

In this thesis we test ANN algorithms belonging from the software package
TMVA included in ROOT. In particular we focus on the toolkit TMultiLay-

erPercepron which de�ne a class for the utility of neurons organized multi
layers (see Sec. 4.3). The imput layer is composed by inactive perceptrons,
while the output ones are characterized by an linear activation function,
which can be swhitched in a softmax [71] one with an apposite application
also associated to the use of the cross entropy error function (5.1). Instead
for the hidden neurons the activation function can be chosen by the user;
by default the sigmoidal logistic function is implemented because of its good
characteristics as approximator. This tool proposed by the particle physics
community uses one of the most particular intruments included in the ROOT
software: the tree. These objects are normally used to store di�erent infor-
mation, grouped in more cathegories called branches, concerning a sample of
data. For the application of the multilayer percetpron algorithms proposed
by ROOT it is necessary to de�ne a tree composed by several branches: the
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�rst and last bins in the two dimensions whose amplitude is di�erenet from
zero. From the acquisiton of these data the costruction of the matrix starts.
The index intervals found with this procedure are divided by the desired
metrix dimesions NDIM . The remainder of the division rd is used to de-
�ne how many empty pixels are necessary (NDIM − rd, when rd 6= 0) to
construct a matrix with the chosen number of elements starting from the nat-
ural division allowed by the WDM transformation. The resulting picture is
then centered in this new immaginary grid, created by the addiction of these
�white �squares. If the numbers of columns (rows) are odd, the majority of
them are located on the right and on the top.

input branches : it is requested a branch for each input of the desired
neural network;

output branches : for any output a branch has to be implemented and
�lled;

weight branch : it is possible to give di�erent weights to the events, build-
ing an associated branch.

Figure 6.4: Representation of a tree aimed to train and test a multi layer
perceptron implemeted by ROOT.

To de�ne the networks parameters, i.e. to �nd the most appropriate weight
values, a part of the events stored in the tree-object must be used for the
training process. Usually not all the available examples are used to train the
network; some of them are required by the implemeted ROOT-constructor
to test the on-going variables de�nition. To obtain good performances the
test and train sets are composed by several signi�cant examples; in case of
classi�cation problems this means that all the classes are used both for train
and test the algorithm.
By default in this toolkit the MSE is adopted as error function, de�ned as:

E(w) =

P∑
p=1

‖yp(w, x)− tp‖2 (6.2)
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where the sum is over the training set, tp is the desired output of the ANN,
let say it target and yp(w, x) is the network output associate to particular
event and which depend on the input vector x and on the weight vector w.
To calculate the error function in the TMultiLayer Perceptron package the
back propagation technique is proposed (see Sec. 5.3.3).

6.2.1 Architecture

The aim of the project is the trace identi�cation on the TF plane of com-
pact binary coalescences-like signals. Therefore we want to exploit one of
the principal abilities of this kind of informatic instruments: classi�cation
problems solving.

Output neurons

The number of output neurons in classi�cation issues are generally equal
to the number of the considered cathegoriesi we use to classi�y events, in
this way the ANN outputs suggest the most related class for each candidate.
Anyway when we have only two classi�cation cathegories, we can adopt two
main approaches: two neurons (similarly to the case of more classes), or
a single output neuron. We adopt the latter, because better performing
for the ANN considered [72]. Therefore the network is trained for outputs
near to one for chirping-like TF-patterns(signals) and near to zero otherwise
(background).

Inputs neurons

The inputs of ANN are constituted by the amplitude of matrix elements.
The number of inactive nodes included in the input layer is equal to the
matrix dimension Ninputs = NDIM ·NDIM . The matrix dimension is one
of the most important parameter a�ecting the results of the analysis and of
the computational load. We test the following values: 8 × 8, 16 × 16 and
32x32 matrices. Train networks de�ned by 16×16 or 32×32 inputs increase
the number of connections between the inputs in the neural network, so the
required computational load is really high, and the training process takes a
huge amount of time. Figures (Fig. 6.5 and Fig. 6.6) show results considering
a 16 × 16 matrix.1 Even if we do not expect important improvements, we
decide to focus our �rst e�orts on the development of ANNs characterized

1The architecture for the shown example of 16×16 inputs was decided according to the
best con�guration tested on 8×8 matrices: having quadruple the inputs, also the neurons
for each hidden layer was quadrupled toghether with the training sample. The problem is
that in this way the number of weights which the algorithm must estimate is multiplied
by a factor ∼ 16 with respect the corrisponded proportinal architecture associated with
64 inputs. This consideration explain the result.
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Figure 6.5: Results considering a ANN structure of 256 inputs, 3 hidden
layers with 64-128-64 sigmoidal neurons, a single linear output and 1200
epochs. Top (bottom) plots show ratio between rightly (wrongly) identi�ed
on total signals, as a function of ANN threshold. Training set is composed
of about 65000 events, half background and half signals. Left reports results
on the same training set, while right on di�erent events (test set).

Figure 6.6: Background events (blue) behaviour vs signals one (red) for the
standard cWB post-production thresholds (left) and ANN output vs the cc
on the right (see Sec. 4.4 for the variable de�nitions). Same ANN as Fig.
6.5. Note the drawing cut on ρ value on the left picture.

by 64 input nodes (time required for the ANN train ∼ 90min). The two
main reasons of this choise are:

• huge amount of time for the optimization of the ANNs training (more
than four days for the results of Fig 6.5 and 6.6);

• training set should be considerably increased.

Another important parameters is the third coordinate parameter, i.e. the
pixel likelihood. To understand the importance of this quantity we performed
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several tests changing the way of considering this quantity. A �rst test was
to substitute the likelihood values as on-o� behaviour. We discover that the
implementation of this stategy gives similar results to the standard approach.
Other approaches regards the normalization of the likelihood values. One
possibility included in the ANN options is to consider separately each input
and rescales all the values from each events inside the interval [-1,1]. This
procedure has the risk to emphasises pixels which have usually small values
for all the events. We performed a di�erent algorithm normalizing each
amplitude with respect to the maximum of each event, restricting inside
the intervals [0,1] or [-1,1]. Results wshow negligible di�erences between
the three cases, anyway best performances are given by the normalization
proposed by the TMultiLayerPerceptron toolkit, probably because it is best
adapting to the requirements of the ANN algorithm.

Hidden neurons and layers

We decide to adopt sigmoidal activation function for the hidden layers.

g(x) =
1

1 + e−x
(6.3)

which is most approximating the behaviour of biological neurons. The result
values distribution from this function is inside the interval [0,1], favouring
the extreme with respect to the intermediate values (called uncertained re-
gion). Moreover it has a derivative easy to calculate which can simplify and
speed the error function estimated by the back-propagation technique.
To de�ne the architecture we start following the previous study we found
in literature, in particular we focus on ANN with more hidden layers. We
start with the network con�guration suggested by the Majorov and Pikus
theorem (1999). Matrix elelements have been normalized to the maximum.
The trained ANN internal organization was therefore composed by the usual
input layer (64 inputs), two hidden layers (h.l) with 2(NDIM ·NDIM)+1 =
129 and 4(NDIM ·NDIM) + 3 = 259 neurons, and a �nal output percep-
tron. Results were not satisfactory, we recognize the cause on a poor training
sets. Indeed the synapses characterizing this architecture are a huge number
(∼ 4.2 · 104), and so an appropriate training set would have at least the
double value, that was not our case (8192 events for signal and for back-
ground). So, we performed a new idea: implement an algorithm able to
reduce the starting information in a minimum set of parameters [73]. This
strategy is normally adopted to �nd the variables needed for the data rep-
resentation. They are implemented training the networks with symmetric
architecture centered on the layer which contains the minimum number of
neurons (training the ANNs using the equagliance outputi = inputi). If
the number of perceptrons in the central hydden layer is appropriate, they
should be related to the unknown parameters. Speci�cally we test an ar-
chitecture composed by two or by three hydden layers. They are performed
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starting from the 64 inputs and then putting half the neuron number for suc-
cessive hidden layers, until the output. We will write this ANN architecture
in the following simpli�ed notation, which will be adopted also for the fu-
ture, 64in : 32 : 16 : 1out where the number of the hydden layer neurons are
between the �:�. The results reached by these ANNs types are rather satis-
factory and achieved with a reasonable training time (the weight number are
around 2.5 · 103). Anyway other attempts were performed adopting a di�er-
ent stategy. Speci�cally we test architectures characterized by three hidden
layers, composed by same neuron numbers on the extremes and a bigger set
of perceptrons in the center. Some examples are: 64in : 10 : 40 : 10 : 1out
and 64in : 16 : 32 : 16 : 1out. The main architecture classes tested are
reported in the following Fig. 6.7. From this �gure we can infer that the

Figure 6.7: The image shows the perfomances of networks characterized by
traning processes which di�er only by the adopted architectures. The test is
performed on a set of 8192 signals and 8192 background events.

best results seem to be achived by the architectures: 64in : 16 : 32 : 1out,
64in : 32 : 16 : 1out and 64in : 16 : 32 : 16 : 1out. Indeed the other curves
begin the separation to the most performing ones before the �statistically
critical zone �. However further tests show that the ANN characterized by
64in : 16 : 32 : 16 : 1out is the most performing among the ones studied.
Therefore in the following the main results reported are achieved by the
application on the data of a netwok with such architecture.

