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1. Introduction

In this note we describe a coherent pipeline based on the constraint likelihood method

[9] for detection of gravitational wave (GW) bursts in interferometric data. The pipeline

is designed to work with arbitrary networks of gravitational wave interferometers. In

general the resonant bar detectors can be also included in the network, but the current

pipeline version does not support this option.

The pipeline consists of two stages: a) coherent trigger production stage, when the

burst events are generated for a network of GW detectors and b) post-production stage,

when additional selection cuts are applied to distinguish the GW candidates from the

background events. This division into two stages is not fundamental. At both stages the

pipeline executes coherent algorithms, based both on power of individual detectors and

the cross-correlation between the detectors. It is essentially different from a traditional

burst search pipeline, when, first, an excess power search is used for generation of triggers

and, second, the coherent algorithms are applied [1, 11]. Instead, by using the likelihood

approach, we combine in a coherent way the energy of individual detector responses into

a single quantity called the network likelihood statistic, which has a meaning of the total

signal-to-noise ratio of the GW signal detected in the network. The coherent triggers

are generated if the network likelihood exceed some threshold which is a parameter of

the search.

The coherent WaveBurst pipeline has essentially the same structure as the

incoherent WaveBurst pipeline used in combination with the r-statistic [10] for the

burst analysis (see Figure 1). Both pipelines share the same input, data conditioning

and some of the output infrastructures, but the event trigger generators are different.

The incoherent pipeline is based on the time-frequency coincidence of energy between

the detector data streams and the coherent pipeline is based on the network likelihood.

The coherent algorithms are implemented in the Wavelet Analysis Tool (WAT)

developed at University of Florida, which in turn is one of the toolboxes in the LIGO

Data Monitoring Tool (DMT). All the software is stored in CVS [7]. The WAT package

is available also as a standalone library [8].

2. Coherent analysis

Coherent network analysis is addressing a problem of detection and reconstruction of

gravitational waves with the networks of GW detectors. In coherent methods, a statistic

is built as a coherent sum over detector responses and, in general, it is more optimal

(better sensitivity at the same false alarm rate) than the detection statistics of individual

detectors. Also coherent methods provide estimators for the GW waveforms and the

source coordinates on the sky.
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2.1. Constraint Likelihood

The coherent WaveBurst pipeline uses a method for a coherent detection and

reconstruction of burst signals based on the use of the likelihood ratio functional [9].

For a general case of Gaussian quasi-stationary noise it can be written in the wavelet

(time-frequency) domain as

L =
K∑

k=1

N∑
i,j=1

(
w2

k[i, j]

σ2
k[i, j]

− (wk[i, j]− ξk[i, j])
2

σ2
k[i, j]

)
, (1)

where K is the number of detectors in the network, wk[i, j] is the sampled detector data

(time i and frequency j indexes run over some TF area of size N) and ξk[i, j] are the

detector responses. Note, we omit the term 1/2 in the conventional definition of the

likelihood ratio. The detector noise is characterized by its standard deviation σk[i, j],

which may vary over the TF plane. The detector responses are written in the standard

notations

ξk[i, j] = F+kh+[i, j] + F×kh×[i, j] , (2)

where F+k(θ, φ), F×k(θ, φ) are the detector antenna patterns (depend upon source

coordinates θ and φ) and h+[i, j], h×[i, j] are the two polarizations of the gravitational

wave signal in the wave frame. Since the detector responses ξk are invariant with respect

to the rotation around z-axis in the wave frame, the polarization angle is included in

the definition of the h+ and h×. The GW waveforms h+ and h× are found by variation

of L. The maximum likelihood ratio is obtained by substituting the solutions into the

functional L. The waveforms in time domain are reconstructed from the inverse wavelet

transformation. Below, for convenience we introduce the data vector w[i, j] and the

antenna pattern vectors f+[i, j] and f×[i, j]

w[i, j] =

{
w1[i, j]

σ1[i, j]
, ..,

wK [i, j]

σK [i, j]

}
(3)

f+(×)[i, j] =

{
F1+(×)

σ1[i, j]
, ..,

FK+(×)

σK [i, j]

}
(4)

Further in the text we omit the time-frequency indexes and replace the sum
∑N

i,j=1 with∑
ΩTF

, where ΩTF is the time-frequency area selected for the analysis.

The likelihood functional (Eq.1) can be written in the form L = L1 + L2:

L+ =
∑
ΩTF

[
2(w · f+)h+ − |f+|2h2

+

]
, (5)

L× =
∑
ΩTF

[
2(w · f×)h× − |f×|2h2

×

]
, (6)

where the antenna pattern vectors f+ and f× are defined in the Dominant Polarization

wave Frame (DPF) [9]. In this frame the antenna pattern vectors are orthogonal to each

other: (f+ · f×) = 0. Note, the norms |f+|2 and |f×|2 characterize the network sensitivity

to the h+ and h× polarizations.
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It is convenient to introduce the whiten GW waveforms g+ and g× and re-write the

likelihood functionals Eq. 5,6 in the canonical form

L+ =
∑
ΩTF

[
2(w · e+)g+ − g2

+

]
, g+ = |f+|h+ , (7)

L× =
∑
ΩTF

[
2(w · e×)g× − g2

×

]
, g× = |f×|h× , (8)

where e+ and e× are the unity vectors along the f+ and f× directions respectively. The

estimators of the whiten GW waveforms are obtained by the variation of the canonical

likelihood functionals

g+ = (w · e+) (9)

g× = (w · e×). (10)

The whiten detector responses are reconstructed from the waveforms g+ and g× as

sk =
ξk

σk

= ek+g+ + ek×g× . (11)

2.1.1. Likelihood regulators As first shown in [9], there is a specific class of constraints

(often called regulators), which arise from the way the network responds to a generic

gravitational wave signal. A classical example is a network of aligned detectors where

the detector responses ξk are identical. Therefore the algorithm can be constrained to

search for an unknown function ξ rather than for two gravitational wave polarizations

h+ and h×, which span much larger parameter space. Note, in this case |f×|2 = 0, the

e× vector is not defined and the solution for the h× waveform can not be found. The

regulators are important not only for aligned detectors, but also for networks of miss-

aligned detectors, for example, the LIGO and Virgo network [?, ?]. Depending on the

source location the network can be much less sensitive to the second GW component

(|f×|2 << |f+|2) and the h× waveform may not be reconstructed from the noisy data.

In the coherent WaveBurst analysis we introduce a regulator by changing the norm

of the f× vector

|f ′×|2 = |f×|2 + δ, (12)

where δ is some parameter. This is equivalent to adding one more, dummy detector,

to the network with the antenna patterns f+,K+1 = 0, f×,K+1 =
√

δ and zero detector

output (xK+1 = 0). In this case, the regulator preserves the orthogonality of the vectors

f+ and f ′× and the maximum likelihood statistics are written as

L+ =
∑
ΩTF

(w · e+)2 (13)

L× =
∑
ΩTF

(w · e′×)2. (14)

Depending on the value of the parameter δ different statistics can be generated, for

example:

• δ = 0 - standard likelihood,
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• δ = ∞ - hard constraint likelihood.

All mentioned above constraints are implemented in the WAT class “network” (see

Section 5)

2.1.2. Coherent Energy Equation 13 shows that the likelihood ratio is a quadratic form

L+ =
∑
ΩTF

wT P+w, (15)

L× =
∑
ΩTF

wT P×w. (16)

The matrices P+ = eT
+e+ and P× = eT

×e× are the orthogonal projections which kernel is

a plane defined by the vectors e+ and e×. The complementary space of the projections is

the null space. The diagonal terms of the likelihood quadratic form (i = j) represent the

incoherent energies E+ and E× detected in the network. Respectively the off-diagonal

terms (i 6= j) represent the coherent energies C+ and C×. One could naturally define a

total correlated energy Ec = C+ + C× which is a measures of the correlation between

the detector responses to a common GW signal. The correlated energy is used in the

coherent WaveBurst post-production analysis to distinguish genium GW signals from

the environmental and instrumental artifacts.

The definition of correlated energy Ec above is intuitively simple but not exactly

correct. The problem is that the statistics C+ and C× (and also E+ and E×) are

correlated. Assuming that w is a vector of random variables, the covariance of two

quadratic forms Λ1 and Λ2 is

cov[wT Λ1w,wT Λ2w] = 2tr[Λ1WΛ2W ] + 4ωT Λ1WΛ2ω, (17)

where ω and W are the expected value and the variance-covariance matrix of w

respectively. Assuming that uncorrelated detector noise is normally distributed with

the unity variance (W is the unity matrix) and zero mean (ω = 0) one can calculate the

covariance of the likelihood quadratic forms:

cov[wT C+w, wT C×w] = −
∑

i

e2
i+e2

i×, (18)

cov[wT E+w, wT E×w] =
∑

i

e2
i+e2

i×. (19)

The problem is particularly obvious in the case of the two detector network where the

coherent energies C+ and C× are perfectly anticorrelated and C+ + C× = 0.

