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Preambolo

“Gia! D’aprés Sophocle, dice il manifestino. Sara I’Elettra. Ora
senta un po’ che bizzarria mi viene in mente! Se mel momento
culminante, proprio quando la marionetta che rappresenta Oreste
é per vendicare la morte del padre sopra Egisto e la madre, si
facesse uno strappo nel cielo di carta del teatrino, che avverrebbe?
Dica lei. "”

“"Ma ¢ facilissimo, signor Meis! Oreste sentirebbe ancora gl’impulsi
della vendetta, vorrebbe seguirli con smaniosa passione, ma gli oc-
chi, sul punto, gli andrebbero li, a quello strappo, donde ora ogni
sorta di mali influssi penetrerebbero nella scena, e si sentirebbe
cadere le braccia. Oreste, insomma diventerebbe Amleto. Tutta
la differenza, signor Meis, fra la tragedia antica e la moderna
consiste in c¢i0, creda pure: in un buco nel cielo di carta. "”

Tratto da “"Il fu Mattia Pascal”” di Luigi Pirandello.
“" Dove sono e quali sono gli aspetti affascinanti della fisica? "”

Spesso la gente associa la scienza a qualcosa di freddo, lontano dalla per-
sonalitd umana. Niente puod essere pitl lontano dal vero. Al contrario in essa
riponiamo la nostra essenza, il nostro pensiero. La scienza é la proiezione
della realta sui nostri sensi e sulla nostra personalita. Proprio per questo
motivo anche nell’ambito scientifico & fondamentale la comunicazione tra
persone di differenti culture. La diversitd nel concepire il mondo mette in
luce idee nuove che ci possono aiutare a svelare qualche caratteristica della
nostra realta che fin’ora c’é sfuggita.

Quindi non solo la scienza ci permette di comprendere meglio il pensiero e
I’animo umano in ogni suo tempo, ma, aspetto ben pii significativo, essa ci
consente di evolverlo, di migliorare la "proiezione del mondo" in cui viviamo
e quindi apprezzare e interiorizzare nuove, fantastiche idee.

Pensiamo, per esempio, a come la scienza ci ha permesso di evolvere il
nostro giudizio su noi stessi. All’inizio della nostra storia i nostri sensi
“"primitivi"’ci hanno posto al centro del mondo, o per meglio dire, al cen-
tro dell’universo. Nei secoli, perd, grazie alla nostra curiositd, al nostro
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porci continuamente nuove domande e alla nostra tenacia nel tentare di
darvi risposta, il nostro pensiero e la concezione della realtd che ci cir-
conda si sono evoluti. Tanto che, nel 1543 con la pubblicazione del “"De
"” Niccold Copernico diede inizio ad una
nuova fisica ponendo al centro dell’'universo non piu la Terra, bensi il Sole.
Con quest’idea rivoluzionaria comincié una nuova era, non solo per quanto
riguarda ’astronomia, ma anche per il pensiero umano. Infatti, con le prove
scientifiche fornite in seguito da Galileo, 'uomo ha dovuto fare i conti con
una nuova realta, nella quale gli é stato negato il ruolo privilegiato di cui
aveva precedentemente goduto. 1l senso di smarrimento che consegue questa
nuova consapevolezza spiazza ’animo umano che si sente costretto ad una
revisione delle proprie certezze. E geniale Pirandello che riesce ad esprimere
questo sentimento in un immagine tanto semplice quanto efficace: lo strappo
nel cielo di carta.

Un tempo anche noi, come le marionette dell’Elettra, vivevamo impavidi,
sicuri delle nostre azioni in quanto guidate dalle nostre certezze. Ma Coper-
nico ha strappato le nostre convinzioni, rappresentate da Pirandello come
un cielo di cartapesta, obbligandoci a constatare la falsita delle nostre prece-
denti idee. Anche questo sentimento di sconforto e sconcerto ha portato,
perod, i suoi frutti partecipando alla nostra crescita.