6.2.2 Learning method

The train process de�ne the synapse streght between the neurons of the im-
pemented ANN-architecture. Evaluating the best values of the weights is
the goal of this process and represents the core of the algorithm. The ROOT
package provided a default starting con�guration of weights randomly gen-
erated following a uniform distribution between −0.5 and 0.5. The power of
these informatic instruments is the self-parameter estimation computed with
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the only de�nition of some starting variables. The way in which the synap-
sis weights are calculated is an important part of all the study because it
strongly a�ects the performances. The toolkit TMultiLayerPercepron allows
the application of six di�erent learning methods shown in the successive list.

1. Stochastic minimization The Stochastic minimization is the only on-

line approach provided by the ROOT package. It is a gradient method

which updates all the weights after the consideration of each single
example provided by the training set. The iterative process which
guides the learning at the k step is de�ned as:

wk+1
ij = wkij + ∆wkij , ∆wkij = −η

(
∂Ep
∂wij

+ δ

)
+ ε∆wk−1

ij (6.4)

In the case of ε 6= 0, we take in account the previous steps so to
establish the new testing values of the weights. This is a developement
of the momentum technique which adds to the basilar gradient formula
only a factor proportional to the di�erence between the last two values
assumed by the analyzed synapsis. The momentum updating rule is
generally used to make more e�ective this learning method. As the
formula (6.4) shows three parameters are needed to implement a train
based on this Stochastic minimization:

• η: the learning rate, which default value is 0.1;

• δ: a constant used to speed the approach to the minimum of the
error function. Its value has to be carefully evaluated: an its
overestimate can cause the jump from one side to the other on
the minimum. The default value is zero;

• ε this factor weights the history of the iterative process; its default
value is zero.

We note that all the three parameters remain costant during the train-
ing (example in Fig. 6.8).

2. Steepest descent with �xed step size (batch learning) The idea ap-
plied by this learning method is the same of the Stochastic minimiza-

tion: the di�erence concerns time of the error function evaluation and,
consequently, of the updating rule application. It is an approach based
on the gradient method, which updates the weights after the consid-
eration of all the training set (batch learning). The implementation
of this technique requires the de�nition of the same parameters of the
previous case (example in Fig. 6.9).

3. Steepest descent algorithm This algorithm search the minimum along
the direction opposite to the gradient. Only a multiplied factor is
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Figure 6.8: Example of results obtained by the application of a network
trained with stochastic minimization. Note: the on-line methods requires
more time than batch (order of magnitude). This and the following �gure
shows background (blue) and signals (red) events. Left: ANN output vs
cc. Top (bottom) right: ratio between recognized (background considered
as) signals and the total number as a function of threshold. The ANN
characteristics are: train set: 8192 signals plus 8291 background, 600 epochs,
64 input, 3 hidden layers with 32-16-8 sigmoidal neurons and a linear output.

Figure 6.9: Example of results obtained by the application of a network
trained with steepest descent with �xed step size.

needed for the application of this technique. The Steepest descent al-
gorithm satis�es the conditions of the global convergence theorem and
is characterized by a convergence achievement in a linear time (example
in Fig. 6.10).

4. Conjugate gradients with the Polak-Ribiere updating formula (GCs
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Figure 6.10: Example of results obtained by the application of a network
trained with steepest descent algorithms.

with P.R.) The algorithm is based on the Conjugate gradient techinque
(for more datails see Sec. 5.3.4) and the update of the weights at each
iteration is determined by the application of the Polak Rebiere updat-
ing formula. The conjugate gradients method can be summarized by
the following expressions

wk+1
ij = wkij + αkdk

αk = −∇E(wk)Tdk
dTkHdk

dk = ∇E(w) + βkdk−1

(6.5)

where H is the Hessian matrix of the error function and the other
quantities are the same explained in the previous chapter. The Polak
Rebiere updating formula concerns the iteration on the estimation of
βk:

βk =
∇E(wk)T

(
∇E(wk)−∇E(wk−1)

)
‖∇E(wk−1)‖2

(6.6)

In the previous equations the E(wk) is the MSE objective function
calculated at the kth step.
To apply this learning method two parameters are used:

• τ : a parameter used for the line search and connected to the
∇E(w), (default value is three);

• Reset: it creates a stategy for the conjugate gradient technique
stabilization. The set value represents the number of iterations
before the algorithm is forced to follow the direction determined
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by the gradient and in the case of the TMultiLayerPerceptron
package it is set to �fty (example in Fig. 6.11).

Figure 6.11: Example of results obtained by the application of a network
trained with conjugate gradients with the Polak-Ribiere updating formula.

5. Conjugate gradients with the Fletcher-Reeves updating formula (CGs with F.R.)

. It is based on the conjugate learning method, summarized in the
equation (6.5). Here the update is given by the formula:

βk =
‖∇E(wk)‖2

‖∇E(wk−1)‖2
(6.7)

The parameters necessary for the application of this method are the
ones de�ned for the Conjugate gradients with the Polak-Ribiere updat-

ing formula (example in Fig. 6.12).

6. Broyden, Fletcher, Goldfarb, Shanno (BFGS) method The BFGS
learning belong from the Quasi-Newtonian methods whose aim is to
minimize the error function, requiring the knowledge of the only its
�rst derivatives. The BFGS is one of the most popular algorithm
adopted by this Quasi-netwonian class and it is also considered one
of the most e�ective for solving optimation problem of low dimension.
This iterative method can be described by the following update:

wk+1 = wk − ηkBk∇E(wk) (6.8)

where, as usual, w is the weight vector, E(w) is the error function and
ηk is the algorithm step. B ≈ H−1 is instead an approximation of the
Hessian matrix inverse, which satis�es the following equation:

Bkyk = sk, sk = wk+1 − wk, yk = ∇E(wk+1)−∇E(wk) (6.9)
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Figure 6.12: Example of results obtained by the application of a network
trained with Conjugate gradients with the Fletcher-Reeves updating formula.

and the matrix is updated by the formula:

Bk+1 =
(
V k
)T

BkV k +
sk(sk)T

(yk)T sk
, V k = I − yk(sk)T

(yk)T sk
(6.10)

The Quasi-Newtonian methods are implemented because calculating
the Hessian matrix requires a great number of operations (example in
Fig. 6.13).

Figure 6.13: Example of results obtained by the application of a network
trained with Broyden, Fletcher, Goldfarb, Shanno (BFGS) method.
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Di�erent learning techniques leads to di�erent results on distinction between
signal and noise (Fig. 6.14) and also in the computational load. The steepest
descent batch methods shows worse performances with respect to the oth-
ers. Instead the stochastic minimization approach needs for the train process
huge amount of time (from ∼ 90min of the other techniques to some days).
In the Fig. 6.14 we compare the six learning techniques on the same set
of candidates, which are indipendet on the set used for the training. Given
the low statistics (about 8000 events of background and signals) we expect
signi�cant �uctuations at the left part of the picture. The picture empha-

Figure 6.14: Comparison of performances given by ANN trained with di�er-
ent learning techniques (lm on the laberl, numbers refer to the ones reported
in the text) Points concern the thresholds on the ANN output tested. Lower
limit on x-axis has been set to 10−4 for graphical purpouse.

tizes also a common characteristic for the event distributions obtained by the
networks trained with the stochastic minimization and by the BFGS meth-
ods. As shown also by the graphs Fig. 6.8 and Fig. 6.13 they performed
very restricted bands as output. The problem of this property is that also
the events wrongly classi�ed are grouped near these output values and the
results is well shown by the image Fig. 6.14. Here these two learning meth-
ods are associated to curves that are not able to lower under few tens the
background events classi�ed mantaining a good signal recognition. In view
of these comments we decide to focus our attenction on the conjugate gra-

dient methods. The successive picture (Fig. 6.15) shows the similarity of
the results reached by the two networks trained with the di�erent updat-
ing formulas. According to this result, which shows a similar performances
on the event classi�cation and a slighty better background recognition, we
choose to develope the version corrispondent to the Fletcher and Reeves up-

dating formula and we study the impact of the two parameters necessary for
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Figure 6.15: We compare two learning methods (reported in the axes) for
10000 background (blue) and 10000 signal events (red). The test is performed
on an independent set, while the train is made considering the same events
(8192 signals, 8192 glitches) for the two networks as the remaining parameter:
700 epochs and three hidden layers with respectively 16, 32, 16 sigmoidal
neurons.

the implementation of the conjugate gradient methods on the network perfor-
mances: the result is summarized in Fig. 6.16. The image highlights that for

Figure 6.16: The picture shows the performances reached by networks
trained using conjugate gradients as learning method with Fletcher and
Reeves updating formula, with di�erent parameters values. The test set
is again composed by 8192 signals and by 8192 background events, and zero
glitches exchange is imposed equal to 10−4.

the values tested no signi�cant changes have been provoked by variations of
these parameters. Consistently with this result we adopt the default values
for the τ and Reset variables.

