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Regression is naturally implemented in the cWB algorithm as a conditioning
tool to subtract the persistent lines that affects the detectors data and affects the
extraction of triggers disturbing the search of gravitational waves. The idea is
to take informations from auxiliary channels not connected with the gravitational
one to predict the effects of detector disturbances on the target channel and to
subtract them.

1 Regression theory

Regression uses a Wiener filter to find the correlation between a target channel
and one or more auxiliary channel.

1.1 One auxiliary channel

We consider as the target channel a discretized time series hi (i = 1, ..., N), while
the auxiliary channel is a time series xi. For simplicity we assume they have the
same number of samples.
The idea is to find a filter aj (j = −L, ..., L) which allows to construct a prediction
channel si which describes the disturbances. The prediction is defined as:

si =

(
L∑

j=−L

ajxi+j

)
(1)

To find the coefficient of the filter we minimize the total residual:

N∑
i=1

e2i =
N∑
i=1

[
hi −

(
L∑

j=−L

ajxi+j

)]2
(2)

After some calculation, minimization of Eq. 2 ( δχ
2

δak
= 0) leads to the system of

2L+1 equations (see Appendix A.1):

1



L∑
j=−L

aj

(
N∑
i=1

xi+jxi+k

)
=

(
N∑
i=1

xi+khi

)
(3)

which we simplify introducing a matricial notation:

Rxxa = Chx (4)

where we have defined:

• Chx (vector) the correlation between h and x: Chx
k =

∑N
i=1 hixi+k;

• a (vector) the filter: a = {a−L, ..., aL};

• Rxx (matrix) the autocorrelation of x: Rxx
jk =

∑N
i=1 xi+jxi+k

1.2 Adding more auxiliary channels

The prediction can be constructed using M auxiliary channels, like:

si =

(
L∑

j=−L

ajxi+j

)
+

(
L∑

j=−L

bjyi+j

)
+ ... (5)

In this case the filter coefficient become (2L+1 * M) and the minimization of the
residual gives up (2L+1 * M) equations. However, using the matricial notations,
it is possible to demonstrate that we can write all the equations in a compact form
(see Appendix A.2): Rxx Ryx ...

Rxy Ryy ...
... ... ...

a
b
...

 =

Chx

Chy

...

 (6)

this means that considering one or more channels produces the same final equation,
which is always of the type:

Ra = C (7)

From this matricial equation we will start to find the solution.

1.3 Solutions

The matrix R is symmetric and positive defined, with dimension M(2L + 1) ×
M(2L+1) = n×n. So it is always possible to calculate its eigen-values ({λ1, ..., λn})
and eigen-vectors ({v1, ...,vn}). For simplicity, we define eigen-values in a decreas-
ing order (λ1 ≥ ... ≥ λn).
Adopting the usual matricial notation, we define:
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• Λ: eigen-values matrix (n× n dimension).

Λ =


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 ... λN


• P: eigen-vector matrix (n × n dimension), each column is one of the eigen-

vector.
P =

(
v1 v2 ... vN

)
and we write:

P−1RP = Λ (8)

With simple calculations we can calculate the solution of the filter coefficient
as:

a = PΛ−1P−1C (9)

1.4 Regulators

The introduction of eigen-values is made for the application of the so-called regu-
lators.

In most of the cases we are interested for, not all the eigen-values are significant
for our purpose. This means that we do not loose information if we select only the
most important eigen-values (i.e. the bigger ones).
Moreover this allows us to avoid the possibility to over-fitting the construction of
prediction, i.e. the prediction could be too similar to the target channel.

In this contest we introduce a new eigen-values matrix Λ′ where we select only
bigger eigen-values:

Λ−1r =



1/λ1 ... ... ... ... ... ...
... 1/λ2 ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... 1/λth ... ... ...
... ... ... ... λ′ ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... λ′


The value of λ′ could be various, we consider three cases (regulators):
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• hard: λ′ = 0

Λ−1hard =



1/λ1 ... ... ... ... ... ...
... 1/λ2 ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... 1/λth ... ... ...
... ... ... ... 0 ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... 0


• soft: λ′ = 1/λth

Λ−1soft =



1/λ1 ... ... ... ... ... ...
... 1/λ2 ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... 1/λth ... ... ...
... ... ... ... 1/λth ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... 1/λth


• mild: λ′ = 1/λ1

Λ−1mild =



1/λ1 ... ... ... ... ... ...
... 1/λ2 ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... 1/λth ... ... ...
... ... ... ... 1/λ1 ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... 1/λ1


2 How regression is implemented in cWB

The cWB algorithm is a coherent algorithm which extract from Time-Frequency
(TF) decomposition the excess power in the data, which are collected in GW-like
events. The TF decomposition is very useful for the application of regression,
because it allows to split the calculation of the filter a in small sub-bands. This
has the natural consequence that the filter length we need to characterize the
disturbances can be reduced and conseguently the calculations are simpler.