To solve this problem we use the fact that for a given kernel the projections P+ and

P× are not uniquely defined. Indeed, any rotation

ẽ+ = e+ cos(φ) + e× sin(φ), (20)

ẽ× = e× cos(φ)− e+ sin(φ), (21)

where φ is the rotation angle, defines the projections P+ = ẽT
+ẽ+ and P× = ẽT

×ẽ×
with the same kernel. Note, the detector responses sk and the total likelihod statistic

Lm = L̃+ + L̃× are invariant with respect to the rotation. Given a data vector w,
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such a rotation angle φ can be selected that (w, ẽ×) = 0 and thus L̃× = 0. We define

the incoherent and coherent energies as the diagonal and the off-diagonal terms of the

principle likelihood component L̃+.

2.1.3. Likelihood normalization The Lm is a positive definite quadratic form. In case

of Gaussian stationary noise, when no GW signal is present, the expected value of the

Lm is

E[Lm] = 1 +
|f |2×

|f |2× + δ
. (22)

This Equation shows that first, the Lm is a biased estimator of the total signal SNR

detected in the network and second, the likelihood regulator breaks the normalization of

the maximum likelihood ratio. The likelihood normalization is particularly important

when a search is performed over a range of sky locations, because it affects the

reconstruction of the source coordinates.

The likelihood normalization follows from the requirement (constraint) that the

whiten detector responses

s = {s1, .., sK} (23)

should be orthogonal to the reconstructed detector noise∑
ΩTF

[
(w · s)− |s|2

]
= 0. (24)

To take the constraint into account, the canonical functional for the principle likelihood

component should be modified as follows

L+ =
∑
ΩTF

[
2(w · ẽ+)g̃+ − g̃2

+

]
+ λ

∑
ΩTF

[
(w · ẽ+)g̃+ − g̃2

+

k=K∑
k=1

ẽ2
+k

]
, (25)

where λ is the Lagrange multiplier. When δ = 0, the constraint is trivially satisfied for

any λ. It corresponds to the local likelihood normalization when constraint is satisfied

for every term in the sum Eq. ??

(w · ẽ+)g̃+ − g̃2
+ = 0 . (26)

In the presence of the regulator we can either force the local normalization

(w · ẽ+)g̃+ − g̃2
+

k=K∑
k=1

ẽ2
+k = 0 , (27)

or solve the variation problem for the likelihood functional Eq.25 and obtain the solutions

with the global likelihood normalization. Both likelihood normalization algorithms are

implemented in the cWB pipeline. Currently the local normalization is used and the

corresponding solutions for the GW waveforms in the principle component frame are

g̃+ =

(
k=K∑
k=1

ẽ2
+k

)−1

(w · ẽ+), g̃× = 0. (28)
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3. Data analysis algorithms

In this section we describe the algorithms used in the coherent WaveBurst pipeline.

The outline of the pipeline is shown in Figure 1. Many of the algorithms are used in

the incoherent WaveBurst pipeline and they have already been described in [3, 4, 5],.

But for completeness we briefly describe below all the algorithms used in the coherent

pipeline.

3.1. Wavelet transformation

The discrete wavelet transformations (DWT) are applied to discrete data and produce

discrete wavelet series wij, where j is the scale index (dilation) and i is a time index

(translation). Applied to time series, the DWT maps data from time domain to wavelet

domain. All DWTs implemented in WAT have critical sampling when the output data

vector has the same size as the input data vector. It is different from Q-transformation

[11] which can be viewed as the oversampled wavelet.

Wavelet series give a time-scale representation of data where each wavelet scale can

be associated with a certain frequency band of the initial time series. Therefore the

wavelet time-scale spectra can be displayed as a time-frequency scallogram, where the

scale is replaced with the central frequency of the band. The initial time series sampling

rate R and the scale number j determine the time resolution ∆tj(R) at this scale. The

DWT preserves the time-frequency volume of the data samples, which is equal to 1/2

for the input time series. Therefore the frequency resolution ∆fj is defined as 1/(2∆tj)

and determines the data bandwidth at the scale j.

The time-frequency resolution defined above should be distinguished from the

intrinsic TF resolution of the wavelet transformation, which is determined by spectral

leakage between wavelet sub-bands. In turn the spectral leakage depends on the length

of the wavelet filter. To reduce spectral leakage we use Meyers wavelets where long

filters can be easily calculated [5]. It allows much better localization of burst energy

on time-frequency plane then for the Symlet60 wavelets used for the S2-S4 analysis [4].

Also more compact time delay filters (see Section 3.3) can be constructed in wavelet

domain.

3.2. Data conditioning

Most of the data analysis algorithms are implemented as member functions in the

wavearray and WSeries classes of the WAT library. This chapter describes the

WaveBurst data conditioning steps, which are applied to data in the wavelet domain.

We do not discuss possible data conditioning steps which could be applied to data in

the time domain prior to wavelet decomposition.

3.2.1. Calibration Ideally the pipeline is designed to run on calibrated data or, so

called h(t) data produced with the time domain calibration [6]. It is possible to run
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Figure 1. Layout of the coherent Waveburst pipeline.
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pipeline on raw data, but it may result in a degradation of the detection efficiency and

reconstruction of the GW parameters, including incorrect reconstruction of the source

coordinates. In this case for reconstruction of the strain amplitude of detected signals

the standard WaveBurst calibration is used [3].

3.2.2. Linear prediction filter The linear prediction error filters are used to remove

”predictable” components from an input time series. They have been used in LIGO

data analysis in time domain. In this case the output of the LPE filter is a whitened

time series. The LPE filters can be used also in wavelet domain. In this case individual

LPE filters for each wavelet layer are constructed and applied. The coherent pipeline

uses exactly the same LPE filters which have been used in the incoherent Waveburst

pipeline [5].

3.2.3. Whitening Although, the linear predictor filters whiten data in the each wavelet

layer, they preserve the colored structure of the detector noise. Therefore, to produce

whitened wavelet series, the standard WaveBurst whitening procedure is applied [4, 5].

3.3. Time delay filters in wavelet domain

The likelihood method requires calculation of the scalar products of two detector data

vectors < xn(t), xm(t + τ) >, where one of the vectors can be shifted in time to take

into account the GW signal time delay between the detectors n and m. The time delay

τ in turn, depends on the source coordinates θ and φ.

In time domain it is straightforward to take the time delay τ into account. But

in case of colored detector noise it is preferable to calculate the maximum likelihood

statistics in the Fourier or wavelet (time-frequency) domains. It considerably simplifies

the calculation of the network response matrix and the likelihood statistic. In case of

the wavelet domain one needs to calculate the scalar products < wn(i, j), wm(i, j, τ) >,

where wn(i, j) are the wavelet amplitudes with the time-frequency indexes (i,j). If

the mth detector data stream wm(i, j) is delayed by time τ , it will result in a different

distribution of the wavelet amplitudes on the TF plane and the TF location (i,j) acquires

a new value of the amplitude wm(i, j, τ). This amplitude can be calculated from the

wavelet amplitudes wm(i, j) of the original data stream (before delay) with the help of

the time delay filters Dkl(τ).

wm(i, j, τ) =
∑
kl

Dkl(τ, j)wm(i + k, j + l). (29)

where k and l are local TF coordinates with respect to the TF location (i,j). The delay

filters are constructed individually for each wavelet layer, which is indicated with index

j. If the inverse wavelet transformation is applied to the wavelet data wm(i, j) and

wm(i, j, τ), respectively the time series xm(t) and xm(t + τ) can be obtained.

The construction of the delay filters is related to the decomposition of the wavelet

functions Ψj(t + τ) in the basis of non-shifted wavelet functions Ψj(t). The delay filter
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construction procedure can be described in the following steps:

• create blank wavelet series with only one coefficient at the TF location (i,j) set to

unity,

• apply the inverse wavelet transformation, which will reconstruct a wavelet function

Ψj(t) in time domain,

• shift Ψj(t) by delay time τ ,

• do wavelet decomposition of Ψj(t + τ),

• the resulting wavelet amplitudes at TF locations (i + k, j + l) give the delay filter

coefficients Dkl(τ, j) for the wavelet layer j.