Ogni scoperta porta con sé qualcosa di nuovo: abbiamo cominciato costru-
endo castelli di sabbia e, quando li abbiamo visti distruggersi sotto 1’azione
della pioggia o del mare, ne abbiamo sofferto, ma il giorno dopo abbiamo
concepito un nuovo progetto, pitt bello e solido del precedente. Cosi quando
la realta porra in luce nuovi difetti distruggendo il nostro lavoro, non tutto
sard perduto. Al contrario ci arricchiremo di nuove conoscenze migliorando
sempre pill la nostra creazione che cosi rispecchiera la nostra crescita.
Sebbene quindi I'uvomo rimanga spiazzato di fronte alla rivelazione coperni-
cana, condividendo perfettamente il sentimento di confusione e di disorien-
tamento che caratterizza il personaggio shakespeariano di Amleto, essa gli
pone una fantastica occasione. Gli permette di arricchirsi di una nuova con-
sapevolezza, non piu fragile sul mondo ma bensi salda, basata invece sulla
forza dell’animo umano.

Ecco, in questo trovo affascinante la fisica, e la scienza in generale, nella con-
sapevolezza che essa é l'interpretazione del mondo esterno ad immagine del
mondo interiore dell’'uomo. Per questo la fisica, per me, é fantastica! Immag-
ino perd, caro lettore, che non ti sia capitato spesso di pensare all’ambito
scientifico come qualcosa di “"fantastico"”(bada bene che in tale aggettivo
intendo comprendere, non solo il senso di meraviglia, ma anche quella sfu-
matura di fantasia che in esso si cela). In mia opinione, pero, esistono poche
parole piu calzanti di questa per descriverlo.

In che altro modo lo descriveresti, tu, un mondo dove vige la relativita del
trascorrere del tempo, dove le particelle hanno una "doppia personalita"

(che, come per esempio i fotoni, ci mostrano di essere particelle ma di “"ri

rivoluzionibus orbium celestium
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cordarsi'”di essere pure parte di un’onda elettromagnetica), dove un gatto
in una scatola & contemporaneamente sia vivo che morto e dove & possibile
la contrazione e dilatazione, non solo degli oggetti, ma proprio dello spazio!?
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Abstract

Gravitational Waves are the key prediction of General Relativity. They are
spece-time perturbation coming from gravitational sources with some spe-
cific characteristics(chapter 1). In the following we are going to consider
signal coming from coalescence compact binaries (chapter 2).

At the moment the only Gravitational waves detectors are on Earth. We
are interesting on VIRGO and LIGO interferometric detectors (chapter 3),
which are the most sensitive instrumets devoted to gravitational waves de-
tections.

The analysis of the data coming from the LIGO-VIRGO detectors are differ-
ently analyzed depending on the interested search. We are going to use the
cWB-2G pipeline for the data analysis, which concerns are specific for burst
waves (chapter 4). The aim of the notes is the pattern recognition of signals
coming from coalescence compact binaries. The first analysis concerns the
use of Artficial Neural Networks (chapter 5). By this procedure hopeful re-
sults are obtained (chapter 6). Another different approach is the use of the
fit techniques, which anyway presents some statistical difficulties (chapter
7). The future ideas mainly concern improvements and deeper studies on
the performed analysis to finally reach a more general signal classification
(chapet 8).
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Chapter 1

Introduction to Gravitational
Waves

[1] [2] |3] Eve Every night nature offers us the possibility to admire its power,
its fantagy, its masterpiece, simply looking at the sky. Without any instru-
ment, besides our eyes, we can see several of shiny stars coloring the deep
blue of the night, we can see the past of other worlds and an incredibly small
taste of the Universe immensity. But what other surprising astrophysical
objects are hidden in the Universe?

