

January 21, 2014, cWB review

detection and reconstruction of astrophysical GW sources with the world-wide network of GW detectors.

S.Klimenko, University of Florida

- Understand benefits and shortcomings of detector networks to detect sources and optimally capture science.
- Combine measurements from several detectors
 - > elimination of instrumental/environmental artifacts
 - confident detection
 - reconstruction of source coordinates
 - reconstruction of GW waveforms
- CNA is a unified approach to handle
 - > arbitrary number of detectors at different locations and arm's orientations
 - > variability of detector responses as function of source coordinates
 - > differences in the strain sensitivity of detectors
- Extraction of source parameters
 - > confront measured waveforms with source models or include models

January 21, 2014, cWB review

6

Network response to a GW event

Consider a network event consisting of I TF samples

[ξ[1] ξ[2]	_	f[1] 0	0 <i>f</i> [2]	 0 0	$ \begin{bmatrix} h[1] \\ h[2] \end{bmatrix} $
\ldots $\xi[I]$		 0	 0	 f[I]	$\left[\begin{array}{c} \dots \\ h[I] \end{array}\right]$

$\Xi = F H$

- > Ξ network response to a GW event
- > F event network matrix
- H GW event amplitudes
- Network data stream X

$$X = F H + N$$

N - network noise

S.Klimenko, University of Florida

data = network x wave + noise

Data analysis questions:1.Detection: Is GW signal present in X?2.Reconstruction: What can we learn about H from X?

11

12

known	unknown
ExtTrig	all-time
ExtTrig	all-sky
template	unmodeled
	January 21, 2014, cWB review

Search Method

• search method – matched filter:

DA scenarios:

• arrival direction (θ, ϕ)

 \bullet arrival time τ

GW waveforms

S.Klimenko, University of Florida

 θ, φ

> challenges: construct template bank ξ & search trough it

$$C(t \mid \Omega) = 4 \int_{0}^{\infty} \frac{\tilde{x}(f) \ \tilde{\xi}^{*}(f \mid \Omega)}{S_{n}(f)} \ e^{2\pi i f t} \ df$$

- Two distinct MF approaches:
 - \succ inspiral: construct accurate banks to accommodate for source parameter space Ω
 - \checkmark modeled: Ω is defined by accurate astrophysical model of the source
 - burst: construct analytical banks of ad-hoc templates to accommodate for our ignorance of the source
 - $\checkmark\,$ un-modeled: Ω is defined by excess power in the data above detector noise

S.Klimenko, University of Florida

detector noise

Likelihood Method

Likelihood ratio (global fit to GW data):

•

S.Klimenko, University of Florida

Noise model: usually multivariate Gaussian noise

$$\Lambda = \frac{p(X \mid h)}{p(X \mid 0)}$$

signal model (defined by detector response)

 $p(X \mid 0) \propto \exp[-X\Sigma^{-1}X^{T}] \qquad \Sigma \text{-noise covariance matrix}$ $\vec{\xi}[i] = h_{*}[i]\vec{F}_{*} + h_{x}[i]\vec{F}_{x}, \quad h_{*}(\Omega), h_{x}(\Omega), \quad \Omega - \text{signal model}$ $p(X \mid h) \propto \exp[-(X - \xi)\Sigma^{-1}(X - \xi)^{T}]$ $L = 2\ln\Lambda = 2\sum_{i} \left(\vec{X}[i] \cdot \vec{\xi}[i,h]\right) - \sum_{i} \left(\vec{\xi}[i,h] \cdot \vec{\xi}[i,h]\right)$

- find GW polarizations (h_{+},h_{x}) at maximum of Λ
- find source sky location by variation of Λ over θ and ϕ
- Ambiguity due to a large number of free parameters

January 21, 2014, cWB review

conceptually the same method, but approaches are radically different S.Klimenko, University of Florida January 21, 2014, cWB review

8

Standard likelihood solution for inspirals

"forward" approach

- Select source model
 - for example, non-spinning, non-eccentric BHs
- Select parameter space
 - range of total masses
 - range of mass ratios
 - > ... other parameters for more complex models
- Construct template bank of detector responses covering the source parameter space, inclination angles and sky locations. Make sure there are no cracks in the coverage – overlap > 0.98 between nearby templates
- Find matching template (and thus source parameters) at max likelihood

> Find nearby templates to estimate errors S.Klimenko, University of Florida

Standard likelihood solution for bursts 16 "inverse" approach f[1] 0 .. 00 f[2] .. 0*F* = Select sky location (θ,φ) calculate network matrix F for TF "event" {1,..,I} 0 ... f[I]> Calculate data vector X by time-shifting data streams to synchronize detectors: $X = {\vec{x}[1], ..., \vec{x}[I]}$ $H = \{\vec{h}[1], \dots, \vec{h}[[I]\}, h[i] = (h_{+}[i], h_{\times}[i])$ • Parameterize GW signal: • Find likelihood and its derivatives $L = 2\ln\Lambda = X^{T}(FH) + (FH)^{T}X - (FH)^{T}(FH) \qquad \frac{\partial L}{\partial h} = 0$ $H_{s} = \left(F^{T}F\right)^{-1}F^{T}X$ • Solution for H is coherent combination of X Repeat for all-sky locations maximizing L(H_s) Moore-Penrose • Find waveforms H_m and (θ_m, ϕ_m) at max{L} inverse Confront waveforms with source models does not work for practical networks – MP inverse may not exist January 21, 2014, cWB review S.Klimenko, University of Florida