The length of the delay filter is determined from the requirement on the acceptable

energy loss when the delay filter is applied. By sorting D2
kl in the decreasing order the

energy loss is

εK = 1−
∑
K

D2
kl, (30)

where the sum is calculated over K most significant coefficients Dkl. The selected

coefficients are described by the list of their relative TF locations (k, l) which should be

stored along with the filter coefficients Dkl. Typically K should be greater then 20 to

obtain the energy loss εK < 1%. Currently the delay filters with K = 32 are used in the

analysis. Figure 2 shows results of the test of the delay filter. Given a time series x(t), we

produce a wavelet series w(t, f). Then the delay filter with delay T=0.05sec is applied

to w(t, f) producing the delayed time series w(t, f, T ). After that the inverse wavelet

transformation is applied to w(t, f, T ). The resulting time series y(t, T ) is delayed by

-T in time domain and compared with the original time-series x(t). The data x(t) is a

white Gaussian noise with unity variance. The residual signal has the variance of 0.013.

3.4. Generation of coherent triggers

A starting point of any burst analysis is the identification of burst events (triggers).

Respectively this stage of a burst analysis pipeline is called the event trigger generator

(ETG). So far the ETGs based on the excess power statistics of individual detectors

were used in the analysis [1],[11]. Another example of ETG is corrPower [10], which uses

cross-correlation between detector pairs to generate the triggers. The likelihood statistic

utilizes both the excess power and the cross-correlation terms. Below we describe an

event generator based on the likelihood statistic which we call the coherent WaveBurst

trigger generator (cWB).

3.4.1. Likelihood time-frequency map In general the likelihood functional is calculated

as a sum over the data samples selected for the analysis (see Eq.1). The number of terms

in the sum depends on the selected TF area in the wavelet domain. In a particular case
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Figure 2. Black - the original time series x(t), red - delayed time series y(t), green -
x(t)− y(t)

when the sum consists of only one term, one can write a likelihood functional for a single

TF location (i,j):

Lp(i, j, θ, φ) =
∑
k

w2
k(i, j, τk)

σ2
k(i, j)

−
∑
k

(wk(i, j, τk)− ξk(i, j, θ, φ))2

σ2
k(i, j)

. (31)

Since the entire likelihood approach is applicable to the functional above, one can solve

the variation problem and find the maximum likelihood statistic Lm(i, j, θ, φ) for a given

TF location (i,j). It can be maximized over the source coordinates θ and φ, resulting in

a statistic

Lmm(i, j) = maxθ,φ{Lm(i, j, θ, φ)}. (32)

Plotted as a function of time and frequency, it gives us a likelihood time frequency

(LTF) map. Figure 3 shows an example of the LTF map for the S4 data.

A single data sample of the map is called the LTF pixel. It is characterized by

its TF location (i,j) and by the wavelet amplitudes wk(i, j, τ(θ, φ)), which are used to

construct the likelihood Lmm(i, j). The LTF pixel attributes are described in Section

5.2.
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Figure 3. Example of the LTF map for a magnetic glitch in S4 L1xH1xH2 data.

3.4.2. Coherent triggers The statistic Lmm(i, j) has a meaning of the maximum

possible energy detected by the network at the TF location (i,j). By selecting the

values of Lmm(i, j) above some threshold, one can identify groups of the LTF pixels

(coherent clusters) on the TF plane. The coherent clusters are reconstructed with the

same clustering algorithm used in the incoherent WaveBurst pipeline [3, 4]. A coherent

cluster is defined for the entire network, rather then for individual detectors. Therefore,

further in the text we reserve a name “cluster” for a group of pixels selected in a single

detector and refer to a group of the LTF pixels as a coherent trigger or network cluster.

3.4.3. Maximum likelihood statistic After the coherent triggers are identified, one has

to reconstruct parameters of the GW burst associated with the triggers, including

the reconstruction of two GW polarizations, the individual detector responses and the

maximum likelihood statistic of the triggers. The likelihood of reconstructed triggers is
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calculated as

Lc =
∑
ij

Lp(i, j, θ, φ) (33)

where the sum is taken over the LTF pixels in the trigger. The maximum likelihood

statistic Lmax is obtained by variation of Lc over θ and φ. Unlike for Lp, which is

calculated for a single LTF pixel, the Lmax is calculated simultaneously for the LTF

pixels forming the trigger.

However not all LTF pixels are used in the calculation of the maximum likelihood

statistic, but only the core LTF pixels which satisfies the condition∑
k

w2
k(i, j, τ(θ, φ)) > Ec. (34)

The sum above is taken over all detectors in the network and the Ec is the threshold.

3.5. Multi-resolution analysis

Exactly as for the incoherent WaveBurst analysis the coherent pipeline is run at different

time-frequency resolutions. The coherent triggers reconstructed at each resolution are

combined into super-triggers. The optimal resolution is defined by selecting a trigger

with the maximum likelihood. Also it is required in the algorithm that the triggers are

reconstructed at least at two adjacent resolutions. Since the multi-resolution analysis

algorithm is exactly the same as for the incoherent pipeline [4], we do not explain the

algorithmic details in this note.

3.6. Time-shift analysis

For the coherent WaveBurst pipeline the time-shift analysis for estimation of the

background is performed at run time. Namely, background triggers are generated by

running pipeline on time-shifted data streams. This is the only available option to

perform the time-shift analysis for a pipeline which uses maximum likelihood statistics

for generation of triggers. Note, we distinguish time-shifts from time-delays, which take

into account the GW signal delays τ(θ, φ) between different detectors.

Below, we describe the time-shift analysis on example of a network with three

detectors. The time shifts are applied to the reference detector, which is the first

detector declared in the network (see section 5.4). Namely, the reference detector data

stream is shifted with respect to the other detector streams by a time interval Ts = kts
characterized by the time-shift step ts and by the lag number k. The time-shift step is

selected to be proportional to the time resolution ∆tj of the TF map:

Ts = m∆tj, (35)

where m is the integer. To take into account the time delays, the delay filters are

applied to the second and third detectors. The LTF map at the TF location (i,j) and at

zero lag is characterized by three wavelet amplitudes (w1(i, j),w2(i, j, τ12),w3(i, j, τ13)).

In parallel, one can also calculate non-zero lag LTF maps characterized by wavelet
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amplitudes (w1(i + mk, j),w2(i, j, τ12),w3(i, j, τ13)), where k is the lag number. In case

when the index i + mk runs outside of the data segment selected for the analysis, we

perform cycle time shifts starting from the beginning of the segment. The diagram

below illustrates the time-shift algorithm.

det 1: ****w1(i + mk, j)*******w1(i, j)****w1(i + m, j)****w1(i + 2m, j).....***

det 2: *********************w2(i, j, τ12)**********************************

det 3: *********************w3(i, j, τ13)**********************************

The maximum time shift tsK, where K is the total number of time lags defines the

minimum duration of a data segment processed with the coherent WB pipeline.

The multiple time shifts described above are performed only for the first detector.

However if other detectors have to be time-shifted, it is possible to introducing a constant

time shift δTk for each detector. In this case the zero lag triggers (k = 0) correspond, in

fact, to time-shifted triggers with time shifts δTk between the detectors. The constant

time shifts are set up during the declaration of the detector objects (see section 5.3 )

and they can not by modified during the cWB runs.

3.7. Calculation of the observation time

In this section we describe how the observation (live) time is calculated for zero and

non-zero time lags. The live time is determined by a coincident lock segments of all

detectors in the network and by the data quality flags. We distinguish between the

primary data segments (science mode segments with some DQ flags included) which

are used to generate a list of shorter segments in order to run the cWB jobs, and the

final data segments with all DQ flags included. In the case when no final data quality

flags are used in the analysis the live time is the same in each lag and it is equal to

the total duration of the cWB data segments. However, when the final data quality

flags are applied, the calculation of the live time can be quite non-trivial, particularly

for non-zero time lags. To simplify this procedure we calculate the live time during

the WaveBurst run time. Given a list of the data segments with the data quality flags

included, we prepare a special time-frequency array (veto[i, j]) where pixels are set to

be 0 or 1 if their time is outside or inside of the data quality intervals respectively.

When the analysis of the LTF pixels is performed in the coherence() function, they are

accepted (if veto[i, j] = 1) or rejected (if veto[i, j] = 0) and the total number of accepted

LTF pixels is calculated for each time lag. The live time is calculated as the ratio of

the accepted LTF pixels and the total number of data samples taken into the analysis

multiplied by the duration of the data segment processed by the pipeline. The live

time is stored in a root file together with the triggers produced by the cWB job. This

procedure insures a correct calculation of the live time for any time shift algorithm, but

it requires the final data quality segments to be known before the trigger production.