In this field a special role is played by Gravity which drives the larger scale
processes present in the Universe. The gravitational interaction makes the
aggregation of matter possible, forming planets, stars and galaxies. It drives
the motion objects and part of their evolutions. Therefore thanks to gravity
stars are born, evolve and die enriching the interstellar medium and making
possible incredible things, like life. Can the gravitational interaction make
more? Of course it can. Not only it rules the Universe and the Earth as
we know them, but also it allows us to discover part of the mysteries which
are around us. Indeed different phenomena have origin in gravity, like grav-
itational lensing and Gravitational Waves (GW). The latter can be a very
useful tool non only to discover systems of different nature but also to better
understand all the celestial entities. Indeed, differently from the electromag-
netic radiation, GWs weakly interact with matter carrying more genuine
information about their sources. Gravitational Waves are a key prediction,
not yet directly seen, of General Relativity (GR) formulated by Albert Ein-
stein in 1916. GR gives a new and very important role to the space-time,
which before was consider only as a passive frame.

In the first section of this chapter (Section 1.1) we will briefly see where
the Einstein’s GR equations come from and then we will focus on one of their
key prediction and solution: the Gravitational Waves (GW)(Section 1.2).

1
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1.1 Gravitational Waves: Theory

To understand the GW origin we have to start with an introduction to GR.
This theory describes gravitational phenomena starting from a new consider-
ation of the corrispondence between gravitational and inertial masses. While
for Newtonian theory it is treated as a mere coincidence, in GR this equiv-
alence is a fundamental assumption called weak equivalence principle.
The Einstein lift experiment underlines the real importance of this consid-
eration, which allows the equivalence between the lift in absence of gravity
and the one in free fall. This idea is the base of GR and is extended to the
so called strong equivalence principle. It states that: in every point of
the space-time and in presence of any gravitational field, it’s always possible
to choose a reference frame where nature, with all its laws, behaves like in
absence of gravity.

With GR Einstein extends the space-time studies conduced in Special relativ-
ity to a more general contest, characterized by the presence of a gravitational
field. In Special Relativity the inertial reference frames play a preferential
role, which is now justified and contextualized by GR. Indeed the effect of
the gravitational field introduction is a distortion of the Minkowski space-
time and consequently the break up of the inertial reference frame, typical
of Special Relativity, into infinite locally inertial reference frames.

1.1.1 Geodesics

In GR the geometry of the space-time is strictly connected to the physical
phenomena. An important example of this connection is represented by
geodesics. In geometry a Geodesic is the shortest line which links two points
on any mathematically defined surface. In Riemann space, which is the
typical GR enviroment, this definition is equivalent to the generalization of
the straight line. A straight line is the curve whose tangent vector remains
parallel when transported along it.

The connection between physics and space-time structure is so strong that
we can think to trajectories as straight lines which links different events.
Therefore we can find the geodesic equation analyzing the motion of a free
particle in a gravitational field. The equivalence principle allows us to start
considering the locally inertial reference frame, where the particle motion is
the one described by Special Relativity. Suppose X* are the coordinates of
the considered particle in this reference frame, than the equation of motions
is:

d?XH
ds?

where ds? = —c?dr? = NudXH*dXY with p,v = 0,1,2,3. Here ds is the in-
variant interval, dT the proper time and 7, the Minkowski metric, for which
we adopt the signature convention (-,+,+,+). Now using a “"smooth™ func-
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tion (continuous, differentiable,invertible ecc..) we can define the coordinates
of an arbitrary reference frame: x/ = 2/ (X*) where j =0, 1,2, 3.
Therefore we can introduce

, 027 (X)
J _
G = 5xw
and its inverse OXH(z)
" B T
Aj (@) = ozl

so that Aﬁag‘ = 5,@ and Aﬂa"f = 0,,. By definition the interval ds is invariant
and therefore has the same value in all the reference frames:

ds® = Nud X dX" = gijdxidxj
from which we can write the metric tensor of an arbitrary reference frame
gij(x) as:
9ij = N A} AY
which equals the Minkowski metric only in inertial reference frames. In view
of these considerations the equation of motion is