In this way, we split the total frequency band [min,max] in K sub-bands of
resolution ∆f = max−min

K
. For each sub-band k we will calculate its proper filter

ak = PkΛ
−1
k P−1k .
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One more advantage is the introduction of 90 degree phase data (x̃). This
is done in CWB to have a more complete description of the signal. Regression
include these information defining the time series hi and xi as linear combination
of 0 and 90 phases:

Hi = hi + ih̃i
Xi = xi + ix̃i

so the residual is now defined as:

Fi = Hi −
∑
j

(AjXi+j) (10)

where now Aj is a complex number Ai = ai + iãi.
The minimization is calculated on the norm of the residual. The prediction

becomes:

Sk =
∑
j

(AjXj+k) =
∑
j

(aj+iãj)(xj+k+ix̃j+k) = (ajxj+k−ãjx̃j+k)+i(ajx̃j+k+ãjxj+k)

(11)
Anyway, as shown in Appendix B also in this formulation we arrive at a solution

of the type:
Ra = C

2.1 cWB parameters for regression

Considering a small sub-band k, the regression algorithm accepts the following
parameters for the calculation of the filter ak:

• FILTER LENGTH
value of L in the formula above (effective filter lenght is 2L+1)

• There are two ways to define the index th of the eigenvalues

– EIGEN THR
λth = min{λi > EIGEN THR}

– EIGEN INDEX
λth = λEIGEN INDEX

the variables can be used together, in this case the λth is chosen according
to the smallest one which satisfies both conditions.

• REGULATOR
A character which identifies the regulator to use:
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– ’h’: hard

– ’s’: soft

– ’m’: mild

• RANK THR
Each channel is labeled with a rank value (from 0 to 1) which refers to
the channel contribution to the definition of prediction. For the calculation
of the prediction are used only the channels which have rank greater than
RANK THR

A Derivation of R matrix

A.1 One auxiliary channel

Reminding that we want to minimize the residual:

N∑
i=1

e2i =
N∑
i=1

[
hi −

(
L∑

j=−L

ajxi+j

)]2
(12)

Calculate the first derivative respect to the generic coefficient ak:

δχ2

δak
=

δ

δak

 N∑
i=1

(
hi −

L∑
j=−L

ajxi+j

)2
 =

=
N∑
i=1

 δ

δak

(
hi −

L∑
j=−L

ajxi+j

)2
 =

=
N∑
i=1

[(
hi −

L∑
j=−L

ajxi+j

)(
−2

δ

δak

L∑
j=−L

ajxi+j

)]
=

=
N∑
i=1

[(
hi −

L∑
j=−L

ajxi+j

)(
−2

L∑
j=−L

xi+j
δaj
δak

)]
=

= −2
N∑
i=1

[
xi+khi −

L∑
j=−L

ajxi+jxi+k

]
=

= −2

[(
N∑
i=1

xi+khi

)
−

L∑
j=−L

aj

(
N∑
i=1

xi+jxi+k

)]

(13)
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We put the 2L+ 1 first derivative equal to zero:

L∑
j=−L

aj

(
N∑
i=1

xi+jxi+k

)
=

(
N∑
i=1

xi+khi

)
(14)

Remimding the matrix notation:

• Chx
k =

∑N
i=1 hixi+k;

• a = {a−L, ..., aL};

• Rxx
jk =

∑N
i=1 xi+jxi+k

we can write the previous equation as:

Rxxa = Chx (15)

A.2 More auxiliary channels

Suppose to have M auxiliary channels x, y, ... So the residual is defined:

N∑
i=1

e2i =
N∑
i=1

[
hi −

(
L∑

j=−L

ajxi+j

)
−

(
L∑

j=−L

bjyi+j

)
− ...