At this moment we do not have any procedure for the post-production application of

the final data quality flags. As soon as the data quality flags are finalized, we simply

re-run the production of triggers with a new list of DQ segments.
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4. Structure of the coherent pipeline

4.1. Input data

We read data from frame files with the ROOT script readframes.C [4] which uses

FrameLib library. For example, in case of tree LIGO interferometers we read h(t)

time series for L1, H1 and H2 interferometers. There is no specific data time stride.

The time series can be as long as it is limited by the computer RAM memory. For

example, for the analysis with three LIGO detectors and input time series of 1000sec

long, typically 1Gb of RAM is used. However, for very non-stationary data it may

increase to several Gbs. The minimum segment duration is defined by the number of

time lags (see Section 3.6). We also require additional 8 seconds of data in the beginning

and the end of the time series. This data is processed with wavelet transformations but

not used for trigger generation to exclude the wavelet boundary artifacts. We prepare the

list of the WaveBurst data processing segments by splitting the LIGO science segments

into shorter segments, which is done outside of the cWB job. To avoid loss of data in the

beginning and the end of the cWB segments, we read data with the 8 seconds overlap.

4.2. Trigger production

The coherent triggers are generated by running the cWB pipeline script in a ROOT

session. The ROOT session is started in the following way:

cat string.in root -l -b -q parameters.C net.C &

where string.in contains a string with the information about the input and output

directories, parameters.C is the WaveBurst configuration file and net.C is the pipeline

script. The example of the configuration file and the production script for four detectors

is show in the Appendix A and B respectively. The layout of the cWB pipeline which is

implemented in the script is shown in Figure 1. In the beginning of the pipeline script

the input string is parsed. Then, various WAT objects are initialized, including wavelet

transformation, detectors, network, etc. For each specified detector, the data is read

from frames, downsampled, transformed into wavelet domain and the data conditioning

is applied.

The coherent search starts with the loop over the TF resolutions. Inside the loop

the following algorithms are executed:

• coherence3() - calculation of LTF maps and pixel selection. For details see

Section 5.5.

• cluster(n,m) - cluster reconstruction for all time lags. The input parameters define

gaps between pixels in time (n) and frequency (m) in units of pixels.

• likelihood3() - calculation of maximum likelihood statistics. For details see

Section 5.7.

• corrcut(C,N) - cut on reconstructed network correlation coefficient. The input

parameters define the threshold on the network correlation (C) and the minimum
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number of pixels (N) in the reconstructed clusters (the correlation cut is applied if

the number of pixels in a cluster is greater than N).

• setRank() - calculation of rank statistics for reconstructed clusters.

Several calls of likelihood3() are executed with various parameters in order to get rid

of large glitches by using a loose cut on reconstructed network correlation coefficient.

The rank statistics is calculated and the selected pixels are stored in the buffers WC[j]

individually for each lag j. For the next loop iteration the selected pixels are appended

to the WC structures, so in the end of the loop each WC[j] contains a list of pixels

detected at different TF resolutions.

After the loop over the TF resolutions, the pixel lists are copied into the

corresponding structures in the detector network NET object and the super-clusters

are reconstructed. In the end of the script various data objects are output into the root

files as described in the next section.

4.3. Output data

The ROOT data format allows to store arbitrary data divided into output data streams.

Each data stream is stored in the ROOT structure called a data tree. For WaveBurst

runs we distinguish five data streams:

• waveburst - coherent WaveBurst triggers,

• noise - noise rms for each wavelet layer,

• variability - noise variability for all detectors,

• livetime - live time estimated for each time lag

• injection - list of software injections

Respectively there can be up to five data trees in each ROOT file with one file

generated per WaveBurst job. The corresponding tree names are: “waveburst”, “noise”,

“variability”, “livetime” and “injection”. The structure of the waveburst tree is shown

in the Appendix C.

5. Pipeline Implementation in WAT

Wavelet Analysis Tool is a C/C++ library which serves as a foundation for several

DMT monitors: WaveMon, BurstMon and LineMonitor, and for the WaveBurst analysis

pipelines. The WAT toolbox consists of several data containers:

• wavearray< T > - generic template array. It is used in WAT for representation of

linear arrays and time series.

• WSeries< T > - generic template sliced array. It is used in WAT to store sliced

arrays and wavelet data.

• skymap - class for representation of a rectangular patch on the sky (or entire sky).

It is used in WAT to store various parameters, like detector antenna patterns, as a

function of polar angles θ and φ.
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• netcluster - class for the time-frequency pattern recognition. It is used in WAT to

store patterns of wavelet pixels (coherent triggers) for the coherent burst analysis.

• detector - class describing a GW detector. It has methods to calculate and store

skymaps of the detector antenna patterns, WSeries array to store the detector data

in time and wavelet domains, arrays to store reconstructed detector responses, etc.

• network - class describing a network of detectors. Most of the coherent algorithms

for calculation of the LTF maps and generation of coherent triggers are implemented

here. Apart from the initialization and data access utilities, there are two main

functions in the network class: coherence() and likelihood(). The coherence()

function calculates LTF maps for specified time lags and create lists of selected

(black) LTF pixels (see Sections 3.4.1,3.4.2). The likelihood() function calculates

the likelihood of reconstructed triggers (see Section 3.4.3).

There are several wavelet transformations:

• Symlet< T > - Symlet template class.

• Daubechies< T > - Daubechie template class.

• Biorthogonal< T > - Bi-orthogonal template class.

• Meyer< T > - Mayer template class.

• Haar< T > - Haar template class.

Currently the Meyer wavelet with 1024 filter coefficients is used in the coherent pipeline.

The data processing algorithms used in WaveBurst are implemented as member

functions in the data container classes mentioned above.

5.1. Sky maps

Sky maps are two dimensional arrays representing some quantity as a function of polar

angles θ and φ. Sky maps are used to store antenna patterns, time delays, network

likelihood, etc. The sky maps are implemented in the skymap C++ class. The number

of sky locations is defined by the angular resolution of the search. For example, for

all sky search, with one degree resolution the search is performed over 356 × 180 sky

locations.

5.2. Netcluster

The netcluster class defines the structure of the coherent triggers and methods for the

TF pattern recognition. Essentially the netcluster object is a list of the LTF pixels,

which have the following structure:

{

size_t clusterID; // cluster ID

size_t time; // time index for reference detector

size_t frequency; // frequency index (layer)
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float rate; // wavelet layer rate

float likelihood; // likelihood

float theta; // source angle theta index

float phi; // source angle phi index

bool core; // pixel type: true - core , false - halo

std::vector<double> wave; // vector of pixel’s wavelet amplitudes

std::vector<double> asnr; // vector of pixel’s whitened amplitudes

std::vector<float> rank; // vector of pixel’s rank amplitudes

std::vector<double> noiserms; // average noise rms

std::vector<float> variability; // average noise variability

std::vector<int> neighbors; // vector of links to neighbors

std::vector<int> index; // pointers to pixels in the TF data

}

Usually the coherent WB pipeline is run at several time-frequency resolutions.

Therefore, multiple triggers can be reconstructed for the same burst. The collection

of such triggers is called a super-cluster. The algorithm of super-cluster reconstruction

is exactly the same as for the incoherent WB [4]. The only differences are: a) for the

incoherent WB super-clusters are reconstructed for each detector, b) for the coherent

WB the optimal trigger is defined as a trigger with maximum value of likelihood.

The parameters of the coherent triggers can be extracted from the lists of the LTF

pixels with the method get() defined in the netcluster class.

5.3. Detector

A detector object is described in the detector C++ class. A detector is characterized

by its position and orientation of interferometer arms with respect to Earth centered

coordinate frame [16]. The positions and orientations of existing detectors (LIGO L1,

LIGO H1, LIGO H2, GEO G1, TAMA T1 and Virgo V1) are taken from [17]. For

example, a declaration

detector L1(‘‘L1’’);

defines the object L1 for the LIGO Livingston “L1” detector.

The detector antenna patterns are calculated according to [17] and they are in

agreement with results from other existing packages [18]. The detector object stores the

data vector (TFmap) and reconstructed detector responses.

5.4. Network

A network object is described in the network C++ class. Essentially it is a list of

detectors. Detectors can be added to the network with the add(detector*) method.