_ X2 (™) - a2 e
- ds?  ds J ds ) 77 ds? oxJ ds ds

Now, multiplying the previous equation by the A-inverse matrix aL we obtain
the geodesic equation
d2 i - d J d k
Pal g deddet 1)
ds? ¥ ds ds
which describes also the particle trajectory. In the last equation we have in-
troduced the Christoffel symbols or Levi-Civita connections I’}k, which there-
fore are defined as:

. X - 0AY oa’ oxrt 92XV
Z, = Z .= l 7'7 = —AV v = B 12
e A 10Xk~ OXY 0aI 0k (1.2)

The equation ( 1.1 ) shows that the formal difference between GR and Spe-
cial Relativity is represented by the Christoffel symbols. Therefore these
quantities are strictly connected the gravitational interaction.

Christoffel symbols are completely defined by the metric tensor g, indeed we
have g;j(2) = nu A A and therefore:

i 0AY AH
693777 (Af J+Az(az)

oxk M Ok 7 Qxk
and since 1, AY = g;jal, we obtain:

Ogi;
) ;,ﬂ =T%i905 — nggﬁi
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Than circularly permutating the index we find

99,k
5;1' = I3 9ak — L3965
OGki
3 le e R
Finally, through these expressions and considering the I' symmetries we ob-
tain:
L ix (09 | 99jk  Ogki
T =g | 22 g L 1.3
ik = 59 <0xk T o T B (1)

We can see that in Minkowski space, where the metric tensor is constant in
space and therefore I' = 0, the previous equation (1.1) becomes linear.

A very nice example of this space-time distortion is represented by the Earth
motion around the Sun. Despite the ellipticity of this orbit we can say
that, in this case, the space-time distortion is minimal. This seems strange
bacause we are used to think in the 3-dimentional space, instead of in the 4-
dimensional space-time. Anyway if we take into account the time dimension
we will easily find that the Earth trajectory around the Sun describes a very
extended helix. Therefore in this case the Minkowski space well approximates
the geometry of the space-time perturbed by the analyzed system.|2]

1.1.2 Newtonian limit

In order to better understand the relationship between space curvature and
gravity we start considering the newtonian limit. In case of weak gravity we
can make the following approximations:

a. linear approximation:
s 2
Guv () = Ny + hy + O (\hWD

where |h,,,| < 1 and thus we neglect higher order terms of the perturbation-

matrix h;
. . . a]/I/LLV
b. static gravitational field: o =0
ox
a dwO
c. non-relativistic velocities v, i.e. ’d < ‘d , where a = 1,2, 3.
S S

In view of these considerations the geodesic equation becomes:

d?z* x [ dx® 2
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To obtain the last formula we consider the ¢. approximation neglecting the
derivatives of the spatial coordinates. Moreover the a. point allows us to
write the remaining Christoffel coefficients as:

1 3aO900 1 1q0hoo

[k~ —= R
00 2g O0xq 277 0xq

For this reason using the b. consideration we find I'); ~ 0 and consequently
d?z°
dsz ™

also 0. Instead for spatial coordinates we obtain

Pat _po (4201 iaOhoo (da0)’
dsz = 0\ gs ) T2 ape \ds

where a = 1, 2,3 concerns to the space-coordinates. This last equation can

be set in the form:

1?7 12,

2dez 27
where we have considered ¢ - d7T = c¢- dt, valid in Newtonian limit. In the
analyzed situation the body satisfies also the Newtonian equation which
describes the motion of a particle in a static gravitational field, i.e.

4>
v

In light of this consideration we have

2¢
hon = — —=
00 2
and therefore
2¢
goo = —1 — 07

In conclusion, under the Newtonian limit approximations, the tensorial gravi-
atational field, has only a term significantly different from zero and therefore
here it cab be considered a scalar field. Only in relativistic conditions the
terms differet from ggg become relevant.