Epochs

The numbers of epochs determines how many times the training set is con-
sidered in the learning process. For batch-algorithms this number coincides
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with the number of the weights iteration, while for the on-line procedures
the weight updates are Epochs× T , where T training events number. This
is the cause of the huge di�erences in time for the network training.
The major reductions of the error function are performed during the �rst
iterations which generally lower its value by few tenths, as shown in the
following picture (Fig. 6.17). Figure 6.18 shows the performances varying

Figure 6.17: Error function behavious as a function of epoch number, calcu-
lated on the train set (blue) and on the test one (red).

the epoch number, there are no clear trends for the value tested. Indeed as

Figure 6.18: This image shows networks with di�erent epochs applied on
the same set of events (16384 background and 16384 signal). The lower
coordinate on the x-axis is forced to 10−5

we note from the image Fig. 6.17, after a certain iteration the algorithm



134 CHAPTER 6. IMPLEMENTATION AND RESULTS

continues to lower the error function associated to the train set, without any
improvement on the intepretation test events. Moreveor, growing too much
this parameter can cause an Overtraining. Anyway this e�ect consists on
a lost of generalization of the created tool, which exagerately models the
weights on the train examples.
Instead concerning our distimination goal some cases present an evident im-
provement when the epochs increase (see Fig. 6.19).

Figure 6.19: Comparison between two networks tested and trained on the
same samples and with the same parameters, except for the epoch number:
500 on the left and 700 on the right. The blue points refer to glitches the
red ones to signals.

Number of events in the train set

The number of the train set in another key parameter for the determination
of the ANN weights. Best performances are reached when the signal events
equals the background ones, independentely by the real numbers of both
sets.
Deciding the absolute number is instead very complicate, indeed all the pa-
rameters necessary for the learning process are linked together by a non
trivial relation. Anyway, empirically the best results are obtained with a
number of events at least of some times the number of the synapses. This
explaines the result obtained for the 16 inputs: indeed the number of weights
for the tested architecture is more or the number of events used for the train.
The image (Fig. 6.20) shows no great changes in varying the number of

events in the training sample. Indeed the architecture tested is composed by
three hidden layers with respectively 16, 32, 16 neurons. This means that
the number of the synapses is 2064 for 64 inputs and 1 output. Therefore it
is su�cient to use for each cathegory a number of events more or less double
than the number of unknown weights. Therefore to reduce the training time,
when we will adopte this architecture to de�ne the network, we will use a
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Figure 6.20: Comparison between networks trained with di�erent number of
events (�S �for signals and �B�for background) for the training and test. The
lower coordinate on the x-axis is set to 10−5.

train sample which contains 8192 signal and 8192 background events.

In conclusion all the dragged parameters must to be chosen consistently
between each other to obtain good performances by the implemented algo-
rithm and the decision of all their values is determinant for the time required
by the training process.
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6.3 Graph explanation

We have studied the impact of the ANN introduction on the standard analy-
sis for di�erent cc (network correlation coe�cient) and ρ (e�ective correlated

SNR) thresholds, which are the standard cWB �nal discrimination.
The most interesting performances are always analyzed implementing se-
vearal �gures which di�erently underline the improvement given by the in-
troduction of the new variable: the ANN output.

Scatter Plots In these images the red points are associated to the signal
simulations, while the background events are represented by the blue
dots. We report four graph types: the top plots show the candidates
on the planes ANNoutput− ρ (left) and ANNoutput− cc (right); on
the bottom left the plots describes the event distribution of cc and ρ
parameters, bottom right graph shows the number of glitches surviving
the cc and ANN output cuts varying their thesholds.

Surived events as a function of ANN output The signal and the back-
ground events are treated separately by these �gures. We consider four
graphs, each of them with same axes: the number of events belonging
to the considered class versus the applied threshold values. Each graph
refers to a particular cut on the cc and contains three curve associated
to three di�erent threshold applied on the ρ parameter: 5, 5.33, 5.67.

Survived events as function of ρ Separated signal and background events
contained in four graphs associated to di�erent cc threshold value.
They report the count of the candidates surviving the rho cuts as a
function of rho. Each graph contains several curves related to the ANN
threshold applied. The red lines always refer to the results obtained
without the introduction of ANN output.

Anyway to reduce the space occupied by these images we have decided to
summazized the results focusing on the Scatter Plots and a new image
Summarized Results. In the latter we show the last two graphs previously
explained (Events survive as a function of ANN output and Event survived in

function of ρ) for both the BKG and the SIG classes, focusing on cc = 0.6,
which is reasonable.

6.4 Results for injections on gaussian noise

6.4.1 Tested events

For the �rst tests we used the following classes of events analyzed by cWB
2G analysis.
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Signals (SIG)

The ANNs should recognize as target features the TF traces produced by
waveforms which simulate GWs emitted by compact binary coalescences;
speci�cally we use EOBNR waveforms. In particular we focus our attention
on signals with the following characteristics:

• a range for the mass value of a single component from 1.5 to 25 solar
masses;

• a mass ration between 1 and 11;

• a uniform distribution in total mass and mass ratio;

• a uniform distance distribution in volume included in three consecutive
shells: (∼ 66.7− 100)Mpc, (100− 150)Mpc and (150− 225)Mpc.

The simulated waveforms are injected on gaussian noise re-coloured to match
the advanced detector sensitivity curve.
Two examples of signals with chirp like behaviour are illustrate in the �gure
(Fig. 6.21) For these chirp-like signals the e�ciency of the cWB analysis

Figure 6.21: In the picture are reported two example of signal events. On the
left: representation of the events in the TF plane; on the right: conversion
of the candidates in 8× 8 matrices.

in the three shells is reported in the following table (Tab. 6.1). The main
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Figure 6.22: SIGNALS: the image shows the average on 32768 events of the
input values.

Shell Estimated e�ciency Error
(∼ 66.7− 100)Mpc 0.915 0.003

(100− 150)Mpc 0.856 0.001

(150− 225)Mpc 0.769 0.002

Table 6.1: cWB-e�ciency for the three shells for chirp-like waveforms in-
jected on gaussian noise.

parameters used for the cWB-analysis are written in the successive table
(Tab. 6.2).

PARAMETER VALUE PARAMETER VALUE
ρ threshold 5 cc threshold none
search type i detector network V1H1L1
lower f 64Hz higher f 2048Hz

∆tmax 3s ∆fmax 130 Hz

lower level 3 higer level 8

Table 6.2: Main cWB parameters used to search and analyse signal events.
∆tmax and ∆fmax refers to the maximum distance between pixels to allow
their consideration as a single cluster.

Background (BKGg): glitches

To mark the candidates which the ANNs should cathegorized as background
events we have decided to use the glitches collected during the S6D science
run. This sample refer to data acquired during the months July-October
2010. To perform results useful for the second generation of interferometers,
the noisy events are recolored according to the advanced detector sensitiv-
ity curve. In the Fig 6.23 are reported two examples of glitches in the TF
plane and the related matrix and the average behaviour on the matrix rep-
resentations of these kind of events. The values of the main cWB-analysis
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Figure 6.23: In the picture are reported two example of glitches belonging
to the 6SD science run. On the left: representation of the events in the TF
plane; on the right: conversion of the candadates in 8× 8 matrices.

Figure 6.24: BACKGROUND GLITCHES: the image shows the average on
32768 events of the input values.

parameters used for the 6SD-data analysis are reported in the following table
(Tab. 6.3).

Background (BKGb): BRST waveforms

To test the classi�cation ability of the ANN algorithms, another kind of
background events are considered: the Standard Simulation Set. It includes
gaussian and sin-gaussian waveforms characterized by di�erent parameters
(duration for gaussian, Q and frequency for sin-gaussian ) as well as white



140 CHAPTER 6. IMPLEMENTATION AND RESULTS

PARAMETER VALUE PARAMETER VALUE
ρ threshold 5 cc threshold none
search type i detector network V1H1L1
lower f 64Hz higher f 2048Hz

∆tmax 3s ∆fmax 130 Hz

lower level 3 higer level 8

Table 6.3: Main cWB paramters used to analyze the S6D data.

noise bursts also in this case tested with di�erent parameters. The simulated
GWs are injected on gaussian noise and modulated by ten di�erent multiplied
factors.
Therefore this class of events does not include any simulaton of astrophysical
sources, anyway it contains some standard test waveforms. Two examples
of traces on the TF plane and of the corresponding matrices are shown by
the following picture (Fig. 6.25), then the average behaviour of the inputs
variables is represented in �gure (Fig 6.26). For the cWB analysis we have

Figure 6.25: In the picture are reported two example of BRST waveforms.
On the left: representation of the events in the TF plane; on the right:
conversion of the candidates in 8× 8 matrices.

used the same parameter values of the signals studies (Tab. 6.2).
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Figure 6.26: BACKGROUND BRST: the image shows the average on 32768
events of the input values.

6.4.2 Results

Signals vs S6D glitches

In this paragraph we report the main results achieved by the analysis com-
puted by cWB and ANNs trained and tested on the events presented in the
previous paragraph (Sec. 6.4.1).
The training parameters of the best ANN implemented are summarized in
the following table (Tab. 6.4). The preliminary tests associated to this

PARAMETER VALUE
Number of BKGg events 8192

Number of SIG events 8192

Epochs 650

Learning method CGs with F.R.
Architecture 64in, 3h.l. (16 : 32 : 16), 1out

Table 6.4: Main parameters used to train the selected network.