]2
(16)

To minimize we should resolve the following equations:
δχ2

δak
= 0

δχ2

δbk
= 0

...

(17)

Calculating the derivative respect to ak leads to:

δχ2

δak
=

δ

δak

 N∑
i=1

(
hi −

L∑
j=−L

ajxi+j −
L∑

j=−L

bjyi+j − ...

)2
 =

=
N∑
i=1

[(
hi −

L∑
j=−L

ajxi+j −
L∑

j=−L

bjyi+j − ...

)(
−2

δ

δak

L∑
j=−L

ajxi+j

)]
=

= −2
N∑
i=1

[
xi+khi −

L∑
j=−L

ajxi+jxi+k −
L∑

j=−L

bjyi+jxi+k − ...

]
=

= −2

[(
N∑
i=1

xi+khi

)
−

L∑
j=−L

aj

(
N∑
i=1

xi+jxi+k

)
−

L∑
j=−L

bj

(
N∑
i=1

yi+jxi+k

)
− ...

]
(18)
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It is easy to see that for other derivatives the equation is similar. Combining
all the equations and using matrix notations we obtain:

Rxxa +Ryxb + ... = Chx

Rxya +Ryyb + ... = Chy

...
(19)

where we have defined the correlation between two channels as: Rxy
jk =

∑N
i=1 xi+jyi+k

We resume all the previous equation in the following way:Rxx Ryx ...
Rxy Ryy ...
... ... ...

a
b
...

 =

Chx

Chy

...

 (20)

Which is equivalent to consider the M channels as an unique one with M times
size.

B Imaginary filters

B.1 One channel

Let’s consider a generic channel x composed of 0 (x) and 90 (x̃) phase data. We
can describe a single channel as composed of a real and imaginary part:

Xi = xi + ix̃i (21)

the same for filter:
Ai = ai + iãi (22)

So if we define:

Fi =

[
Hi −

∑
j

(AjXi+j)

]
(23)

we can write the residual:

N∑
i=1

[
FiF̄i

]
=

N∑
i=1

[
<2(Fi) + =2(Fi)

]
(24)

where¯is the complex conjugate, < and = are real and imaginary parts.
Let’s rewrite the residual and then calculate the first derivative respect to ak

and ãj

AjXi+j = (aj + iãj)(xi+j + ix̃i+j) = (ajxi+j − ãjx̃i+j) + i(ajx̃i+j + ãjxi+j) (25)
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so
<(Fi) = hi −

∑
j(ajxi+j − ãjx̃i+j)

=(Fi) = h̃i −
∑

j(ajx̃i+j + ãjxi+j)
(26)

Calculating the first derivative respect to ak

δ

δak
<2(Fi) = 2<(Fi)

δ

δak
<(Fi) =

= 2<(Fi)
δ

δak

[
−
∑
j

(ajxi+j)

]
= −2<(Fi)xi+k =

= −2

[
hi −

∑
j

(ajxi+j − ãjx̃i+j)

]
xi+k

(27)

and:
δ

δak
=2(Fi) = 2=(Fi)

δ

δak
=(Fi) =

= 2=(Fi)
δ

δak

[
−
∑
j

(ajx̃i+j)

]
= −2=(Fi)x̃i+k =

= −2

[
h̃i −

∑
j

(ajx̃i+j + ãjxi+j)

]
x̃i+k

(28)

Combining the two equations we have:

N∑
i=1

(hixi+k+h̃ix̃i+k) =
∑
j

aj

N∑
i=1

(xi+jxi+k+x̃i+jx̃i+k)+
∑
j

ãj

N∑
i=1

(xi+jx̃i+k−x̃i+jxi+k)

(29)
or, written more simply:

Chx
k + C h̃x̃

k =
∑
j

aj(R
xx
jk +Rx̃x̃

jk ) +
∑
j

ãj(R
xx̃
jk −Rx̃x

jk ) (30)

where: {
Cab
k =

∑N
i=1 aibi+k

Rab
jk =

∑N
i=1 ai+jbi+k

(31)

Calculate derivative respect to ãk

δ

δãk
<2(Fi) = 2<(Fi)

δ

δãk
<(Fi) =

= 2<(Fi)
δ

δãk
[ãjx̃i+j] = 2<(Fi)x̃i+k

= 2

[
hi −

∑
j

(ajxi+j − ãjx̃i+j)