1.1.3 Riemann, Ricci and Einstein tensors

The previous considerations allow the introduction of the Riemann tensor
R defined by the formula as:

ore ore
R,ZV'Y == ax;fyy ax!fj + (Fé,u KV - ]‘—‘,l);V K—y) (15>

By definition the Riemann tensor has 256 components, but only few of these
are independent. The reason is the presence of many symmetries, for example

it’s easy to see that R}, = R, and that R}, + R7,, + R],, = 0. Other
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symmetries can be found lowering the ¢ index and so defining the tensor
Ry = ngzw. Thanks to the tensor tranformation law it can be add that
verify a tensor’s symmetry in a reference frame means that it is everywhere
satisfied. Comnsidering the I' definition we can also verify that

R _ 1 82977 _ aQQ'yu _ 6297—1/ 829,u1/ (1.6)
Y9 \ OxzkOxy OxTOxY  OxHdxY  OxV0xT
Two of the most evident symmetries of this object are:
R’rlury - _R,U,T'yl/ and RT,U,I/’Y - RV'yT/L-
Therefore taking into account all these symmetries it can be proven that
20,2
the Riemann tensor in a n-dimentional manifold has w independent

components. New symmetries and physical tensors can be found contracting
two Riemann tensor’s indeces. In particular we obtain the following relations:

loa

L. contracting the first and the second indeces: Rg,,

gUTRTU;w = _gUTRO'T,uZ/ = —RT

TV

— g —
= 0 because R7,, =

2. contracting the first and the third indeces: Ry, = RY = ¢"" Ry =
9" Rypoy = Ry, = Ry

voy ~

3. contracting the first and the fourth indeces we obtain the same relation
found in the previous point. In particular, thanks to the antisymmetry
between the third and four Riemann tensor’s indeces, the resulting
contracted tensor is it’s opposite.

The found property, 2. in the previous list, defines a new symmetric tensor
of rank 2 called Ricci tensor. For better understand it’s meaning we can
develop this tensor in terms of Christoffel symbols:

Ry = or),  or,

AR R W A A (1.7)

Thinking of Ricci tensor as a 4x4 matrix we can calculate it’s trace R =

g""R,,, = R, and therefore define the so called scalar curvature. Using
this scalar quantity we can define the tensor family Ggl), = R, +lguR ,
where 1 is a real number. The most important element of this family is the
Einstein tensor for which [ = —%. This tensor has the interesting property
to be a covariant costant, i.e.

oGy,
ozt

DGl = +I0,Gy =Ty, G =0

where we have define the covariant derivative D,. To prove this formula
we have to contract the Bianchi identity L obtaining Do R, — D, Ry +

DBREW = 0 and than multiply this relation by g*7.

'DaRfyr + DoRro + Dr Ry =0
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1.1.4 Field equations

The Newtonian limit of the paragraph (1.1.2) shows a strong relation between
metric tensor g and gravitational potential ¢:
. A (goo +1)

- 2
In this limit, characterized by small velocities and weak gravitational field,
the gravitational potential is defined by the Poisson equation:

V26 = 4rGug (1.8)

where po(z) is the matter density, G the universal gravitational constant
and whose solution is ¢ = —]t{f
Moreover we note that the matter density can be written as
1o Tin
0~ 3

where the T is the energy-momentum tensor. Now we are looking for more
general equations to define the gravitational potential. In light of the above,
these equations have to satisfy the following constraints:

e be tensorial equations;

e be second-order differential equations in the metric tensor g;
e be 10, as the independent components of the metric tensor;
e coincide to the Poisson’s equation in the classical limit;

e link the metric tensor g to the matter distribution.

Starting from the Newtonian limit we can rewrite the Poisson equation (1.8)
in a different form:

V2g00 ~ ——a Too (1.9)

To generalize the right-hand side of this formula we can use the full energy-
momentum tensor 2, while the left-hand side needs some considerations. We
are looking for a tensor W), which cointains the second derivatives of the
metric g. The only tensor’s family which satisfies all the requirements is Gﬁz
3. The possible [ factors are reduced by the continuity equation, which must

be satisfied by the energy-momentum tensor:

D,T! =0

2The constant can be formally found using the Newtonian limit.