ANN are reported in the picture (Fig. 6.27) This network is then used to
test the performances of the implemented analysis on a bigger sample of
events. Figures 6.28 and 6.29 show that ANN output really well separate
the population of the chirp-like events from the background one and that its
introduction can signi�cantly improve the analysis performances. Note that
the ANN output locates the majority of BKGg events near to zero (Fig. 6.29
bottom right). We can observe a minimal reduction on the signal detection
and rightly classi�cation (for a threshold on ANN output of 0.6 we have
1.3% signal lost and 0.5% of survived background). With the introduction
of the ANN output the background can be reduced by orders of magnitude,
without a signi�cant lost of signal (Fig. 6.29, bottom left). Moreover an
analogous improvement can be reached increasing the threshold on the cc

parameter (Fig. 6.28 bottom right); anyway, this choice can considerably
reduce the recognized fraction of signals (Fig. 6.28 top right). From these
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Figure 6.27: SIG(red) vs BKGg (blue) of preliminary test set (8192 chirp-like
events, 8192 glitches). Top plots: ANN output versus cc (left) or ρ (right).
Bottom graphs: on the left ANN output values for signal and background,
on the right variation on each input, belonging from the preliminary test set,
modifying the network output.

Figure 6.28: Scatter Plots: 105 BKGg events (blue), 105 SIG simulations
(red).

observations we can concluce that the introduction of ANN output can re-
duce the impact of cc cut on the data, in the case of injections made in
gaussian noise. Also the Big Dog Event, an hardware injection simulation
the coalesce of two compact objects, was analyzed by the neural network,
which result is reported in the table 6.5. As the table shown the analysis well

PARAMETER VALUE
cc 0.70

ρ 8.93

ANN output 1.06

Table 6.5: Main results for the Big Dog event.
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Figure 6.29: Summarized Results: 105 SIG simulations and 105 BKGg
events. The ANN thesholds used to performe the several green curves: 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

recognize the Big-Dog event as a chirp-like signal. The TF representation
has indeed the characteristic shape of a GW consistent with CBC, as shown
in the Fig. 6.30.

Figure 6.30: Big Dog event representation on the TF plane (left), and on
the 8× 8 frame.
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Signals vs BRST waveforms

In this paragraph we focus on the network capability to separates injected
waveforms belonging from di�erent classes. Thus to de�ne the signal cathe-
gory we adopt the usual CBC waveforms, whereas the background events
are composed by the Standard Simulation Set (BKGb), which groupes some
di�erent ang general (with any astrophysical association) waveforms.
The training parameters of the best ANN implemented are summarized in
the following table (Tab. 6.6). Thefore this network has been adopted to an-

PARAMETER VALUE
Number of BKGg events 8192

Number of SIG events 8192

Epochs 600

Learning method CGs with F.R.
Architecture 64in, 3h.l. (16 : 32 : 16), 1out

Table 6.6: Main paramters used to train the selected network.

alyze a bigger sample of events belonging from the same classes. The �gures
6.31 and 6.32 illustrate the corrispondent results obtained. All the images

Figure 6.31: Scatter Plots: 5 · 105 BKGg events (blue), 5 · 105 SIG simu-
lations (red).

show the good capability of the network implemented in the discrimination
of events belonging the two di�erent classes. Obviously this is the only pa-
rameter available for the signal classi�cation, because cWB post-production
parameters have similar behaviour for the two classes.
Also in this case we applied the analysis on the Big Dog Event, the results
are shown in table (Tab 6.7). Therfore also against the BRST waveforms the
network well identi�es this event as associated to a GW emitted by CBC.
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Figure 6.32: Summarized Results: 5·104 SIG simulations and 5·104 BKGg
events. The ANN thesholds used to performe the several green curves: 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

PARAMETER VALUE
cc 0.70

ρ 8.93

ANN output 1.04

Table 6.7: Main results for the Big Dog event.

Preliminary analysis of on-o� pixel amplitude

In this section we will see the comparison between the results obtained us-
ing as inputs the continuous values introduced by the matrix conversion and
their binary representation (0,1) as on-o� pixels. The �gures 6.34 and
6.33 show that the networks achieve similar performances. Anyway the dis-
tribution obtained by the 0-1 amplitude is more compact near the edges
values. Contrary to the expectations, this characteristics lightly worse the
signal-background discrimination. Moreover we can note that the network
generated with continuous amplitudes is more stable with respect to input
variations. This result is therefore consistent with the choice of further deve-
lope only algorithms which have been trained with matrices created taking
into account the TF pixels amplitudes.
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Figure 6.33: 8192 BKGg (blue) and 8192 SIG events (red) for each amplitude
representation (indipendent sets). Top: attempt of on-o� pixels, bottom:
continuous input values. Left: ANN output vs cc, right: ANN output vs ρ.

Figure 6.34: Same set of Fig. 6.33. Top: on-o� input treatment, bottom:
continuous values. Left: ANN output, right: output variations on the test
sets due to changements in the inputs.
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6.5 Results for recolored data

In the previous cases we have simpli�ed the recognition problem for neural
network injecting the waveforms into gaussian noise. To implement realistic
tests it is necessary to introduce some real noise features which a�ect the
measurements and the ANN distinction. These features are given by the
S6D data detector recolored to match the advanced sensibility curves.

6.5.1 Tested events

Signals (rSIG)

The waveforms associated to CBCs are injected on the S6D recolored back-
ground, with the following characteristics:

• A range for the mass value of a single component from 1.5 to 25 solar
masses;

• a mass ration between 1 and 11;

• a distribution uniform in total mass and mass ratio;

• a source distribution uniform in the volumes included in �ve con-
secutive shells: (66.7 − 100)Mpc, (100 − 150)Mpc, (150 − 225)Mpc,
(225− 337, 5)Mpc and (337, 5− 506, 525)Mpc.

Under this new enviromental conditions the cWB e�ciency, calculated on
the used samples of events, is reported for each distance-shell in the following
table (Tab. 6.8). We can note a considerable decreasing of the e�ciencies,

Shell Estimated e�ciency Error
(66.7− 100)Mpc 0.566 0.004

(100− 150)Mpc 0.390 0.001

(150− 225)Mpc 0.220 0.002

(225− 337.5)Mpc 0.098 0.001

(337.5− 506.25)Mpc 0.035 0.001

Table 6.8: cWB-e�ciency for the �ve shells for chirp-like waveforms injected
on recolored S6D glitches.

due to the presence of these non gaussian noise glitches which complicates
the correct selection of TF-pixels performed by the cWB analysis (see two
examples in Fig. 6.35). An amplitude average of the 8 × 8 matrix element
on 16384 resulted events are illustrate in the successive image (Fig. 6.36).
We can see that the TF transform is not well de�ned as in the previous case
(injections on gaussian noise), which surely a�ects the pattern recognitions
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Figure 6.35: Two example of signals injected on recolored data. Left: repre-
sentation of the events in the TF plane performed by CWB; right: conversion
in 8× 8 matrices.

Figure 6.36: SIGNALS: the image shows the average on 16384 events of the
input values.

performed by the ANNs, expecially for on-pixels on the right bottom part of
the frame (Fig. 6.35). Anyway not all the events are corrupted by the noise
in a so sign�cant way, as we will see in the following.
The main parameters used to analyze the data through the cWB pipeline
are written in the following table (Tab. 6.9).
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Background: glitches (rBKGg)

Also the background events have been extracten considering the data col-
lected during the period July-October 2010 (S6D science run) recolored ac-
cording the Advanced Sensitivit curves.
The analysis was performed with the same parameters used for the signals,
reported in the table (Tab. 6.9).
The main characteristic feature of the resulting background on the 8 × 8
frame is illustrated in the Fig. 6.37.

Figure 6.37: RECOLORED BACKGROUND glitches: the image shows the
average on 16384 events of the input values.

Background: BRST (rBKGb)

Similarly to the chirp-like signals also the waveforms belonging from the
Standard Simulation Set are injected on the real S6D recolored data, with
the same cWB parameters (Tab 6.9).
The shape resulting on the 8× 8 matrix is reported in the Fig. 6.38.

Figure 6.38: RECOLORED BACKGROUND BRST: the image shows the
average on 16384 events of the input values.
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PARAMETER VALUE PARAMETER VALUE
ρ threshold 5 cc threshold none
search type i detector network V1H1L1
lower f 64Hz higher f 2048Hz

∆tmax 3s ∆fmax 130 Hz

lower level 4 higer level 10

Table 6.9: Main cWB paramters used to analyze the recolored data.

Main cWB parameters used to analyze the recolored data

6.5.2 ANNs trained with waveforms injected on gaussian

noise

In this subsection we will see the e�ects of performing an analysis on recol-
ored data using a network trained on signal (and BRST) waveforms injected
on gaussian noise.
The main results are described by the same pictures introduced in the pre-
vious paragraph:

Signals vs S6D recolored glitches Fig. 6.39 and Fig. 6.40;

Figure 6.39: Scatter Plots: the picture shows 5 · 104 background (blue
points) and 5 · 104 signal (red dots) events. The network used for the test
these candadates is the same described by the table Tab. 6.4.