The first detector in the list is the reference detector. Its output can be artificially

shifted in time to perform the time-shift background analysis (see section 3.6). To
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synchronize GW signals between the detectors the second, third, etc, detectors are

delayed with respect to the reference detector by means of the delay filters. The coherent

algorithms are implemented in two network methods: a) coherence and b) likelihood.

Both methods are very CPU consuming, therefore to optimize the pipeline performance

they are implemented separately for networks with 3 and 4 detectors. Currently there

is no implementation for networks consisting of 2, 5 and more detector and they can

be easily implemented later if necessary. Below we describe the implementation of the

coherence and the likelihood methods for 3 detectors.

5.5. Implementation of the coherence method

The coherence3(aE,aC) function takes two parameters: aE is the threshold on the

average amplitude ap of the LTF pixels and aC is the threshold for selection of loud

(core) pixels. The amplitude ap is calculated as

ap =
√

2Lmm/K, (36)

where Lmm is the likelihood of the LTF pixel (see Eq. 32) and K is the number of

detectors in the network. The parameter aE is the main WaveBurst threshold which

defines the pipeline output rate at the production stage. It is set individually for each

wavelet resolution to yield approximately the same number of the LTF pixels selected

at each resolution (see Section 5.6).

The threshold aC does not affect the pipeline sensitivity. It is used for better

handling of loud glitches which are present in real data. Such glitches may consist

of thousands of pixels and they may overflow the computing resources at the final

stages of the trigger production. To make the pipeline usable for processing of real

data we eliminate such glitches at the early stage of the analysis by using a loose cut

(see description of the corrcut() function in Section 5.8) on the network correlation

coefficient, which is introduced in Section 6.1.1.

The algorithm of the coherence function is outlined below

coherence3(aL,aE){
initializations;

loop over wavelet layers j {
loop over pixels i {

loop over time delays τ {
calculate amplitudes w2(i, j, τ), w3(i, j, τ);

}
loop over time lags k {

estimate maximum pixel energy:

E(i, j, k) = w2
1(i, j, k) + maxτ (w

2
2(i, j, τ)) + maxτ (w

2
3(i, j, τ));

if(E(i, j, k) > 3a2
L) select LTF pixels:

}
loop over sky locations l {
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estimate maximum pixel energy for detectors 2 and 3:

E23(i, j) = maxl(a
2
2(i, j, l) + a2

3(i, j, l));

where w2
2(i, j, τ)) and w2

3(i, j, τ) are mapped into

a2
2(i, j, l) and a2

3(i, j, l) with the help of skymaps τ12[l] and τ13[l].

}
loop over time lags k {

estimate maximum likelihood as

Lmm(i, j, k) = (w2
1(i, j, k) + E23(i, j))/2

fill pixel parameters;

if(Lmm(i, j, k) > 3a2
E/2) mark core pixels: ;

save selected pixels;

}
}

}

The coherence function allows calculation of the LTF maps defined by Eq.32, but to

speed up the algorithm the LTF maps are approximated with the maximum pixel energy

Lmm(i, j) ≈ E(i, j)/2. The E(i, j)/2 gives the upper limit on the likelihood Lmm(i, j),

which follows from the likelihood equation 2L = E −N , where E is the total energy in

the data streams and N is the total detector noise energy (see section ??).

The final result of the coherence function are lists of pixels selected for zero and

non-zero time lags. This is similar to selection of black pixels used in the incoherent

methods [3], however, of course, the selection procedure is very different. The selected

LTF pixels are clustered with the existing pattern recognition methods [3, 4] and the

coherent triggers are reconstructed.

5.6. Calculation of the WaveBurst threshold

Given the probability p that the LTF pixel amplitude ap > aE (produced by Gaussian

detector noise), the threshold aE(p) depends on the wavelet TF resolution. To

calculate the function aE(p) one needs to know the probability distribution function

PDF (E(i, j, k)) of the maximum pixel energy E(i, j, k) (see previous Section). Though,

the PDF (E(i, j, k)) can be estimated from numerical simulation, it is desirable to

have its analytic approximation. We did not find an accurate analytic expression for

aE(p). We found, however, a reasonable approximation which can be derived from the

PDF (max(|x1|, |x2|, .., |xn|)) of n random Gaussian variables (x1, x2, .., xn). Given the

probability p that max(|x1|, |x2|, .., |xn|) > X(q, n), the threshold X(p, n) is calculated

as

X(p, n) =
√

2Erfc−1

(
1− exp

(
ln(1− p)

n

))
, (37)

where Erfc−1 is the inverse complementary error function.
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A reasonably accurate approximation (within a few percents if p > 0.01) for the

threshold aE is calculated as

aE =

√
X(p, neff ) +

2

K
[X(p, 1)−X(p, neff )], (38)

where the parameter neff depends on the maximum time delay between the detectors

τmax and the TF sampling interval ∆T

neff = 2
τmax

∆T

. (39)

The probability p (and aE) defines the number of the LTF pixels taken into the

analysis. The all-sky WaveBurst pipeline is usually limited by available computing

resources if the threshold is set low. From the other side the threshold should not be

too low if the final sensitisitivity of the pipeline is dominated by the post-production

selection cuts (see Section 6). For all-sky searches with the LIGO and the LIGO-GEO

networks, the typical value of p is 0.001.

5.7. Implementation of the likelihood method

The likelihood3(mode,core,aC) function takes three parameters: mode is the character

parameter, which defines a mode in which the likelihood is calculated, core is a logical

parameter which defines if only core (coretrue) or all pixels (core=false) are taken into

the analysis, and aC is the threshold for selection of core pixels. The algorithm of the

likelihood function is outlined below:

likelihood3(mode,core, ac){
initializations;

loop over time lags k {
loop over coherent triggers n {

loop over pixels in a trigger {
pixel selection;

loop over time delays τ {
calculate amplitudes w2(i, j, τ),w3(i, j, τ);

}
}
initialize maximum likelihood Lmax = 0;

loop over sky locations l {
initialize likelihood Ll = 0;

loop over pixels in a trigger m {
select pixels;

calculate pixel likelihood L(l,m);

Ll+ = L(l,m);

}
if(Lmax < Ll) Lmax = Ll;
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save index lmax corresponding to Lmax;

}
for selected sky location lmax

loop over pixels in the trigger {
calculate amplitudes w2(i, j, lmax),w3(i, j, lmax);

reconstruct GW signal: - fill vector wave;

save pixel parameters;

}
}

}

The likelihood function performs full reconstruction of the coherent triggers and fills in

all parameters of the LTF pixels, including reconstructed likelihood, null energy, source

coordinates, waveforms, etc.

The reconstruction of coherent triggers is controlled by the regulator parameter δ

(Eq.12) and by the input parameter “mode”, which can take the following values:

• ’l’ - the soft constraint is executed (δ = 1). The variation over the sky is performed

to search for the maximum value of the likelihood ratio.

• ’L’ - the constraint defined by the parameter δ is executed. The variation over the

sky is performed to search for the maximum value of the likelihood ratio.

• ’c’ - the soft constraint is executed (δ = 1). The variation over the sky is

performed to search for the maximum value of the network correlation coefficient(see

section 6.1.1).

• ’C’ - the constraint defined by the parameter δ is executed. The variation over

the sky is performed to search for the maximum value of the network correlation

coefficient.

What mode for the reconstruction of coherent triggers is determined by the network

configuration and the stationarity of the detector noise.

5.8. Rejection of loud glitches

6. Post-production analysis

When the detector noise is Gaussian and stationary, the maximum likelihood Lm is the

only statistic required for detection and selection of the GW burst triggers. In this case

no post-production analysis is required and the pipeline false alarm and false dismissal

probabilities are controlled by the threshold on Lm at the output of the coherent

event generator. In reality, the detector outputs are contaminated with glitches and

additional selection cuts should be applied to distinguish glitches from genuine GW

signals. This selection cuts are entirely ad hoc and depend on the network configuration

and parameters of the search. Therefore we divide the pipeline into two stages: a)
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coherent event generator (trigger production stage) and b) post-production analysis

stage. In the cWB pipeline the coherent analysis is performed at the production stage

and all the coherent statistics such as likelihood, null stream, network data matrix,

etc, are stored in the output trigger files. The cWB post-production stage deals with

selection of the “optimal” set of statistics and cuts to reject glitches and does not require

to run the coherent algorithms.

6.1. Event consistency

Empirically we found several selection cuts, which work best for the S4/S5 LIGO, GEO

and Virgo data. They are divided in two groups: a) the event consistency cuts (coherent

WaveBurst veto), which are used to reject glitches and typically have little or no effect on

the detection efficiency, and b) the final selection cut based on the strength of detected

events (see Section ??).