15

• To find statistic L_{max} we do not need explicit $h_{+} \& h_{x}$ • $L_{max} = L_{+} + L_{x}$ $\begin{bmatrix} \vec{x} \cdot \vec{f}_{+} \\ \vec{x} \cdot \vec{f}_{x} \end{bmatrix} = \begin{bmatrix} |\vec{f}_{+}|^{2} & 0 \\ 0 & |\vec{f}_{x}|^{2} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{x} \end{bmatrix}$ $L_{+} = \frac{\left(\vec{x} \cdot \vec{f}_{+}\right)^{2}}{|\vec{f}_{+}|^{2}} = X^{T} P_{+} X, \quad P_{+ij} = \frac{f_{+i} f_{+j}}{|f_{+}|^{2}} = e_{+i} e_{+j}$ $L_{+} = \frac{\left(\vec{x} \cdot \vec{f}_{x}\right)^{2}}{|\vec{f}_{x}|^{2}} = X^{T} P_{x} X, \quad P_{xij} = \frac{f_{xi} f_{xj}}{|f_{x}|^{2}} = e_{xi} e_{xj}$ • L_{max} is never used as a detection statistic

S.Klimenko, University of Florida

- Detection statistics
 - event ranking: characterize event strength, preferable if ~SNR
 - vevent consistency: significant null stream can be indication of a noise artifact

January 21, 2014, cWB review

January 21, 2014, cWB review

S.Klimenko, University of Florida

Reconstruction of GW polarizations

 Assuming DPF and applying dual stream phase transformation, GW responses are parameterized as

$$x = x' \cos(\lambda) + \tilde{x}' \sin(\lambda)$$
$$\tilde{x} = \tilde{x}' \cos(\lambda) - x' \sin(\lambda)$$

$$\xi = h_o \vec{u}(\psi) \frac{\cos \iota}{\cos \psi} |f_+|, \quad \tilde{\xi} = h_o \tilde{v}(\psi) \frac{\sin \iota}{\cos \psi} |f_{\star}|$$

- ι instantaneous ellipticity angle
- $ightarrow \psi$ instantaneous polarization angle
- > ho GW strain amplitude
- Wave polarization is captured as a pattern of ξ, ξ̃ vectors

NULL space \vec{x} \vec{f}_{\star} \vec{v} \vec{v}

January 21, 2014, cWB review

'i' - iota – wave (fixed chirality) > use for all-sky search instead of 'r'-search

- 'p' Psi wave (const polarization angle)
- 'l','s' linear, loose linear
- 'c','g' circular, loose circular
 use 'g' for inspiral (eBBH, IMBH) searches
- 'e' elliptical

S.Klimenko, University of Florida

January 21, 2014, cWB review

January 2

• cWB2G can detect signals much longer than 1 sec

S.Klimenko, University of Florida

constant delay rings for detector pairs

 Error regions can be reported for optical/radio followup →multimessenger observations

S.Klimenko, University of Florida

January 21, 2014, cWB review

42

Reconstruction Summary

- read network event from trigger file
- calculated time-delayed amplitudes
- read WDM x-talk catalog (used in monster analysis)
- run sky-loop (find optimal sky location)
 - > identify event TF amplitudes for each sky location (network pixels with E>Eth)
 - \succ calculate standard coherent energy ightarrow dismiss sky location if too low
 - apply polarization constraint
 - apply network constraint
 - apply de-noising constraint
 - Calculate coherent statistics
- for optimal sky locations
 - > get multi-resolution coherent statistics
 - \succ do monster analysis \rightarrow get corresponding coherent statistics
 - > do chirp mass reconstruction
 - > calculate sky error regions

S.Klimenko, University of Florida

References

- LIGO/Virgo publications on burst searches: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
- Guersel, Tinto, PRD 40 v12, 1989
 - > reconstruction of GW signal for a network of three misaligned detectors
- Likelihood analysis: Flanagan, Hughes, PRD57 4577 (1998)
 > likelihood analysis for a network of misaligned detectors
- Two detector paradox: Mohanty et al, CQG 21 S1831 (2004)
 state a problem within standard likelihood analysis
- Semi-coherent burst search. Klimenko S and Mitselmakher CQG 21 S1819 (2004)
- Constraint likelihood: Klimenko et al, PRD 72, 122002 (2005)
 - address problem of ill-conditioned network response matrix (rank deficiency)
 - first introduction of likelihood constraints/regulators
- Penalized likelihood: Mohanty et al, CQG 23 4799 (2006).
- Rank deficiency of network matrix: Rakhmanov, CQG 23 S673 (2006)
- GW signal consistency: Chatterji et al, PRD 74 082005(2006)
- Coherent Burst search: S. Klimenko et al., Class. Quantum Grav. 25, 114029 (2008)
- Sky localization with advanced network. S. Klimenko et al. PRD 83, 102001 (2011).
- Three figures of merit..., B.Schutz, CQG 28 125023(2011)

S.Klimenko, University of Florida

January 21, 2014, cWB review