]
x̃i+k

(32)
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and:

δ

δãk
=2(Fi) = 2=(Fi)

δ

δãk
=(Fi) =

= 2=(Fi)
δ

δãk
[−ãjxi+j] = −2=(Fi)xi+k =

= −2

[
h̃i −

∑
j

(ajx̃i+j + ãjxi+j)

]
xi+k

(33)

Combining and using same notations as before:

Chx̃
k − C h̃x

k =
∑
j

aj(R
xx̃
jk −Rx̃x

jk )−
∑
j

ãj(R
x̃x̃
jk +Rxx

jk ) (34)

Using matrix notations:{
Chx + Ch̃x̃ = (Rxx +Rx̃x̃)a + (Rxx̃ −Rx̃x)ã

Chx̃ −Ch̃x = (Rxx̃ −Rx̃x)a− (Rx̃x̃ +Rxx)ã
(35)

We can put all the system in a unique matricial equation (inverting the signs
of second equation):(

Rxx +Rx̃x̃ Rxx̃ −Rx̃x

Rx̃x −Rxx̃ Rx̃x̃ +Rxx

)(
a
ã

)
=

(
Chx + Ch̃x̃

Ch̃x −Chx̃

)
(36)

B.2 More auxiliary channels

If we consider M channels we have:

Fi =

[
Hi −

∑
j

(AjXi+j)−
∑
j

(BjYi+j)− ...

]
(37)

and conseguently:

<(Fi) = hi −
∑

j(ajxi+j − ãjx̃i+j)−
∑

j(bjyi+j − b̃j ỹi+j)− ...
=(Fi) = h̃i −

∑
j(ajx̃i+j + ãjxi+j)−

∑
j(bj ỹi+j + b̃jyi+j)− ...

(38)

The first derivatives respect to ak and ãk are similar to the case of one channel:
δ
δak
<2(Fi) = −2<(Fi)xi+k

δ
δak
=2(Fi) = −2=(Fi)x̃i+k
δ
δãk
<2(Fi) = 2<(Fi)x̃i+k

δ
δãk
=2(Fi) = −2=(Fi)xi+k

(39)
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So we have:{
Chx + Ch̃x̃ = (Rxx +Rx̃x̃)a + (Rxx̃ −Rx̃x)ã + (Ryx +Rỹx̃)b + (Ryx̃ −Rỹx)b̃

Chx̃ −Ch̃x = (Rxx̃ −Rx̃x)a− (Rx̃x̃ −Rxx)ã + (Ryx̃ −Rỹx)b− (Rỹx̃ −Ryx)b̃
(40)

and similar for other derivatives. Combining:
Rxx +Rx̃x̃ Rxx̃ −Rx̃x Ryx +Rỹx̃ Ryx̃ −Rỹx ...
Rx̃x −Rxx̃ Rx̃x̃ +Rxx Rỹx −Ryx̃ Rỹx̃ +Ryx ...
Rxy +Rx̃ỹ Rxỹ −Rx̃y Ryy +Rỹỹ Ryỹ −Rỹy ...
Rx̃y −Rxỹ Rx̃ỹ +Rxy Rỹy −Ryỹ Rỹỹ +Ryy ...

... ... ... ... ...




a
ã
b

b̃
...

 =


Chx + Ch̃x̃

Ch̃x −Chx̃

Chy + Ch̃ỹ

Ch̃y −Chỹ

...


(41)

C Properties of R matrix

The auto-correlation matrix is symmetric in all the previous cases (Rjk = Rkj).
This is a natural consequence of the fact we are minimizing a quadratic form. Let
see in all the cases.
We remind that generally R is a block matrix, where the diagonal matrices are
auto-correlation of the same channels (Rxx) and off-diagonal matrices are cross-
correlation of different channels (Rxy).

• Real filter
The diagonal matrices are naturally symmetric:
Rjk
xx =

∑N
i=1 xi+jxi+k =

∑N
i=1 xi+kxi+j = Rkj

xx

The off-diagonal part is symmetric if Rjk
xy = Rkj

yx:

Rjk
xy =

∑N
i=1 xi+jyi+k =

∑N
i=1 yi+kxi+j = Rkj

yx

• Imaginary filter
This is already demonstrated from the two previous cases: R matrix is com-
posed from a sum of symmetric block matrices, so it is symmetric.
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