Signals vs BRST Fig. 6.41 and 6.42

Considerations

By the previous graphs we can see that the background is rightly classi�ed by
the two networks, similarly to what happens for the original S6D glitches and
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Figure 6.40: Summarized Results: the picture shows 5 · 104 background
and 5 · 104 signal events. The network used for the test these candadates is
the same described by the table Tab. 6.4.

Figure 6.41: Scatter Plots: the picture shows 5·104 rBKGb and 5·104 rSIG
events. The network used to the test these candidates is the same described
by the table Tab. 6.6.

the waveforms of the Standard Simulation Set tested in the section before.
Also the rung-feature is remained to characterize the network behaviours
with respect to background events. The main changes concern the signal
interpretation. Indeed the selection of noisy pixels near the trace on its
right or bottom can cause a considerable deformation in the resulting �input-
shape�which the networks are not trained to recognize. This is the main
problem obtained by the case of networks which have trained on gaussian
data and applied on a set of recolored events, which are generally polluted
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Figure 6.42: Summarized Results: the picture shows 5 · 104 rBKGb and
5 · 104 rSIG events. The network used to the test these candidates is the
same described by the table Tab. 6.6.

by the detector noise.
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6.5.3 ANNs trained with recolored data

A di�erent test was performed training ANNs with the recolored events. For
the network learning we decided to apply the best parameters found during
the previous training and thus described rispectively for the glitches and the
Standard Simulation set by the tables 6.4 and 6.6. The main results are
reported in the following.

Signals vs S6D recolored glitches Fig. 6.43 and Fig. 6.44;

Figure 6.43: Scatter Plots: the picture shows 5 · 104 rBKGg (blue) and
5 · 104 rSIG (red) events. The network used to the test these candidates is
the same described by the table Tab. 6.4.

Signals vs BRST Fig. 6.45 and Fig. 6.46;

Considerations

Results are very di�erent in comparison to the ones obtained throgh the use
of ANN trained with data from gaussian noise. First of all we can observe
that the networks trained on recolored events are not so able to recognize the
background features. We have therefore lost the grouping and thus the rung
in the background representation (bottom-right) in both the cases. Anyway
this non-clear training has the advantage to better classify the signal traces
corrupted by the presence of noisy pixels; the most improvement on the signal
recognition seems to be shown by the distinction between the two di�erent
classes of waveforms. However this increasing of the signal identi�cation
probably means that we have trained the networks with more elastic rules,
and suggest that this is a more e�ective approach for the discrimination of
the recolored data.
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Figure 6.44: Summarized Results: the picture shows 5 · 104 rBKGb and
5 · 104 rSIG events. The network used to the test these candidates is the
same described by the table Tab. 6.4.

Figure 6.45: Scatter Plots: the picture shows 5 · 104 rBKGb (blue) and
5 · 104 rSIG (red) events. The network used to the test these candidates is
the same described by the table Tab. 6.6.

ANN colored applied on �cleaned �data

A �nal test was performed to evaluate the abilities of the ANNs trained
with the recolored data. This consists on apply them to the �cleaned �data
and observe their behaviours. We expect that they are able to recognize
the chirp-like signals injected on gaussian noise, but also a dispersion of the
background events on the ANN output coordinate, similarly to what happens
during the tests on recolored data. These expectations are veri�ed, as shown
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Figure 6.46: Summarized Results: the picture shows 5 · 104 rBKGb and
5 · 104 rSIG events. The network used to the test these candidates is the
same described by the table Tab. 6.6.

the following two �gures (Fig. 6.47 Fig. 6.48). This results are consistent

Figure 6.47: Scatter Plots: the picture shows 5 · 104 rBKGb (blue) and
5 · 104 rSIG events (red). The network used to the test these candidates is
the same described by the table Tab. 6.4.

with the idea of a training less constrained for the signal identi�cations and
thus they shown the disadvantages of a worse background isolation with
respect to the perfomances obtained by networks trained on clearer data.
For this reason we do not �nd the rung feature on the bottom-right of (Fig.
6.48) as for the tests performed n recolored data. Anyway the network
remains able to well recognize the chirp-like features, which mean that the
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Figure 6.48: Summarized Results: the picture shows 5 · 104 rBKGb and
5 · 104 rSIG events. The network used to the test these candidates is the
same described by the table Tab. 6.4.

basic idea of learnt by the algorithms is the same and only less rescrictive.



Chapter 7

Implemented improvements on

ANN analyses and comparison

with other methodologies.

In this chapter we will present some improvements, implemented, on the
data-treatment for the ANNs analysis and we will brea�y discuss also the po-
tentialities of the application of di�erent techniques, both as alternatives and
in combination with the proposed pattern recognition computed by mashine
learning. In all the chapter we will focus on the discrimination between the
noisy glitches and the chirp-like signal.
In the following we will focus on developements of the input matrix con-
version algorithm (Sec. 7.1), on a comparison between the performances
reached by di�erent networks (Sec. 7.2) and on the implementation of an
average over the outputs of di�erent networks (Sec. 7.3). A discussion on
signal �tting approaches (Sec. 7.4) and a Fisher linear discriminant applica-
tion to combine results (Sec. 7.5) are then presented.

7.1 Input matrix developements

As we discussed in previous sections (Sec. 6.4 and Sec. 6.5), one of the
main issues for the ANN signal classi�cation is that the recosntructed signal
cluster sometimes include pixels caused by noise �uctuations. In fact, the
cWB clusterig algorithm has been set to promote time-frequency pixels in the
proximity of the most energetic ones; this feature helps in reconstructing en-
tirely signals of complex time-frequency structure as the chirp-like ones, but
sometimes has the drawback of including pixels representing just noise �uc-
tuations. As a consequence, the time-frequency shape of the reconstructed
clusters shows a greater variability, as for instance the duration of the event
can be overestimated. This in turn is re�ected by a larger variability of the
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traces in the input matrix representation of the event.
This issue was rare in the test on signals injected on simulated gaussian noise,
but becomes important in the actual case of signals injected in real noise.
Indeed we have veri�ed that the representations of the signals not correctly
classi�ed, are often a�ected by the presence of pixels following in time the
chirp-like trace, thus spoiling the typical �nal trace of the event.
For this reason, we developed a strategy to remove the most problematic
pixels. Starting from the last pixel and going backwards in time, the algo-
rithm cuts pixels from the cWB reconstructed cluster untill the cumulative
cut overcomes a preset threshold on the relative fraction of the total likeli-
hood of the cluster. In case the last pixel shows a likelihood fraction greater
than the preset one, no cut is implemented. Otherwise, the modi�ed cluster
is used in place of the original one to create the input matrix.

The tests using di�erent preset thresholds showed that this backward
time-clipping procedure works best using a threshold equal to 0.1 times the
likelihood of the original cluster. In light of these results, we adopt this
rejection procedure as a standard step to build the input matrix for the sub-
sequent pattern recognition. Fig. 7.1 gives a graphical representation of the
average e�ect of this procedure on the input matrix.

Other two changes implemented on the input matrix building process
were tested and adopted.

Exploiting the maximum time and frequency resolution (dt and df min)

The idea is to improve the T-F resolution used to project events on the
input matrix. Previous procedure to build the input matrix considered
the minimum ∆T and ∆f of the pixels included in the reconstructed
cluster of the cWB event (see Sec. 6.1). In many glitch and in some
signal cases, where the cluster is made by a just a few pixels, this res-
olution resulted too coarse and only a fraction of the 8x8 input matrix
time and frequency ranges were e�ectively used by the cluster. Instead,
by starting from the minimum ∆T and ∆f of the full cWB analysis,
the de�nition of the time-frequency ranges covered by the input matrix
can be better �tted to the reconstructed signal.

Clipping time range (approx) By looking at mis-classi�ed signals, we found
that the choice of the time range of the intput matrix should avoid
having blank (null) columns corresponding to start and end times. To
mitigate this issue, we set up a rounding procedure on the time range
of the matrix as follows. We consider the division with remainder be-
tween integer numbers, the duration of the cluster expressed as number
of minimum ∆T over the input matrix time dimension, equal to 8. If
the remainder is > 4 the cluster is centered in time with respect to
the input matrix as previously done (see Sec. 6.1). Else, up to 4 of
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the starting ∆T of the cluster are clipped out of the input matrix time
range; in this case, to avoid loosing event amplitude, the amplitude of
clipped pixels of the event are summed to the �rst pixels kept in the
input matrix, as if the cluster frame was folded at the clipped time.

The e�ects of these procedures on the input matrix average for the case of
glitches and of signals are reported in Fig. 7.1.
Several tests have been performed to verify if these changes have improve

Figure 7.1: Time-frequency input matrices averaged over 16384 signals (top
row) and 16384 glitches (bottom row). From left to right: standard proce-
dure of Sec. 6.1, after implementation of the backward time-clipping proce-
dure (0.1 threshold on likelihood fraction cut) and after implementation of
dt and df min and approx.

the analysis results. First we apply each of them singularly, and then we
combined them. Some results are shown in the following pictures (Fig. 7.2
and Fig. 7.3); These results should be compared with Fig. 6.43 and Fig.
6.44 which were the best results described in the previous section.
The best discrimination is achieved by the matrix conversion which takes

into account all these strategies (Fig. 7.3 and Fig. 7.5).