6.1.1. Network correlation coefficient We can rewrite Eq.1 in the following form

Lm = E −N, (40)

where E is the total normalized energy in the detector output streams

E =
∑
ΩTF

|w|2 (41)

and N is the total reconstructed energy of the noise in units of the noise RMS

N =
∑
ΩTF

|w − s|2. (42)

Often N is called a null stream, where the reconstructed GW signal is subtracted from

the detector output. From Eq.40 it is clear that Lm is simply the total SNR of a GW

signal detected in the network.

The likelihood is a quadratic form. The sum of the off-diagonal terms is the coherent

energy Ec (see Eq. 2.1.2). The coherent terms can be used to construct Pearson’s,

Cauchy’s correlation coefficients and the network correlation coefficient.

We define the network correlation coefficient as

cc =
Ec

N + |Ec|
, (43)

The network correlation coefficient is used for the post-production selection of the

coherent triggers. For glitches typically little correlation energy is detected by the

network and the reconstructed detector responses are inconsistent with the detector

outputs which result in the large null energy. By setting a threshold on the correlation

coefficient cc one effectively compares the null energy with the coherent energy. This is

much safer selection cut than the null stream cut [19] (where the null energy is compared

with the estimated noise energy), because in any realistic data analysis there is always

some residual energy left in the null stream. For strong gravitational waves the energy

of the residual signal can be much larger than the noise energy resulting in the false

rejection of the GW signal.
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We define Pearson’s correlation coefficient for each pair of detectors

rij =
Lij√
LiiLjj

, (44)

where Lij are the elements of the matrix for the principle likelihood component. The

correlation coefficients rij are used to construct the reduced correlated energy

ec =
∑
i6=j

Lij|rij|. (45)

Together with the correlated energy Ec it may be used to construct the cWB post-

production cuts.

6.1.2. Penalty factor The constraint Eq.24 is not the only constraint that used in the

analysis. The signal-noise orthogonality requirement should be also applied separately

for each detector

Λk =
∑
ij

(
wk[i, j]sk[i, j]− s2

k[i, j]
)

= 0. (46)

The reason for this is to prevent the reconstruction of the un-physical detector responses

when the energy of the response is greater than the total energy in the detector data

stream. Namely, the constraints above (Eq.46) ensure that

Ek > Sk; Ek =
∑
ij

w2
k[i, j], Sk =

∑
ij

s2
k[i, j]. (47)

These constraints are particularly important for all sky searches to find a correct source

location and help to reduce the false alarm rate.

The constraints (Eq.46) can be applied during the likelihood variation procedure

with the help of the Lagrange multipliers. However, due to computational complexity

we use them in the form of a penalty factor, by penalizing those points in the sky where

the constraint is not satisfied

Pf = max
k

Pk; Pk =

√
Ek

Sk

, Ek < Sk; Pk = 1, Ek > Sk. (48)

Also, the penalty factor is used for rejection of the background events. In the post-

production we require that Pf > 0.6.

6.1.3. H1H2 penalty factor For better rejection of the H1H2 correlated glitches we

introduce a penalty factor designed specifically for the H1 and H2 detectors

Phh =
|ΛH1 − ΛH2|

Ec

. (49)

Typically, correlated glitches are characterized by a large value of Phh and the GW

signals have Phh close to zero. In the analysis we require that Phh < 0.3 which rejects

significant number of correlated H1H2 glitches due to magnetic disturbances.
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6.2. Effective correlated SNR

There are several detection statistics reconstructed by coherent WaveBurst: likelihood,

coherent and incoherent energies, total SNR of the detector data streams (Eq.41), rank

statistics, etc. Empirically we found that the most effective detection statistic is based

on the correlated energy Ec (or ec). It is used in combination with the null energy

to construct the network correlation coefficient (see Eq.43) and the effective correlated

SNR per detector

ρ(Ec) = cc2Ec

K
, (50)

ρ(ec) = cc
ec

K
. (51)

Figure 4 shows a scatter plot of ρ(Ec) vs cc. Glitches (black dots) with large value of ρ

typically have low value of the correlation coefficient and they can be removed by the

cWB veto cuts. The background triggers with large value of cc are usually produced

by fluctuations of the detector noise and they can be effectively removed by setting a

threshold on ρ.

Figure 4. Scatter plot
√

ρ vs network correlation coefficient cc: black dots -
background triggers, colored distribution - sine-Gaussian injections, Q9.
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7. Estimation of burst parameters

Coherent triggers are reconstructed for the same time-frequency area in the wavelet

domain. Unlike for incoherent waveburst clusters in different detectors consist of the

same number of pixels. Therefore there are two groups of the trigger parameters: a)

reconstructed for the entire coherent event (likelihood, source coordinates, etc) and b)

reconstructed individually for clusters in each detector (time, hrss, etc).

7.1. Time and frequency

There are the following timing parameters calculated for a coherent event:

• start and stop GPS time,

• event duration,

• event central GPS time,

• low and high frequency,

• event bandwidth,

• event central frequency.

The start and stop are calculated from the coherent event boundaries in time defined

by the core pixels. For non-zero lag events the start and stop time can be different for

different detectors. For example, the difference start(H1) − start(L1) gives the time

shift between the H1 and L1 detectors. The event central time is calculated as

Tn =

∑k
i=1 ti ∗ Lmax[i]∑k

i=1 Lmax[i]
+ τn(θ, φ), (52)

where ti is the GPS time of core pixels, Lmax[i] is the pixel’s maximum likelihood ratio

and k is the number of core pixels in the cluster. The term τn(θ, φ) accounts for the time

delay between the n-th detector and the first (reference) detector in the network, which

is calculated for reconstructed sky coordinates θ and φ. The low and high parameters

are calculated from the cluster boundaries in frequency. The central frequency is

Fc =

∑k
i=1 fi ∗ Lmax[i]∑k

i=1 Lmax[i]
, (53)

where fi is the frequency of the core pixels. The trigger duration and bandwidth are

calculated as stop− start and high− low respectively.

7.2. Burst strength

There are several measures of the burst strength:

• normalized energy of the detector streams integrated over the TF area of the event

(see Eq.41 and Eq.??),

• maximum likelihood ratio Lmax, which is proportional to the total signal SNR

detected in the network,
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• reconstructed energy in individual detectors 2Lk (see Eq.??),

• root-square-sum of the detector responses (hrss).

7.2.1. Calibrated hrss The analysis uses calibrated h(t) data, which takes into account

the time-dependent calibration of the LIGO detectors. For a sampled signal h(ti) the

signal hrss is defined as

hrss =

√√√√∑
i

h2(ti)

fs

, (54)

where fs is the sampling rate. For the orthogonal wavelet transformation it holds that∑
i

h2(ti) =
∑
i,j

w2
h(ti, fj) (55)

where the second sum is taken over the time-frequency plane in the wavelet domain and

wh is the wavelet transform of the signal h.

The coherent WaveBurst reconstructs the GW polarizations h+ and h× in the

wavelet domain. Then given a cluster, the gravitational wave h2
rss can be estimated

as

h2
rss =

∑
i,j

h2
+[ij] + h2

×[ij]

fs

, (56)

where the sum is taken over all pixels in the cluster. The root-square-sum of the detector

responses is calculated accordingly

ξ2
rss =

∑
i,j

ξ2[ij]

fs

, (57)

where ξ is given by Equation 2. The inverse wavelet transformation of ξ gives the

reconstructed detector responses in time domain.
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8. Appendix A: WaveBurst configuration file for four detectors.