3To be precise the most general tensor which satisfy the requirements is a linear com-
bination of R,., Rgu, and Ag,., where A is the cosmological constant. Different theories
were and are developed about the generalization of the left-hand side of the (1.9). In
these notes we assume the easier ipothesis, which takes into account a linear combination
of only the first two tensors.
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Indeed also the left-hand side of (1.9) has to satisfy the same equation and
this limits the choise to [ = % In view of these considerations we have
Wy = G and therefore we find:

Guw = R, — %Rgm, = 8:—4GTW (1.10)
which are called the Einstein equations or field equations. The aim of
GR is therefore to find general solutions of these equations and compare them
to the astrophysical sources as Black Holes, neutron stars etc.. The most
problematic difficulty is the non linearity of the equations and the consequent
invalidity of the superposition principle. This is due to the relation which
links mass and energy. The solutions of (1.10) are known in some paticular

cases:
e in presence of spherical simmetry (Schwarzschild solution);
e for the cosmologic case (Friedmann Lemaitre solutions);

e in presence of weak gravitational fields (linear approximation) in har-
monic coordinates, also in presence of non-static gravitational fields
(as GW).

1.2 Gravitational waves

Gravitational waves are key predictions of the Einstein field equations (1.10).
They represent ripples in the space-time metric which propagate at the speed
of light, in this context better called speed of gravity.

The strong non-linearity of the Einstein equations makes them hard to solve
exactly in presence of strong fields. Nevertheless in absence of analytical
solutions, numerical methods are often developed to describe the GWs emit-
ted.

However it is always possible to analyze the space-time geometry far away
from the sources. Indeed these situations are characterized by weak gravita-
tional fields, which allow us to treat them with a perturbative approach. In
this case it consists in the application of the linear approzimation (the same
introduced in the Newtonian limit):

G () = Ny + By + O (|12, (1.11)
where we neglect higher order terms of |y, | < 1.
To simplify the expression we are going to consider harmonic coordinates.
1.2.1 Harmonic coordinates

In a Riemannian manifold a coordinate system is called harmonic if its
coordinates satisfy Uz = 0, where [J is Laplace-Beltrami operator. This
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operator consists in

[]::gm'<£9 0 _po 0 > (1.12)

Ozt OzV K 5o

In Minkowski space it becomes

0? 9
H= 2o T v
Therefore [lz* = 0 means
9Ty, =0 (1.13)
In the linear approximation (i.e when g, = 7., + hu) this coordinate

property provides a useful relation between the second derivatives of the
pertubation-matrix elements:

&h o2hl;
ozvort 28:1:”8355 (1.14)

To prove this equation we start approximating the Cristoffel coeflicients :

o — lgw pa , 99 99ap

b ™9 ozh Oz O+ (1.15)
N 1 o Ohya ahgu B Ohagp ’
~ ol OxP Ox® OzH

Thus the harmonic condition (1.13) becomes

1 Oh Oh Oh
SaB ou po Br ap —
ol < 2P Ozx“ Ox# ) 0 (1.16)

which means

Oh Oh oh
ap por Bp _ YlaB | _
1 < oxf Qx>  QaM > 0 (1.17)

Developing this expression we obtain the relation:

oh 4728hﬁ

Finally, deriving this equation in terms of ¥, we find the desired formula
(1.14).
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1.2.2 Linearized field equations

In this section we are going to derive the linearized form of the field equations
(1.10). To provide these relations we start writing the approximations of the
Ricci-tensor and of the scalar curvature in the weak field limit:

1 9%h 2Rl O2hE
y=—= | Ohu — e K 1.1
Ry 2 ( P + OxHdxy  OxtoxP  OxvOxP (1.19)
O?hvP
=0 S — 1.2
R h+ 50 5P (1.20)