7.2 Comparison between performances of di�erent
ANNs

In this section we compare results considering di�erent ANN networks ap-
plied to the same set of events, so to have a fair comparison of the per-
formances. The results show generally a consistency between the di�erent
ANNs, with light di�erences Figure 7.4 shows the impact of di�erent con-
�guration of the starting weight, we can observet that the major part of the
events are located on the diagonal, and there is a compact group of signals
near to the zero value of output. This shows that the ANN interpretation are
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Figure 7.2: Scatter plots: the image represents the main results ontained
over a sample of 5 · 104 signal (red) and 5 · 104 background (blue) events
elaborated throught the matrix conversion algorithm resulted by the imple-
mentation of the previously described techniques.

Figure 7.3: Summarized Results: the image represents the main results
ontained over a sample of 5 ·104 signal and 5 ·104 background events, also in
this case they are elaborated by the matrix conversion algorithm obtainted
by the implementation of the previously described techniques.

consistent between the two networks. In the Figure 7.5 we can analyze the
e�ect of di�erent matrix conversion algorithms. We can observe a consider-
able improvement on the discrimination due to the changes applied on the
conversion technique, in particular on the false dismissal counts, but without
a signi�cant increasing on the false alarms.
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Figure 7.4: Scatter plot of two ANN outputs over 20000 background (blue)
and 20000 signal (red) events. The two ANNs are identical apart from the
fact that they have been independently trained, i.e. their initial weights were
independent and their training sets were disjoint. The best input matrix
conversion algorithm is used. In the top plot the signal points are printed
on top of the glitch points, vice versa for the bottom plot. The degree of
correlation o the two ANN outputs is evident.

Di�erent information can be extracted comparing the networks trained
with signals injected on gaussian noise and on recolored data. Indeed, in the
two cases network has been trained in a di�erent way, as already explained in
the previous chapter. The result of this test can be visualized in the Fig. 7.6.
We do not see sign�cant improvements between the two cases, which con�rms
the consistency between the analyses performed with di�erent networks.

7.3 Averaging over more ANN outputs

Averaging out the outputs of more ANN which have been independently
trained is an example of the bootstrapping technique in statistics. We im-
plemented this technique both to estimate the uncertainties related to the
results of a single ANN and to check how much the averaging procedure can
improve the results. For this test, we used our best input matrix conversion
algorithms (0.1 amplitude threshold on the later pixels, the approximation

and the minimum dt and df strategies as described in previous sections).
The entire set of available events has been divided in seven equally numer-

ous and disjoint sets. Seven ANN have been trained independently on each
of these sets and provided output results on the remaining events. In this
way each event is tested by six independent ANNs while it is used only once
to train an ANN. By averaging over the six available outputs per event, we
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Figure 7.5: Scatter plot of two ANN outputs over 20000 background (blue)
and 20000 signal (red) events. The two ANNs have been independently
trained and two di�erent input matrix conversion algorithms: the best pro-
cedure described in this Chapter (backward time clipping AND dt and df

min AND approx) against the procedure previously used and described in
the previous Chapter. This illustrates that the change of input procedures
a�ect the ANN results and that the former procedure discriminates much
better the signals from background than the latter.

Figure 7.6: Set of∼ ·103 S6D recolored glitches and signal waveforms injected
on recolored data. Ordinate is the output obtained with of network trained
on simulation injected on gaussian noise; abscissa refers to output provided
by an ANN learned with waveforms injected on recolored S6D glitches.

de�ne an �average ANN output�. The resulting scatter plot of ANN output
vs the network correlation coe�cient is plotted in Fig. 7.7. Fig. 7.8 shows a
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Figure 7.7: Scatter plot of ∼ 11.4 · 104 S6D recolored glitches (blue) and
the same number of signal waveforms injected on recolored data (red). The
ordinate is the average output of six independent ANNs, the abscissa shows
the network correlation coe�cient of the event. In the top plot the signal
points are printed on top of the glitch points, vice versa for the bottom
plot. Our best input matrix algorithm are used as described in the previous
subsections (i.e. approx-dt and df min procedures, 0.1 amplitude cut on the
later pixels).

sample comparison of a single ANN output to the ANN output average over
32768 background and 32768 signal events. At a �rst approximation the
overall performances look very similar, the most evident change being a nar-
rowing of the bulk of the signal and glitch distributions of the ANN output
average around 1 and 0 respectively. This is again consistent with correla-
tion among di�erent ANNs outputs, i.e. the score of each event is generally
not �uctuating much compared to the [0,1] range. To check how much the

Figure 7.8: Comparison between �nal values obrtained with a sigle ANN
output (left) and with an average over the output of 6 networks (right). On
the top the 32768 signals (red) are printed over the 32768 glitches (blue), on
the bottom the contrary.

ANN averaging can a�ect the false alarm and false dismissal for the classi�-
cation method we considered a threshold value of 0.6 on the ANN output and



164 CHAPTER 7. DEVELOPEMENTS AND COMPARISONS

computed false alarm counts and false dismissal counts, see Tab.7.1. This
implementation of ANN output averaging turns out to improve the average
performance of single ANNs, in particular it performs signi�cantly better
than any single ANN. The resulting false alarm probability provided by the
ANN output averaging and selecting the 0.6 threshold is 0.0403 ± 0.0001,
which is a quite interesting number for astrophysical searches (see Conclu-
sion). The variance of the false alarm counts among ANN 0, 1, ..., 6 is
3061, i.e. signi�cantly larger than what is expected from a Poisson counting
uncertainty. On one side we know that independently trained ANNs have
positively correlated outputs. Even if this would call for smaller than Poisson
�uctuations, we have to mention that the glitches used for testing occur in
�families �, i.e. are clustered in the glitch paramter space, a fact that can call
for larger than Poisson �uctuations as those observed. Looking closer to the
false alarm/false dismissal results of each ANN on single data sets, we ob-
serve that performances on disjoint data sets are correlated, e.g. ANN 5 [6]
is performing systematically better [worse] than the average for false alarms
in all six disjoint data sets. An alternative way to combine responses of more

ANN False Alarm Counts False Dismissal Counts
average ∼ 520 ∼ 1820

0 ∼ 643 ∼ 1882

1 ∼ 690 ∼ 1987

2 ∼ 666 ∼ 1939

3 ∼ 644 ∼ 2265

4 ∼ 697 ∼ 2162

5 ∼ 564 ∼ 2330

6 ∼ 740 ∼ 2475

Table 7.1: False alarm and false dismissal counts for the seven ANNs inde-
pendently trained (indexed 0,1,...,6 and for the resulting average over the six
ANNs outputs available per each event. All reported counts in are values per
data set (16384 background and 16384 signal events each), in particular the
reported values are averaged over all the relevant data sets available (seven
for the ANN average, six for each single ANN since one is used for training)).

ANNs can be to consider how many ANNs agree on rejecting/accepting an
event as signal. In Tab. 7.2 we report the mean false alarm counts per data
set when requiring that the majority of the six independently trained ANNs
agree to reject the glitch. When requiring a rejection criteria such as that at
least 3 ANNs out of 6 should classify the event as glitch (using the same 0.6
threshold on ANN output as before) the achieved false alarm probability is
about 6%, a comparable level to the previous strategy.
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criterion mean standard deviation
FAs by all 6 ANNs 198 8
FAs by 5 ANNs 328 9
FAs by 4 ANNs 462 20
FAs by 3 ANNs 625 28
average of FA 663 23

Table 7.2: Mean false alarm counts per data set requiring a majority crite-
rion among ANNs on the event classi�cation. From top to next to bottom
raws: hunanimous (6 vs 0) classi�cation as glitch down to parity (3 vs 3)
classi�cation. The last raw reports the mean false alarm counts for a single
ANN (averaged over the ANNs and the data sets).

7.4 Fitting procedure

The well-known behaviour in the Time-Frequency domain of the desired sig-
nals suggest the idea to using a �tting procedure for the event classi�cation.
In this section we will see two di�erent approaches for this non-trivial issue.
The expected trace of the Time-Frequency domain of waveforms compati-
ble with the compact binary coalescences is described by the TF relation
ω(t) ∝ t−3/8 (see the equation (1.36)). In our case the �t is applied on
the TF representation of the signal provided by the cWB analysis with the
WDM transformation. The main problems we have encountered on this �t
application procedure data are summarized in the following list.

Pixel treatment The uncertainties to be associated to each pixel are not
known. We approximated each pixel with its central position and chose
to use 1σ error bars assuming a uniform probability distribution inside
the pixel resolutions.

Linearization procedure A reasonable procedure is passing from a power
law �t to a linear one. This however causes complications related to
the error propagation on the frequency. Error bars along the frequen-
cies are no more symmetric. Moreover, data at higger frequencies are
characterized by much smaller error bars, and they become predomi-
nant in the �tting procedure. In this situation, any selected noisy pixel
or non chirp-like signal feature located in the higher frequency band
can completely misguide the �t results.