{

int simulation = 1; //1 for simulation, 0 for production

int runID = 0; // run number

// WB threshold settings

double bpp = 0.001; // probability for pixel selection

double Acore = 1.67; // threshold for selection of core pixels

double Tgap = 0.03; // time gap between clusters (sec)

double Fgap = 64.; // frequency gap between clusters (Hz)

// wavelet transform settings

int levelR = 2; // resampling level

int levelD = 8; // decomposition level

int l_low = 3; // low frequency resolution level

int l_high = 8; // high frequency resolution level

int lpfcut =64; // low pass filter cut-off [Hz]

int w_mode = 1; // whitening mode

double waveoffset = 8.;// wavelet boundary offset [sec]

bool parity = true; // use odd-parity wavelet

// time shift analysis settings

int lags = 1; // number of lags including zero lag

double step=3.25; // time interval between lags [sec]

// L1 H1 H2 G1 constant time shifts

double shift[4] = {0., 0., 0., 11.125};

// logNormal parameters

double pln[27]={2.700,0.254,0.200, /* level 1 */

2.500,0.274,0.200, /* level 2 */

2.304,0.298,0.171, /* level 3 */

2.144,0.322,0.137, /* level 4 */

1.965,0.336,0.145, /* level 5 */

1.772,0.356,0.142, /* level 6 */

1.587,0.371,0.146, /* level 7 */

1.430,0.380,0.156}; /* level 8 */
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// simulation parameters

int nfactor = 21;

double factor = 1.0;

double factors[] ={0.106, 0.150, 0.211, 0.298, 0.422,

0.596, 0.841, 1.19, 1.68, 2.37, 3.35,

4.73, 6.68, 9.44, 13.3, 18.736, 26.395,

37.184, 52.383, 73.794, 103.957};

// directories

char data_dir[] = "/usr1/igor/waveburst/data64";

char nodedir[50] = "/usr1/igor/waveburst";

char finalSegmentList[100]="1146592.542-S4H1H2L1G1_final_DQ.A.txt.plain";

char injectionList[50]="BurstMDC-SG21_V4_S4-Log.txt";

char fileNamesRaw[4][50]={"llo.lst.","lho1.lst.",

"lho2.lst.","geo.lst."};

char channelNamesRaw[4][50]={"L1:LSC-STRAIN","H1:LSC-STRAIN",

"H2:LSC-STRAIN","G1:DER_DATA_H"};

char channelNamesMDC[4][50]={"L1:GW-H","H1:GW-H",

"H2:GW-H","G1:GW-H"};

}

9. Appendix B: WaveBurst script for L1xH1xH2.

{

int i,j,m;

char input_dir[512],input_label[512];

char output_dir[512], output_label[512];

// parse input

cin>>runID>>input_dir>>input_label>>output_dir>>output_label;

cout<<"job ID: "<<runID<<endl;

cout<<"Input : "<<input_dir<<", label: "<<input_label<<endl;

cout<<"Output: "<<output_dir<<", label: "<<output_label<<endl;

gSystem->Exec("date");

gSystem->Exec("hostname");
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//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// declarations

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Meyer<double> B(1024); // set wavelet for resampling

Meyer<double> S(1024,2); // set wavelet for production

netcluster WC[lags]; // array of cluster structures

netcluster wc;

netcluster* pwc;

wavearray<double> x,y; // temporary time series

WSeries<double> wB(B); // original WSeries

WSeries<float> v[4]; // noise variability

detector L1("L1"); // detector

detector H1("H1"); // detector

detector H2("H2"); // detector

detector G1("G1"); // detector

network NET; // network

NET.add(&L1);

NET.add(&H1);

NET.add(&H2);

NET.add(&G1);

NET.setSkyMaps(1.); // set network skymaps

NET.setIndex(&H1);

NET.setAntenna(&L1);

NET.setAntenna(&H1);

NET.setAntenna(&H2);

NET.setAntenna(&G1);

NET.setbpp(0.1);

NET.setRunID(runID);

NET.Edge = waveoffset;

NET.pLLL = 0.1;

injection mdc(4);

livetime live;

netevent netburst(4);

variability wavevar;

wavenoise noiserms;
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// read input framelist file

char file[512], buFFer[1024];

sprintf(file,"%s/%s%d",input_dir,fileNamesRaw[0],runID);

FILE *pFile = fopen(file,"r");

fgets(buFFer,512,pFile);

fgets(buFFer,512,pFile);

fgets(buFFer,512,pFile);

double Tb = atof(buFFer)+waveoffset; // WB segment start

fgets(buFFer,512,pFile);

double Te = atof(buFFer)-waveoffset; // WB segment stop

double dT = Te-Tb; // WB segment duration

fclose(pFile);

if(simulation) { // reag MDC log file

i=NET.readMDClog(injectionList,double(long(Tb)));

printf("GPS: %16.6f saved, injections: %d\n",double(long(Tb)),i);

}

else { // setup constant shifts

L1.shift(shift[0]);

H1.shift(shift[1]);

H2.shift(shift[2]);

G1.shift(shift[3]);

}

NET.setTimeShifts(lags,step);

if(strlen(finalSegmentList)>1) NET.readSEGlist(finalSegmentList,2);

// read delay filters

detector Do[9]; // dummy detectors

for(i=3; i<9; i++) {

sprintf(file,"%s/Meyer1024_L%1d.dat",data_dir,i);

cout<<file<<endl;

Do[i].readFilter(file);

}

char outFile[1024];

char tmpFile[1024];

char endFile[1024];
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FileStat_t fstemp;

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// loop on factors

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

for(int iii=0; iii<nfactor; iii++) {

factor=factors[iii];

cout<<"factor="<<factor<<endl;

if(simulation) {

sprintf(outFile,"%s/wave_%d_%d_%s_%g_id%d_.root",

nodedir,int(Tb),int(dT),output_label,factor,runID);

sprintf(endFile,"%s/wave_%d_%d_%s_%g_id%d_.root",

output_dir,int(Tb),int(dT),output_label,factor,runID);

sprintf(tmpFile,"%s/wave_%d_%d_%s_%g_id%d_.root.tmp",

nodedir,int(Tb),int(dT),output_label,factor,runID);

if(!gSystem->GetPathInfo(endFile,fstemp)) {

printf("The file %s already exists - skip\n",endFile);

fflush(stdout);

continue;

}

}

else {

sprintf(outFile,"%s/wave_%d_%d_%s_id%d_.root",

nodedir,int(Tb),int(dT),output_label,runID);

sprintf(endFile,"%s/wave_%d_%d_%s_id%d_.root",

output_dir,int(Tb),int(dT),output_label,runID);

sprintf(tmpFile,"%s/wave_%d_%d_%s_id%d_.root.tmp",

nodedir,int(Tb),int(dT),output_label,runID);

}

cout<<"output file on the node: "<<outFile<<endl;

cout<<"final output file name : "<<endFile<<endl;

cout<<"temporary output file : "<<tmpFile<<endl;

for(int j=0; j<NET.nLag; j++) WC[j].clear();

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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// input data

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

double start, end, rate, duration;

// L1

sprintf(file,"%s/%s%d",input_dir,fileNamesRaw[0],runID);

readframes1(file,channelNamesRaw[0],x);

printf("file=%s\n",file);

start = x.start();

rate = x.rate();

end = start+x.size()/rate;

duration = end-start-2*waveoffset;

fprintf(stdout,"start=%f end=%f duration=%f rate=%f\n",

start,end,duration,rate);

if(simulation) {

sprintf(file,"%s/%s.lst.%d",input_dir,input_label,runID);

readframes1(file,channelNamesMDC[0],y);

y*=factor;

x[slice(int((y.start()-x.start())*x.rate()),y.size(),1)]+=y;

y.resize(1);

}

wB.Forward(x,levelR);

wB.getLayer(x,0);

L1.getTFmap()->Forward(x,S,levelD);

L1.getTFmap()->lprFilter(1,0,120.,4.);

L1.white(60.,w_mode,8.,30.);

v[0] = L1.getTFmap()->variability();

cout<<"After L1 data conditioning"<<endl;

gSystem->Exec("date");

// H1

sprintf(file,"%s/%s%d",input_dir,fileNamesRaw[1],runID);

readframes1(file,channelNamesRaw[1],x);

if(start!=x.start() || rate!=x.rate()) {

fprintf(stderr,"H1/L1 mismatch: %f, %f, %f, %f\n",
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start,x.start(),rate,x.rate()); exit(1);

}

if(simulation) {

sprintf(file,"%s/%s.lst.%d",input_dir,input_label,runID);

readframes1(file,channelNamesMDC[1],y);

y*=factor;

x[slice(int((y.start()-x.start())*x.rate()),y.size(),1)]+=y;

y.resize(1);

}

wB.Forward(x,levelR);

wB.getLayer(x,0);

H1.getTFmap()->Forward(x,S,levelD);

H1.getTFmap()->lprFilter(1,0,120.,4.);

H1.white(60.,w_mode,8.,30.);

v[1] = H1.getTFmap()->variability();

cout<<"After H1 data conditioning"<<endl;

gSystem->Exec("date");

// H2

sprintf(file,"%s/%s%d",input_dir,fileNamesRaw[2],runID);

readframes1(file,channelNamesRaw[2],x);

if(start!=x.start() || rate!=x.rate()) {

fprintf(stderr,"H2/L1 mismatch: %f, %f, %f, %f\n",

start,x.start(),rate,x.rate()); exit(1);