In light of the relation (1.14), the (1.19) formula becomes:

1
—5 0 (1.21)

1 ?h 1 9h 1 9
By = 2 <th * dxhdx’ 2 HxhdxV 28:1:”830”) B

Now multiplying the (1.14) equation by the tensor n** we obtain:
82h 0%hy,
HY := Oh = 2™ . 1.22
OxHdxY T 9 daP (122)
from which we have 22" — 101 and thus
1
R =—30h (1.23)

Finally these relationships allow us to write the linearized field equations
in the form:

—%D <h#,, — ;nﬂyh> = &CTTGTW (1.24)
Therefore defining
W = Py — %nw,h (1.25)
in harmonic coordinates, we have
Guw = —%Dhjw (1.26)

Moreover the calculation is performed in Lorentz gauge:
ohy,,, _
ox¥

Summarizing the describtion of the GWs, emitted by a source characterized
by an energy-momentum tensor 7}, is perfomed by the following equations:

(1.27)

(1.28)

(o= -t
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Instead the propagation of GWs in vacuum (7}, = 0) is represented by

Ok, =0
{ah;f; (1.29)
ozv 0

which confirms GWs travel with velocity c.

1.2.3 Plane gravitational waves

The general solution of the equations (1.29) is a linear combination of plane
waves:

h,, = Re / A, (k)ekex=wt) g3y, (1.30)

Here k is the wave 4-vector k,, = (%, —k) and A, is the polarization tensor
which only depends on the wave 4-vector k.

The Lorentz Gauge assures the transverse property of the wave k# A4, = 0,
while the equation Dh;w = 0 implies k,k* = 0 and thus the GW propagation
at the speed of light.

Being symmetric the polarization tensor has 10 independent components,
which are further reduced to 6 by the transverse property. Anyway we have
to consider that the harmonicity of the system does not univocally define
the coordinates. Indeed any transformation characterized by

5Cu _ aCV
Oxv Ozt
gives a relation between the pertubation-matrix elements different from (1.18)
only for the presence of ¢, which is zero (i.e. 0, = 0) if we choose (,
with a plane-wave behaviour. All these considerations show the tensor h;w
has only two independent terms (hy and hy), therefore we can choose a
reference frame in which A, has null time components and null trace. This
coordinate frame is called Transver-Traceless Gauge (TT). Considering
the wave-propagation on the z-axis, we find the only non-trivial components
are Ngg, gy, hys and hyy where x, y and z referes to the space directions.
However these h terms are linked together by the metric tensor symmetry,
hzy = hye = hyx, and by the traceless property, hyy = —hyy = hy. The two
defined quantities, hy and hy, are the amplitudes of the two wave polar-
izations “plus’and “cross”.

Thus we can describe this situation by a wave 4-vector

k = (ko, 0,0, k) (1.32)

Here ko := ¢ = c¢\/(k2)? + (ky)? + (kz)?. Therefore in the TT gauge the
perturbation-tensor can be written as:

Py = by —

(1.31)

0 0 0 0 0 0 0 0

TT O h0+ h0>< 0 —iw(t—z/c) o O th h>< O
M =10 by —hos 0] € “ 10 hy —hy O (1.33)

0 0 0 0 0 0 0 0
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Figure 1.1: The picture represents the behaviour of a cicle-mass in presence of
a gravitational wave. On the top and bottom graphs are shown the evolutions
produced respectively by the plus hy and cross polarization hy

1.2.4 GW radiation

In this section we will briefly see an estimate of some phisical quantities
involved in the GW detenction. Inside GW sources the stress-energy tensor
is different from zero and the field equations are reportened in the formula
(1.28). They are inhomogeneous differential equations which can be solved
introducing the Green function. When the motions inside the source are not
relativistic, the calculations show the components of the polarization tensor
can be approximated by the quadrupole formulal6]

2G 1 6°1;; r

where r is the source distance and

R
Lij = /d?’x,u,(t