Even if these issues may make the �tting procedure less appealing, it brings
also some advantages: �t parameters have a direct astrophysical interpreta-
tion, e.g. on the chirp mass of the coalescing binary.
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7.4.1 Chirp mass

A �tting approach to select chirp-like events has been developed by another
research group within the LIGO Scienti�c Collaboration (Mchirp). It is
based on a linearized �t of equation (1.36) and output parameters are chirp
occurrenc time and chirp mass of the binary. The main idea for this signal
classi�cation is that glitches are characterized by lower values of chirp-mass
than the astrophysical signals. To calculate this key quantity the algorithm
weights each pixel normalizing by its likelihood. In this approach the se-
lected core pixels among all levels of the cWB WDM-analysis are considered
together to obtain the results. The goodness of the �tting is not easily to
compute: since the considered data are not independent.
The implemented procedure consists in the minimization of the function:

χ̃2 :=
∑
i

96π8/3G5/3M
5/3
chirp

5c5
ti +

3

8
f

8/3
i + C

2

Ei
E

≡
∑
i

(yi + b(xi − x0))2 Ei
E

(7.1)

where C is a costant while x0 and b are the two unknown parameters. The
angular coe�cient is related to the chirp mass by the equation:

b = M
5/3
chirp (7.2)

Some results on the application of these techniques are reported in the Fig-
ures 7.9 and 7.10. These images show that this algorithm reaches good
performances: its background reduction in combination with cuts on the
network correlation coe�cient and on signal strenght (ρ) is about the same
order of magnitude of the one achievable by the ANN pattern recognition.
Also e�ciency are similar. The distribution of chirpmass of injected signals
is obviusly due to chosen distribtion of masses of the binary stars.
An interesting comparison is illustrated by the image (Fig. 7.11). It shows
the representation of ∼ 50 · 103 signal and ∼ 50 · 103 backgound events in a
plane whose ordinate refers to the average of six ANN outputs and whose ab-
scissa is theMchirp calculated by this procedure. Though both techniques are
based on the TF trace interpretation, their results are quite uncorrelated. In
particular, they have two di�erent and separate tails of false alarms. There-
fore, it will be possible to considerably increase the performances applying
elliptical of hyperboloidal joint cuts. As �nal consideration this �rst compar-
ison suggest that the results obtained using chirp mass is comparable with
that of the ANN method.
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Figure 7.9: Scatter Plots: Set of ∼ 25 · 103 S6D recolored glitches (blue)
and the same number of signal waveforms injected on recolored data (red).
For the graphs explanation we always refers to the apposite paragraph in the
previous chapter.

Figure 7.10: Summarized Results: Set of ∼ 25 ·103 S6D recolored glitches
(blue) and the same number of signal waveforms injected on recolored data
(red).

7.4.2 Our implementation of the �tting procedure

Di�erently from the chirpmass procedure described in the previous section,
we implemented a �t considering only the independent pixels selected by the
principal component extraction procedure of cWB 2G for the �nal event rep-
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Figure 7.11: Set of ∼ 50 · 103 S6D recolored glitches (blue) and the same
number of signal waveforms injected on recolored data (red). On the left the
red are printer od the blue points, on the right the contrary. The ordinate
is the output average of 6 ANNs as described earlier, the abscissa is the
chirpmass parameter estimated from the �tting procedure.

resentation on the TF plane. We consider the pixels as data points centered
at pixel's center and de�ne the error bars assuming a uniform distribution,
i.e. 1σ ∼ 0.3× pixel width. To choose the most adeguate technique for the
interpretation of our problem we have analyzed di�erent methods to �t the
data:

• the power-law �t (implemented in ROOT):

f(t) = [0]pl ([1]pl − t)−3/8

[0]pl =

256G5/3M
5/3
chirp

5c5π−8/3

−3/8

, [1]pl =
5c5π−8/3f(t0)−8/3

256G5/3M
5/3
chirp

(7.3)

where [0]pl and [1]pl are the parameter estimated by the �tting proce-
dure;

• the linear �t (implemented in ROOT):

y(t) = f(t)−8/3 = [0]lin ([1]lin − t)

[0]lin = [0]
−8/3
pl =

256G5/3M
5/3
chirp

5c5π−8/3
, [1]lin = [1]pl

(7.4)

where [0]lin and [1]lin are the paratemer estimated by the �tting pro-
cedure;

• the linear regression:

y(t) = f(t)−8/3 = [0]rlt+ [1]rl

[0]rl = −[0]lin, [1] = [0]lin · [1]lin
(7.5)



7.4. FITTING PROCEDURE 169

where [0]rl is the angolar coe�ecient of the straight line, and [1]rl its
intercept.

Thus we can obtain Mchirp from the [0] parameter. The �rst problem we
found was related to the presence of noise pixels, so we implemented pro-
cedures to reject them. A �rst attempt consists on implementing the same
procedure used for the input matrix conversion: backward in time clipping
up to 0.1 of the total likelihood. Since this was not satisfactory, we add a
regression procedure. This algorithm ignores error bars and computes �t-
ting parameters on a cluster of N pixels N times, each time excluding one
�tting point. Then we compare the non-normalized-chi-square quantities
χ̂2
k =

∑
i 6=k(yi− g(ti))

2 and exclude permanently the k− th pixel associated
to the minimum χ̂2

k in the set. This step is applied only if the number of
surviving pixels is greater than 4. The selected pixels are therefore analyzed
by the �t procedure proposed by ROOT. The initialized parameters are set
at the values obtained by the previous regression.
The results found are then used to inizialize the power law �t implemented
on ROOT software. Because this latter was not satisfactory (Fig. 7.12 red-
line), we focused on the linear �t.
To have a con�rm of the found parameters, another procedure was tested.
It consists on a �rst rought estimates of the parameters from linear �tting
applied to independents couples of points and averaging the results. These
are also used to set the initial values of the �t parameters obtained by the
ROOT analysis, but the results look very similar to the one obtained with
feeding this process with the regression parameters. Thus the average pa-
rameters are only used to check the results.
In the following we analyze, on a set of seven events contained in a job (i.e. a
GW data segment), the performances reached by our �t procedure and com-
pare them also with the results obtained by the other algorithm explained
in the paragraph before (Mchirp). From the images we note that the �t

Event Mchirplin (our) Mchirplin error (our) χ2
lin−norm (our)

0 22 1 0.93
1 10.3 0.1 27
2 7.8 0.15 150
3 0.002 0.001 876
4 0.098 0.003 13
5 10.8 0.4 17
6 12.7 0.7 0.4
7 25.7 1.4 0.97

Table 7.3: Main parameters resulted from the �t approach developed by us.
The subscript norm refers to the reduced (χ2 normalzed by the degrees of
freedom).
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Figure 7.12: In the picture are represented the eight events of the job con-
sidered, in order from 0 to 7 from the top-left, along the lines, to the bottom
right. The red lines refers to the �t computed by ROOT in the power law;
the fuchsia line is associated to the linear �t always obtained by ROOT,
while the green and the blue ones represent the linear regression calculated
rispectively considering and neglecting the error bars.

Event Mchirp Mchirp error χ̃2
norm

0 11.6 0.004 0.92
1 7.2 0.0002 0.88
2 13.6 0.0004 0.85
3 11 0.0002 0.80
4 7 0.001 0.88
5 6.5 1·10−5 0.87
6 8 0.002 0.96
7 13.3 0.001 0.95

Table 7.4: Main parameters resulted from the �t approach explained in the
previous paragraph (Mchirp). The subscript norm refers to the reduced χ2

(normalzed by the degrees of freedom).

performed with power law provided the worst results (red lines), on the ta-
ble we report the results obtained by the �t implemented on ROOT software
concerning the linear �t. We can note that the reduced χ2

norm in our case
often acquires strange and big values. This can be due to two causes: in
the linear domain the error bars on the points are under estimated or/and a
non correct procedure is implemented by ROOT to perform the calculation.
Indeed we remember that in the TF plane used for linear �t, the error bars
are asymmetric and no more characterized by a uniform probability distribu-
tion of the values. Anyway it is clear that, at our starting stage, the Mchirp

algorithm is more e�ective.
The procedure is e�ective when we have few pixels with noise origin. Any-
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way the algorithm could be developed introducing an iterating procedure to
evaluate if point rejection improves the signal description provided by the
�tting. Another improvement can be performed giving a important role to
the rought parameters estimation computed by the consideration of indepen-
dent couples of points. Indeed, when the number of pixels is great enought,
this startegy is the most indipendent from noise contributions with respect
to the others (Fig. 7.13). Thus a check on the similarity between the pa-

Figure 7.13: Points associated to the pixels in the plane t, y = f−8/3. The
red line refers to the result obtained by a regression procedure which do not
take into account error bars on the data, instead the black one is provided by
regression where we take into account also the pixel dimension as error bars.
Green line is associated to the rought process of averaging the parameters
obtained by independent couples of points.

rameters obtained in this way and the ones found by the other techniques
can probably signi�cantly improve the �nal results.

7.5 Fisher Discriminant

[75] Looking at the plots distribution showing ANN output vs network cor-
relation coe�cient (cc), we note that glitches can be separated by simulation
using a linear separation in that plane. For this reason we start studying the
Fisher discriminant.
The main idea of this approach is to separate events belonging from two dif-
ferent classes, �nding, in the n dimensional de�ned by their characterizing
n-parameters, the vector which �best�separate the two sets (Fig. 7.14). Thus
we start considering events belonging from two di�erent classes, we call them
respectively background ~x∈H0 and signal ~x∈H1. This de�nition is consistent
with our notation associated to the discrimination problem between chirp-
like events glitches. In our case the vector dimensions considered are the
output of a network (out) and the network correlation coe�cient (cc).
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Figure 7.14: The picture represents the main idea of the Fisher discriminant.