}

if(simulation) {

sprintf(file,"%s/%s.lst.%d",input_dir,input_label,runID);

readframes1(file,channelNamesMDC[2],y);

y*=factor;

x[slice(int((y.start()-x.start())*x.rate()),y.size(),1)]+=y;

y.resize(1);

}

wB.Forward(x,levelR);

wB.getLayer(x,0);

H2.getTFmap()->Forward(x,S,levelD);
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H2.getTFmap()->lprFilter(1,0,120.,4.);

H2.white(60.,w_mode,8.,30.);

v[2] = H2.getTFmap()->variability();

cout<<"After H2 data conditioning"<<endl;

gSystem->Exec("date");

// G1

sprintf(file,"%s/%s%d",input_dir,fileNamesRaw[3],runID);

readframes1(file,channelNamesRaw[3],x);

if(start!=x.start() || rate!=x.rate()) {

fprintf(stderr,"H1/L1 mismatch: %f, %f, %f, %f\n",

start,x.start(),rate,x.rate()); exit(1);

}

if(simulation) {

sprintf(file,"%s/%s.lst.%d",input_dir,input_label,runID);

readframes1(file,channelNamesMDC[3],y);

y*=factor;

x[slice(int((y.start()-x.start())*x.rate()),y.size(),1)]+=y;

y.resize(1);

}

wB.Forward(x,levelR);

wB.getLayer(x,0);

G1.getTFmap()->Forward(x,S,levelD);

G1.getTFmap()->lprFilter(1.,0,120.,4.);

G1.white(60.,w_mode,8.,30.);

v[3] = G1.getTFmap()->variability();

cout<<"After G1 data conditioning"<<endl;

gSystem->Exec("date");

double R = x.rate(); // original data rate

wB.resize(1);

x.resize(1);

printf("size=%d, segment start=%16.6f \n",

L1.getTFmap()->size(), H1.getTFmap()->start());
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cout<<"live time: "<<NET.setVeto(4.)<<endl; // set veto array

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// initialization of output root file

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

TFile *froot = new TFile(tmpFile, "RECREATE");

TTree* net_tree = netburst.setTree();

TTree* live_tree= live.setTree();

if(simulation) {

TTree* mdc_tree = mdc.setTree();

}

else {

TTree* var_tree = wavevar.setTree();

TTree* noise_tree = noiserms.setTree();

}

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// low pass filtering

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

int low = (int(R+0.5)>>(levelD))/2; // finest frequency resolution

int n = lpfcut/low; // number of layers to zero

for(i=0; i<n; i++){

L1.getTFmap()->getLayer(x,i); x = 0.; L1.getTFmap()->putLayer(x,i);

H1.getTFmap()->getLayer(x,i); x = 0.; H1.getTFmap()->putLayer(x,i);

H2.getTFmap()->getLayer(x,i); x = 0.; H2.getTFmap()->putLayer(x,i);

G1.getTFmap()->getLayer(x,i); x = 0.; G1.getTFmap()->putLayer(x,i);

}

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// start of the coherent search

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

double Ao;

double* pLN;

// loop over TF resolutions
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for(i=levelD; i>=l_low; i--) {

gSystem->Exec("date");

if(i<=l_high) {

pLN = pln+3*(i-1); // pointer to lognormal parameters

L1.setFilter(Do[i]);

H1.setFilter(L1); H2.setFilter(L1); G1.setFilter(L1);

NET.setFilter(&H1,0.031);

NET.setDelay(&H1); NET.setDelay(&H2); NET.setDelay(&G1);

Ao = logNormArg(bpp,pLN[0],pLN[1],pLN[2])+0.1*(l_high-i);

cout<<"pixel threshold in units of noise rms: "<<Ao<<endl;

cout<<"core pixels: "<<NET.coherence4(Ao,4.,0.)<<" ";

n = size_t(2.*Tgap*L1.getTFmap()->resolution(0)+0.1);

m = size_t(Fgap/L1.getTFmap()->resolution(0)+0.1);

if(n<1) n = 1;

if(m<1) m = 1;

cout<<"clusters: "<<NET.cluster(n,m)<<" "<<endl;

cout<<" pixels: "<<NET.likelihood4(’l’,true,Acore);

NET.corrcut(0.1,10,0); // remove large glitches

cout<<"|"<<NET.likelihood4(’c’,false,Acore);

NET.corrcut(0.1,0,0); // remove large glitches

for(j=0; j<NET.nLag; j++) {

pwc = NET.getwc(j);

wc = *pwc; *pwc = wc;

}

NET.setRMS();

cout<<"|"<<NET.likelihood4(’C’,false,Acore)<<" \n";

NET.setRank(8.);

NET.corrcut(0.3,0,0); // pipeline correlation cut

for(j=0; j<NET.nLag; j++) {
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wc = *(NET.getwc(j));

cout<<wc.csize()<<"|"<<wc.size()<<"|"<<WC[j].append(wc)<<" ";

}

cout<<endl;

}

if(i>l_low) NET.Inverse(1);

}

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// supercluster analysis

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

size_t nevent=0;

for(j=0; j<lags; j++){

pwc = NET.getwc(j); *pwc = WC[j];

m = pwc->supercluster(’L’,15,true);

cout<<m<<"|"<<pwc->size()<<" ";

nevent += m;

}

if(simulation) NET.printwc(0);

cout<<"\nSearch done\n";

cout<<"number of events: "<<nevent<<endl;

gSystem->Exec("date");

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// save data in root file

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

live.output(live_tree,&NET);

if(simulation) {

netburst.output(net_tree,&NET,factor);

mdc.output(mdc_tree,&NET,factor);

}

else {

netburst.output(net_tree,&NET);

wavevar.output(var_tree,&v[0],1,waveoffset);

wavevar.output(var_tree,&v[1],2,waveoffset);
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wavevar.output(var_tree,&v[2],3,waveoffset);

wavevar.output(var_tree,&v[3],4,waveoffset);

noiserms.output(noise_tree,&L1.nRMS,1,R/2);

noiserms.output(noise_tree,&H1.nRMS,2,R/2);

noiserms.output(noise_tree,&H2.nRMS,3,R/2);

noiserms.output(noise_tree,&G1.nRMS,4,R/2);

}

froot->Write();

froot->Close();

char command[512];

sprintf(command,"mv %s %s", tmpFile, outFile);

gSystem->Exec(command);

sprintf(command,"cp %s %s",outFile,output_dir);

gSystem->Exec(command);

}

cout<<"Stopping the job "<<runID<<endl;

gSystem->Exec("date");

return 0;

}

10. Appendix C: Structure of the output ROOT file

Int_t run; // run ID

Int_t nevent; // event count

Int_t* ifo; // ifo ID: 1/2/3/.. - L1/H1/H2/..

Int_t* eventID; // event ID: [0]-prod, [1]-sim

Int_t* type; // event type: [0] - prod, [1]-sim

Int_t* rate; // 1/rate - wavelet time resolution
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Int_t* volume; // cluster volume

Int_t* size; // cluster size (black pixels only)

Int_t usize; // cluster union size

Float_t* gap; // time between consecutive events

Float_t* lag; // time lag [sec]

Double_t* strain; // sqrt(h+*h+ + hx*hx)

Float_t* phi; // reconstructed/injected phi angle

Float_t* theta; // reconstructed/injected theta angle

Float_t* bp; // beam pattern coefficients for hp

Float_t* bx; // beam pattern coefficients for hx

Double_t* snr; // energy/noise_variance

Float_t* rSNR; // rank SNR

Float_t* gSNR; // gaussian SNR

Float_t* rCF; // rank confidence

Float_t* gCF; // Gaussian confidence

Float_t* rSF; // rank significance

Float_t* gSF; // Gaussians significance

Double_t* time; // average center_of_L time

Double_t* START; // segment start GPS time

Float_t* right; // cluster start relative to segment start

Float_t* left; // cluster stop relative to segment stop

Float_t* duration; // cluster duration = stop-start

Double_t* start; // GPS start time of the cluster

Double_t* stop; // GPS stop time of the cluster

Float_t* frequency; // average center_of_L frequency

Float_t* low; // min frequency

Float_t* high; // max frequency

Float_t* bandwidth; // high-low

Double_t* hrss; // log10(hrss)

Double_t* noise; // log10(noise rms)

Float_t* chi2; // Gaussian chi2 statistics

Double_t* ndm; // network data matrix (core pixels)

Float_t* null; // un-biased null statistics

Float_t* nill; // biased null statistics

Double_t gnet; // network sensitivity

Double_t anet; // network alignment factor

Double_t likelihood; // network likelihood
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