Generally we can characterize the two population de�ning the expectation
values and the covariances:

(µk)i =

∫
xip(~x|Hk)d~x

(Vk)ij =

∫
(x− µk)i(x− µk)jp(~x|Hk)d~x

(7.6)

where the index k refers to the class, and the indeces i, j to the vector dime-
sions; thus in our case k = 0, 1 and i, j = cc, out.
The main idea of this approach is a change of coordinates representing the
projection t(~x) of the points on the vector ~w which �best �separate the events
belonging from the two chategories. This algorithm is focused on the sepa-
ration between the means and therefore no good performances are reached
when the most discriminating parameter is, for example, the data dispersion
(Fig. 7.15). Therefore also for this new variable we can de�ne similarly the

Figure 7.15: The picture represents one limit of the Fisher discriminant
method.
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mean and the variance:

τk =

∫
t(~x)p(~x|Hk)d~x

Σ2
k =

∫
(t(~x)− τk)2 p(~x|Hk)d~x

(7.7)

Thus the basic idea of the Fisher discriminant approach is to increase the
mean separation of the two classes in the t variable and descreasing in the
same domain the data dispersion inside each cathegory; i.e. the �best �sepa-
ration. The strategy is to maximize the following relation:

J(~w) =
(τ0 − τ1)2

Σ2
0 + Σ2

1

(7.8)

We can develope this expression �nding a direct dependence of this function
on the vector ~w. For the numerator we �nd:

(τ0 − τ1)2 =
n∑

i,j=0,1

wiwj(µ0 − µ1)i(µ0 − µ1)j

=

n∑
ij

wiwjBij = ~wTB~w

(7.9)

whereas for the denominator:

Σ2
0 + Σ2

1 =
n∑

i,j=0,1

wiwj(V0 + V1)ij

= ~wTW ~w

(7.10)

where we have de�ned the within class scatter matrix W and the between

class scatter matrix B. In terms of these matrices the function J(~w) can be
re-written by

J(~w) =
~wTB~w

~wTW ~w
(7.11)

Setting the equation
∂J(~w)

∂wi
= 0 (7.12)

we �nd that the maximum of the function J(~x) is given perfoming a projec-
tion of the data on a direction given by the vector ~w:

~w ∝W−1 ( ~µ0 − ~µ11) (7.13)

Some interesting properties of this method can be shown.
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Least squares principle Generalizing the coordinate transformation t(~x),
de�ned by the Fisher discriminant, in the following way:

t(~x) = w0 +
n∑
i=0

wixi (7.14)

(in our case i = 0, 1 = cc, out) i.e. using an o�set w0 and an arbitrary
scale to �x the values of τ0 and τ1 the analysis performed by Fisher
discriminant becomes equivalent to minimizing the denominator of the
function J(~w). Theferore maximize the J(~w) function using a least
squares principle.

Gaussin distribution When the data distribution p(~x|Hk) are multivari-
ate Gaussin with covariant matrices V0 = V1 = V we can write the
likelihood ratio, a very useful quantity to evaluate two simple hypoth-
esis, as

Λ(~x) =
p(~x|H1)

p(~x|H0)

= exp

(
−1

2
(~x− ~µ1)TV −1(~x− ~µ1) +

1

2
(~x− ~µ0)TV −1(~x− ~µ0)

)
∝ et(~x)

(7.15)

where we have considered t(~x) = w0 + (~µ1 − ~µ0)TV −1~x, according to
the formula (7.14). This consideration dimostrate that under (and only
under) the gaussianity condition the Fisher discriminant is equivalent
to the likelihood ratio.

Surely our case does not belong to the Gaussian distribution of the events
sets, indeed we have limited domain in cc variable.
The results of the application of this analysis can be summarized in the
following picture (Fig. 7.16) As we can see from the picture (Fig. 7.16),
the �best �separation, provided by the Fisher discriminant, for the chirp-like
signals and the S6D recolored glitches is computed with the application of
a line more or less horizontal (othogonal to the black line, where the points
have to be projected). Contrary to the �rst expectation, based on this ap-
pearence of triangular shapes, the vector provided by the Fisher discriminat
method has a negative slope. Anyway this can be justi�ed considering the
great dispersion on the cc coordinate, rather larger then the one present in
the ordinate, which the analysis applied try to minimize. This means that
the covariance terms are less important than the variances and thus we can
consider the information provided by the ANN outputs more or less inde-
pendet with respect to the one obtained by network correlation coe�cient.
Another proof of what we are saying is that increasing the set of the training
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Figure 7.16: Results obtained with Fisher discriminant analysis. On the
ordinate is the average of outputs provided by 6 networks trained and here
tested on events whose matrix conversion is performed using the �nal con�g-
uration (dt and df min, approx, 0.1 amplitude threshol on the later pixels).
The green lines are the projection of the means µ0 and µ1 on the black line,
which represents the direction provided by the Fisher analysis. The fuchsia
line shows one possible threshold for the data discrimination on the projec-
tion. The result is obtained using 104 background and 104 signal events to
perform the vector ~w and testing it on a set of 105 independent background
and 105 candidates.

examples the line which describes the direction suggested by ~w converges to
vertical (Tab. 7.5).
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n. of train ex 10 100 1000 10000 100000
wcc −0.0917 −0.0102 −0.0103 −0.0050 −0.0008

wout −0, 0198 −0, 0016 −0, 0008 −0, 0003 −4 · 10−5

angolar coe�. −4.6 −6.4 −12.6 −17.7 −23.4

Table 7.5: The n. of train ex refers the number of events used for both the
classes.



Chapter 8

Conclusions and future ideas

In this thesis we addressed one of the main challenges associated to the de-
tection of transient Gravitational Waves: improve the statistical signi�cance
of candidates surviving the analysis post-production cuts. To approach this
problem several strategies have been tested, this work focuses on signal clas-
si�cation methods implemented for the identi�cation of the GW transient
which is most likely to be detected: the one emitted by compact binary co-
alescences, such as binary Neutro Stars, binary Black Holes of stellar mass
and mixed NS-BH systems. Their characteristic morphology in the Time-
Frequency plane can be picked-up by any network of GW detectors, even
by the next two detectors network which will be composed by two LIGO
detectors and will �rst become operative in late 2015.

In this thesis we developed one possible strategy: the T-F shape recogni-
tion by Arti�cial Neural Networks. The results achieved are at least compa-
rable to the signal selection cut based on �tting procedures developed by a
research group of the LIGO Scienti�c collaboration (yet unpublished). Both
methods proved to select the target signal class with a few % loss in e�ciency
while they are being capable to reject by a factor ∼ 20 the background of non
gaussian noise transients (�glitches�). This accomplishment, provied that it
will be further validated by more simulations, is very crucial for improving
the chances of detection of these signals using robust analysis methods (i.e.
analysis not based on matched �ltering methods and therefore not depending
on the accurate model of phase evolution of the signal). In fact, by reducing
more than one order of magnitude the rate of louder background glitches, the
non-gaussina noise tail of the robust analysis approaches the typical gaussian
noise tail achieved by matched �ltering methods on the same data. In this
way the detection chances of both analysis methods could get comparable,
with the advantage of a more robust (and computationally faster) analy-
sis, which remains open to a larger class of possible GW emissions from yet
unn-modeled sources.

Improvements with respect to the achieved results are still at hand. We
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envisage for instance to address next some of the following ideas:

Increase the matrix dimension : increase the dimension of the T-F pixel
matrix used as input of ANNs, currently tested with 8× 8;

combine ANN method with �tting procedures : �rst results on �t-
ting algorithm show that is a quite promising technique, so one should
to test if a combination of the two techniques brings advantages;

Introducing more inputs on the ANN networks : additional informa-
tion can be added to better di�erentiate the events. For instance:

• event duration, central frequency and band;

• distribution of the resolution of the TF pixels making the event
cluster (the �rst results look promising);

• other event parameters as measured by the cWB pipeline. For
instance, we found that the network correlation e�cient is almost
independent from the ANN output and therefore e�cient selection
cuts can be chosen independently (which is a good news anyway).
The situation does not appear as simple looking at additional
cWB parameters and has to be investigated.

To address these points we propose a structure composed by more
ANNs in hierarchical stages: for instance two parallel ANN for the
three items listed above followed by a second stage ANN to synthetize
an overall scalar output.

A crucial investigation for the astrophysical interpretation of the results
of the technique here developed is still missing, i.e. to test its e�ciency
versus the the Black Hole mass. In fact we expect that massive stellar BHs
binaries will emit in the inspiralling phase outside the detectors frequency
band of best sensitivity, therefore loosing the chirp-like T-F characteristic in
the detectors responses.
Other tests should be performed to test if multy layer perceptrons are the
most appropriate mashine learning to perform the discrimination. As a �nal
remark, we would like to highlight that a long term goal of this research is to
�nd signal classi�cation methods e�ective for GW emissions from other as-
trophysical phenomena, such as Neutron Star instabilities and quasi normal
modes.
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